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The goal of quantum state discrimination is to discriminate the quantum states 

of a given set as well as possible. In fact, in classical physics, every state can be 

orthogonal to each other and therefore perfectly distinguished [1]. However, in 

quantum physics, a state cannot be perfectly discriminated because of the 

existence of non-orthogonal states [2–4]. Quantum state discrimination [5] is 

classified into minimum error discrimination, originally introduced by Helstrom 

[2],unambiguous discrimination [6–8], and maximum confidence discrimination [9]. 

The purpose of minimum error strategy is to find the optimal measurement and 

the minimum error probability (or guessing probability) for arbitrary N qudit-

mixed quantum states with arbitrary priori pobabilities. In the case of N = 2, 

regardless of the dimension, the Helstrom bound [2] gives an analytic solution to 

the problem. In the N = 3 case, the analytic solution for the pure qubit states is 

provided by [10, 11]. In [12] the analytic solution for the mixed qubit states is 

considered without the necessary and sufficient conditions for a solution. In other 

words, full understanding for the discrimination of 3 qubit-mixed quantum states 

has not yet been provided. 

The von Neumann measurement [13] is used for optimal measurement for 

linearly independent quantum states . However, if the given quantum states are 

linearly dependent, the von Neumann measurement may not be optimal. 

Therefore, the Positive-Operator-Valued-Measure (POVM ) should be used for 

arbitrary quantum states. From the point where POVM can be used as the  

measurement and the probability to guess the quantum states correctly becomes 

convex, the minimum error discrimination problem may be solved by convex 

optimization[14].  Other efforts to solve it have been made using the dual 



problem [15] or complementarity problem [16]. 

By applying qubit state geometry to the optimality conditions for the 

measurement operators and complementary states, Bae [17] obtained a 

geometric method to find the guessing probability and the optimal measurement 

for some special cases. However, they did not include the case where the optimal 

measurement cannot be POVM when every element is nonzero. In this paper, we 

show that the case where the optimal measurement cannot be POVM and where 

every element is nonzero can be understood through the existence of parameters 

satisfying the geometric optimality conditions [16]. We also clarify the meaning of 

these geometric conditions. Through the conditions and an inductive approach, 

we propose a method to discriminate arbitrary N qubit-mixed quantum states 

with arbitrary a priori probabilities. In this method, we define the intrinsic 

polytope for discrimination problems. When the polytope becomes a point, line 

segment, or triangle, we find the guessing probability, the necessary and 

sufficient condition for the exact solution, and the optimal measurement 

analytically. By the number of the extreme points for the intrinsic polytope and 

the geometric optimality conditions, we can provide a complete analysis for 

discrimination of the 3 qubit-mixed state. We also obtain its guessing probability 

and optimal measurement. 

 

This extended abstract is based on the original paper titled “Complete Analysis 

for 3 qubit-mixed states discrimination by D. Ha, Y. Kwon, Phys. Rev. A 87, 062302 

(2013). 
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