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The speed of any quantum process is limited by quantum mechanics via time-energy

uncertainty relations and they imply that time and energy are tradeoff against each other.

As such, in this paper, we propose to measure the time-energy as a single unit for quantum

channels. We consider a time-energy measure for quantum channels and compute lower and

upper bounds of it using the channel Kraus operators. For a special class of channels (which

includes the depolarizing channel), we can obtain the exact value of the time-energy measure.

Our result can be used to compare the time-energy resources of similar quantum processes.

In particular, we show that erasing quantum information requires
√

(n+ 1)/n times more

time-energy resource than erasing classical information, where n is the system dimension.

Quantum processes in nature and quantum

computation processes designed by human all re-

quire time and energy to evolve. The evoluation

speed of a physical device is governed by physical

laws and is limited by the energy of the device.

Under the constraints of quantum mechanics,

time-energy uncertainty relations (TEURs) set

limits on system evolutions [1]. The investiga-

tion of TEURs has a long history. Mandelstam

and Tamm [2] proved the first major result of a

TEUR. This was followed by subsequent work on

isolated systems [3–10] and composite systems

with entanglement [11–13]. Recently, TEURs

for general quantum processes have also been

proved [14, 15]. The general form of TEURs is an

inequality that sets a lower limit on the product

of the system energy (or a function of the ener-

gies) and the time it takes to evolve an initial
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state to a final state (e.g., an orthogonal state).

One implication of the form of TEURs is that

time and energy are tradeoff against each other.

Thus, we propose to regard time-energy as a sin-

gle property of a quantum process. The intuition

is that the more computation or work a quan-

tum process performs, the more time-energy it

requires. And it is up to the system designer (or

nature) to perform it with more time but less en-

ergy, or vice versa. Thus, our goal in this paper

is to investigate the time-energy requirements of

quantum processes by using a time-energy mea-

sure. Research in this direction has been car-

ried out before. Chau [16] proposed a time-

energy measure for unitary transformations that

is based on a TEUR proved earlier [10]. In this

paper, we extend this measure to quantum pro-

cesses. The TEUR due to Chau [10] is tight in

the sense that it can be saturated by some states
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and Hamiltonians, and thus it serves to motivate

a good definition for a time-energy measure. To

see this, let’s start with this TEUR. Given a

time-independent Hamiltonian H of a system,

the time t needed to to evolve a state |Φ〉 under

the action of H to a state whose fidelity [17] is

less than or equal to ε satisfies the TEUR

t ≥ (1−
√
ε)~

A
∑

j |αj |2|Ej |
(1)

where Ej ’s are the eigenvalues of H with the

corresponding normalized energy eigenvectors

|Ej〉’s, |Φ〉 =
∑

j αj |Ej〉, and A ≈ 0.725 is

a universal constant. Essentially, after time

t, the state transforms unitarily according to

U = e−iHt/~. The same U could be imple-

mented with either a high energy H run for a

shorter time or a low energy H run for a longer

time. Based on Eq. (1), a weighted sum of |tEj |’s

serves as an indicator of the time-energy resource

needed to perform U , and as such the follow-

ing time-energy measure on unitary matrices was

proposed by Chau [16]:

‖U‖~µ =

r∑
j=1

µj |θj |↓

where U has eigenvalues exp(−iEjt/~) ≡

exp(θj), and |θj |↓ denotes |θj | ordered non-

increasingly |θ1|↓ ≥ |θ2|↓ ≥ · · · ≥ |θr|↓. Also,

~µ = [µ1, µ2, . . . , µr] 6= ~0 with µ1 ≥ µ2 ≥ · · · ≥

µr ≥ 0. Note that ‖U‖~µ satisfies the multi-

plicative triangle inequality ‖UV ‖~µ ≤ ‖U‖~µ +

‖V ‖~µ [16]. In essence, a large value of ‖U‖~µ sug-

gests that a long time may be needed to run a

Hamiltonian that implements U for a fixed en-

ergy, and vice versa.

In this paper, we are interested in an anal-

ogous measure for quantum channels which in-

clude unitary transformations as special cases.

We are given a quantum channel F(ρ) acting on

system A that maps n × n density matrix ρ to

another one with the same dimension. There ex-

ist unitary extensions UBA in a larger Hilbert

space with an ancillary system B such that

F(ρ) = TrB[UBA(|0〉B〈0| ⊗ ρA)U †BA]. Each UBA

could have a different time-energy spectrum and

we want to select the one requiring the least re-

source for F . We extend the resource indicator

for U to quantum channel F by defining

‖F‖~µ ≡ min
U
‖U‖~µ

s.t.F(ρ) = TrB[UBA(|0〉B〈0| ⊗ ρA)U †BA] ∀ρ.

This gives a U that consumes the least time-

energy resource. Thus, ‖F‖~µ is an indicator of

the resource needed to perform F .

There are some interesting consequences by

using this time-energy measure. In particu-

lar, we can compare the time-energy resources

needed to erase quantum information and clas-

sical information. We show that
√

(n+ 1)/n

times more resource is required in the quantum

setting than in the classical setting. Also, we

study the time-energy scaling of consecutive runs

of the depolarizing channel. It turns out that

the amount of time-energy resource needed for

k runs of the depolarizing channel scales as
√
k

when the noise is small.
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In this work, we focus on two special cases of

the time-energy measure:

• Sum time-energy: ‖U‖sum ≡
r∑
j=1

|θj | .

• Max time-energy: ‖U‖max ≡ max
1≤j≤r

|θj |

= |θ1|↓ .

Note that the subscript “sum” is short for ~µ =

[1, 1, . . . , 1] and “max” for ~µ = [1, 0, . . . , 0].

For these two cases, we derive lower and up-

per bounds on the time-energy resource measure

‖F‖max and ‖F‖sum for any quantum channel

F given its Kraus operators. The derivation is

based on analyzing a few intermediate optimiza-

tion problems. It turns out that the lower and

upper bounds are all dependent on the eigenval-

ues of some Kraus operator of F . Specifically,

we prove that

‖F‖max ≥ min
v: ‖v‖≤1

max
1≤i≤n

cos−1
[

Re(λi(

d∑
j=1

vjFj))
]

(2)

‖F‖max ≤ min
v: ‖v‖≤1

n∑
i=1

cos−1
[

Re(λi(

d∑
j=1

vjFj))
]
(3)

‖F‖sum ≥ min
v: ‖v‖=1

max
1≤i≤n

2 cos−1 |λi(
d∑
j=1

vjFj)|

(4)

‖F‖sum ≤ min
v: ‖v‖≤1

n∑
i=1

2 cos−1
[

Re(λi(

d∑
j=1

vjFj))
]

(5)

where ‖v‖ =
√∑d

j=1 |vj |2, Fj ∈ Cn×n, j =

1, . . . , d are the Kraus operators of F , and λi(·)

denotes the ith eigenvalue of its argument. Note

that F(ρ) =
∑d

j=1 FjρF
†
j .

For a class of channels (which includes the

depolarizing channel), we obtain the exact value

for ‖F‖max. In particular, when F is a depolar-

izing channel with probability q that the input

state is unchanged, its time-energy requirement

is ‖F‖max = cos−1
√
q + (1− q)/n2.

We summarize the approach used to estab-

lish the lower and upper bounds. We cast the

original problem of finding the most time-energy

efficient U that implements F as the problem of

finding a U that transforms some given initial

vectors to some given final vectors. The time-

energy of this U is lower bounded by that of any

U ′ that transforms a subset of the vectors. This

is essence of how we obtain a lower bound for

‖F‖max and ‖F‖sum, by searching for U ′ that

transforms only one vector. To derive the up-

per bound, we construct a sequence of single-

vector transformations such that their prod-

uct gives the original U . Since ‖U‖~µ satisfies

the multiplicative triangle inequality ‖UV ‖~µ ≤

‖U‖~µ + ‖V ‖~µ [16], we obtain the upper bound.

Thus, both the derivations of the lower and up-

per bounds rely on the solution to the single-

vector-transformation problem.

We make a few other remarks. A related

concept about erasure and energy is the Lan-

dauer’s principle [18] which puts lower limits on

the energy dissipated to the environment in eras-

ing (qu)bits. There is a difference between the

erasure considered here and the erasure of the

Landauer’s principle. For future investigation, it

is instructive to obtain the time-energy for var-
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ious quantum processes such as some standard

gates or algorithms, to consider this time-energy

measure in the thermodynamic setting, and to

explore deeper operational meaning about this

measure.
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