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Entanglement is a fundamental characteristic of quantum mechanics. It is this
feature of quantum mechanics which is being increasingly studied and analyzed
to achieve a variety of quantum phenomena like quantum teleportation [1] and
quantum information processing [2]. In the not so distant future these emerging
technologies will define how we communicate and compute. Quantum optics [3,
4, 5, 6, 7]or more specifically photonic states of light are speculated to play an
ever increasing role in this particular field. It is therefore important to study the
entanglement features of various such states of light which can be generated and
put to use for a practical model of quantum information processing.
In our present work we study the entanglement present in a class of generalized quantum optical
vortex states [8, 9, 10, 11, 12, 13]. The states that we consider here are engineered by subtraction
of photons from one of the modes of the output of a type II spontaneous parametric down
conversion. These states have the form

|ξ〉(s)k = Akbk exp
(
ξa†b† − ξ∗ab

)
|0, 0〉 (1)

We call these two mode squeezed vortex (TMSV) states. Subtracting a photon from one of the
modes is same as adding a photon in the other mode since the total number of photons in the
two modes is a constant. If a photon is annihilated in one of the modes, it reappears at the
other mode. The order of the vortex is determined by the difference in the number of photons
between the two modes. If k photons are subtracted, the state, after some simplification, can
be written as,

|ξ〉(s)k =
eikθ

cosh2r
a†k|ξ〉 (2)

An interesting feature of these vortex states is that there is always a fixed difference between
the number of photons in the signal and the idler modes. The order of the vortex is determined
by this difference in the number of photons between the two modes. In literature these are the
so called pair coherent states [14, 15]. Pair coherent states provide an important example of
non classical states of the two mode radiation field. It has been studied in detail for their non
classical properties and as examples of EPR states [14].
Another interesting property of the TMSV states is the appearance of the vortex structure in
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Figure 1: A schematic of the setup for producing TMSV state of order 2. Two 99% beam
splitters(BS 1 and BS 2) are used for subtracting photons. NLC is a nonlinear crystal. SPDC
generates the signal (mode a) and the idler (mode b). APD 1 and 2 are Avalanche Photo Diodes.

the quadrature space. Writing the bosonic creation operator a† as (x− ∂/∂x), the quadrature
distribution of the k photon subtracted state has the form,

Ψ
(s)
k (x, y) =

eikθ

2k/2coshr

(
x− ∂

∂x

)k
Ψ(s)(x, y) (3)

The presence of the vortex is pretty evident from the contour plot. The order can be determined
from the number of singular points in the phase plot. It is interesting to note that the vortex
structure in the quadrature distribution becomes less prominent with increasing order. It is
thus important to study the variation of non classicality and entanglement with order and the
squeezing parameter. We use the Wigner function [16] to study the non classicality of this state.
For the current state under study it can be written as

W (α̃, β̃) =
4

π2
(−1)k Lk

[
4|α̃|2

]
exp

[
−2
(
|α̃|2 + |β̃|2

)]
, (4)

where k is the number of photons subtracted. The presence of the negative regions is a signature
of non classicality [17]. The volume of this negative region can be studied as a measure of
non classicality. The cross correlaton between different quadratures of two different modes
show interesting quantum inteference patterns. This can also be interpreted as a signature of
entanglement. In support of this we study the entanglement present in this state with the
help of logarithmic negativity [2, 18] and entanglement of formation [19, 20] or concurrence and
compare the observations from the two approaches. The concurrence is a measure of the amount
of entanglement needed to create the entangled state and defined as [21],

C (ρ) = minpi,ψi

∑
i

piE (|ψi〉〈ψi|) (5)

The minimization is taken over all possible decompositions of pure states ψi with probabili-
ties pi, which taken together reproduce the density matrix ρ of the given mixed state. On the
other hand, E (|ψi〉〈ψi|) is the entropy of entanglement [22], more commonly known as the von
Neumann entropy [23], of the reduced density matrix. The von Neumann entropy is a well de-
fined standard measure of pure state entanglement. For mixed states, it quantifies the amount of
mixedness present between the constituent modes rather than the entanglement present between
them. From our study of the von Neumann entropy we found out that the state changes from a
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completely pure state to a completely mixed state with increasing value of the squeezing param-
eter. At r = 3.2, the state becomes completely mixed. This means that apart from squeezing
the quadratures, the SPDC also results in mixing them.
We observe some surprising results when studying the logarithmic negativity and the concur-
rence. It was observed from our study of logarithmic negativity, that for two photon subtraction
there was a very small rise in entanglement when compared to that of single photon subtrac-
tion. The entanglement falls sharply after reaching the peak. Further subtraction worsens the
situation. For three photon subtraction the initial value falls to half. For four photon subtrac-
tion, the starting value is 0.042. However, our study of concurrence tells a different story. We
observe that C (ρ) increases with increase in r, the squeezing parameter. The rate of increase
gradually slows down till it reaches the maximum value and then falls off rapidly to 0. It should
be noticed that C (ρ) attains its maximum value at r ∼ 2.1. This means that the two modes
become more and more entangled with increasing r until it reaches a maximum value beyond
which the modes start becoming disentangled. We infer that there exists an optimum value of
the squeezing parameter which when applied at the beam splitter produces maximum entangle-
ment of the two modes. If we go on squeezing the modes more and more, they will no more be
entangled. As we move to higher orders of the vortex, the range of values of r which produces
maximal entanglement, starts broadening. At k=5, there exists a well defined range of r that
produces maximal entanglement of the two modes. The entanglement falls off rapidly on both
the ends of this range. So we state that the TMSV states become maximally entangled mixed
states (MEMS) for a particular value of the squeezing parameter. It would thus be interesting to
compare the properties of these states with other MEMS states in order to check the suitability
for applications in the field of quantum information and computation.
Here we also present an interpretation of the quantum inteference patterns observed in our
study of the cross correlations between different quadratures of the two different modes. It is
observed that the interference is most prominent for r = 2.1. The interference effects decrease
as we move away from r = 2.1 on either side which is exactly similar to what we obtained from
the entanglement of formation. Broadening of the range of r which gives rise to a well defined
interference fringe system with increase in the order of the vortex was also observed. Hence,
we suggest that the quantum interefence effects arising from the Wigner function of the cross
correlation between different quadratures of the two modes can be interpreted as a signature of
the entanglement present between the two modes. It is seen that the number of fringes as well
as the volume of the fringes change with changing r. However, the maximum number of negative
fringes is restricted by the order of the vortex. Since the negativity of the Wigner function is
interpreted as a measure of non classicality, we suggest, the volume of the negative part of the
quantum interference fringes might be a possible candidate for quantifying entanglement and
needs to be further studied.
This work is partially supported by DST through SERB grant no.: SR/S2/LOP-0002/2011.

For figures, a complete list of reference and a more technical description please refer to our
work: http://arxiv.org/abs/1304.2887
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