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1 Introduction

Entanglement is known as a useful resource in quan-
tum information processings. In particular, to share a
maximally entangled state is important since there are
many applications (e.g. [1, 2, 3]). In order to share a
maximally entangled state via a noisy quantum channel,
entanglement purification protcols(EPPs)[4] is essential.
There are two classes of EPPs; 1-EPP which uses one-way
classical communication and 2-EPP which uses two-way.
Although 2-EPPs are superior to 1-EPPs in general set-
tings, it seems that 1-EPPs are sufficient to purify entan-
gled states degraded by a channel with error of one kind
(e.g. phase-damping channel) since the upper limit of
yield of 1-EPPs and that of 2-EPPs coincides. Recently,
we showed that a 2-EPP is superior to a 1-EPP when
fifteen entangled states are initially shared via a phase-
damping channel. This result implies that a 2-EPP is
superior to 1-EPPs when the number of initial shared
entanglement is finite although any 2-EPP does not out-
perform the best 1-EPP in the infinite limit. Saying with
the language of information theory, a 2-EPP is superior
to 1-EPPs at much lower rate than the ‘capacity’ even if
there is only one kind of error in the channel. In classical
and quantum information theories, several examples are
known that show superiority at low rates whereas capac-
ities are not improved[8, 9, 10]. For example, in classical
information theory, although it is well-known that chan-
nel capacities with and without feedback are identical [7],
feedback is effective if the rate is lower than the capac-
ity [8]. In quantum information theory, since classical
capacity of attenuated quantum channel is attained by
coherent states [9], it seems that utilizing squeezed states
is meaningless. However, it was shown that squeezing is
useful at low rates [10]. In either case, bounds on reli-
ability function or error exponent are employed to show
advantage at low rates.

In the present paper, we show property of exponential
bounds on 1−F of EPPs, which correspond to bounds on
error exponent in usual information transmission. As a
result, it is clarified that an exponential bound of fidelity
of a particular 2-EPP is higher than a bound of fidelity
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of a 1-EPP at least at low rates when the channel is
assumed to be depolarizing or phase damping channels.
The latter result clearly shows that a 2-EPP is superior
to 1-EPPs and use of 2-EPP saves the number of initial
shared entanglements even if there is only one kind of
error.

2 Basic notions

In this section, we explain the problem setting and
describe channels, EPPs, and their evaluation.

In this study, we consider the following problem. Alice
prepares n Bell states

|Φ+〉 =
1√
2
(|0〉|0〉 + |1〉|1〉), (1)

and she sends half of each state to Bob over a noisy quan-
tum channel. Here, |0〉 and |1〉 are orthonormal basis
vectors in the qubit system. Then, Alice and Bob apply
an EPP to them. If they keep their pairs, they share k
entangled states.

2.1 Noisy quantum channels

First, we define a qubit channel based on Ref.[11]. Let
σ be an input qubit state of the channel. Then the output
state of the channel is described as

A(σ) = P ((0, 0))σ + P ((1, 0))XσX†

+ P ((0, 1))ZσZ† + P ((1, 1))(XZ)σ(XZ)†, (2)

where u = (i, j) ∈ {0, 1}2, P (u) is probability which
satisfies 0 ≤ P (u) ≤ 1 and

∑
u P (u) = 1. As for sharing

an entangled state, suppose the sender (Alice) transmits
a half of the 2-qubit state |Φ+〉 to the receiver (Bob) over
the qubit channel. Then the shared state is

ρ =P ((0, 0))|Φ+〉〈Φ+| + P ((1, 0))|Ψ+〉〈Ψ+|
+ P ((0, 1))|Φ−〉〈Φ−| + P ((1, 1))|Ψ−〉〈Ψ−|, (3)

where |Ψ±〉, |Φ±〉 is the well-known four Bell states.

2.1.1 Depolarizing channel
A depolarizing channel corresponds to the case of

P ((0, 0)) = 1 − p, P ((0, 1)) = P ((1, 0)) = P ((1, 1)) = p/3
in Eq.(2).



2.1.2 Phase damping channel
A phase-damping channel corresponds to the case of

P ((0, 0)) = 1 − p, P ((1, 0)) = p, P ((0, 1)) = P ((1, 0)) = 0
in Eq.(2). As an example of the channel, there is an
attenuation channel for a quasi-Bell state [12, 13] or an
entangled coherent state (e.g. [14, 15]). Hence, a phase-
damping channel is important for applications [16].

2.2 Entanglement purification protocols

The entanglement purification protocols(EPPs) are
protocols to distil n pairs of mixed entangled states ρ⊗n

into k pairs of (near) maximally entangled states ρout [4].
As mentioned in the introduction, there are two classes
of EPPs; 1-EPP and 2-EPP. Note that equivalence of
a 1-EPP and a quantum error correcting code (QECC)
was shown [5]. That is, for any (n, k) QECC, one can
construct a 1-EPP.

2.3 Evaluation of EPPs

As evaluation factors of EPPs, the fidelity F between
k Bell states |Φ+〉⊗k and the remaining entangled states
ρout after the EPP and the purification rate RP of shared
entangled states are known. F is defined as

F = ⊗k〈Φ+|ρout|Φ+〉⊗k, (4)

where 0 ≤ F ≤ 1. The purification rate is defined as

RP =
k

n
PS, (5)

where PS is the success probability of the EPP. We refer
to the limit D = limn→∞ RP under F → 1 as an yield of
EPPs. The upper limit of the yield of 1-EPPs is equal to
the quantum capacity from equivalence of a 1-EPP and
a QECC.

3 Exponential bound on fidelity

In this section, we first explain an exponential bound
on fidelity for quantum information transmission [11].
From equivalence of a 1-EPP and a QECC, the result
can be directly converted to evaluation of 1-EPPs.

3.1 Quantum reliability function [11]

Let us survey the main result in Ref.[11], in which the
concept of the classical reliability function is applied to
quantum channels. As a difference from the classical the-
ory, we use not an error prpbability but a fidelity F as an
evaluation factor. Here, 1 − F corresponds to the error
prpbability. Suppose an (n, k) quantum error correcting
code. Then the rate is R = k/n. The main theorem in
Ref.[11] provides the lower bound of the minimum fidelity
F ?

n,k with the best quantum error correcting code and is
shown as follows.

Theorem 1 [11]
Let integers n, k and a real number R satisfy 0 ≤ k ≤ Rn
and 0 ≤ R < 1 (a typical choice is k = bRnc for an

arbitrarily fixed rate R). Then for a memoryless channel
A, we have

F ?
n,k(A⊗n) ≥ 1 − (n + 1)2(d

2−1)d−nE(R,P ) (6)

where

E(R, P ) = min
Q

[D(Q||P ) + |1 − H(Q) − R|+] (7)

|x|+ = max{x, 0}, and the minimization with respect to
Q is taken over all probability distributions on X .

Here, D(Q||P ) and H(Q) are well-known relative en-
tropy and Shannon entropy, respectively. Since a qubit
system is assumed in this paper, dimension d is always 2
and X = {0, 1}2.

3.2 Exponential bound on fidelity for EPPs

Since a 1-EPP is equivalent to a QECC, the bound
shown in the previous subsection is applicable to an eval-
uation of 1-EPPs. Although tightness is an important
factor to treat a bound, the bound is expected to be tight
as far as a phase-damping channel is concerned because
of its relationship to the random coding bound in the
classical theory.

As for 2-EPPs, to derive a tight exponential bound on
fidelity is not easy task. Therefore, we does not derive a
tight bound for 2-EPPs but concentrate on verfying supe-
riority of 2-EPPs to 1-EPPs. For this purpose, we follow
the method in Ref.[8] in which effectiveness of feedback
was demonstrated. In Ref.[8], a tight bound on error ex-
ponent without feedback is used, whereas error exponent
by a specific code is used for a feedback scheme.

4 Superiority of a 2-EPP

In this section, we show superiority of a 2-EPP. As
mentioned in Sec.3.2, we employ the exponential lower
bound E2(R, P ) of fidelity of a specific protocol as eval-
uation of a 2-EPP and employ exponential lower bound
E(R, P ) of fidelity of the best protocol as evaluation of 1-
EPPs. For this evaluation, 2-EPPs with variable number
of initial shared entanglement may be desired. However,
following the method in Ref.[5], we consider a 2-EPP con-
sisting of a simple finite 2-EPP followed by an asymptotic
1-EPP such as one-way hashing. We employ the recur-
rence method [5] as the simple 2-EPP. Then we have a
bound E2(R, P ) by computing E(R,P ) of a 1-EPP whose
input states are the outputs of the recurrence protocol.

4.1 Depolarizing channel

In this subsection, we compute E(R,P ) and E2(R, P )
when a channel is assumed to be a depolarizing channel.
Since the bound E(R,P ) is not necessarily tight for a
depolarizing channel, computation in this subsection is
regarded as preparations for the subsequent subsection.
Figure 1 shows E(R,P ) (blue line) and E2(R,P ) (red
line) when p = 0.2. Here, p is defined in Sec.2.1.1. Since
the yield of the 1-EPP by random codings is nothing [5],



Figure 1: Exponential bound on fidelity for deporalizing
channel (1). Case of p = 0.2.

Figure 2: Exponential bound on fidelity for deporalizing
channel (2). Case of p = 0.142.

E(R, P ) = 0 in this case. Therefore, clearly E2(R, P ) >
E(R, P ) and we can reconfirm well-known superiority of
2-EPPs for depolarizing channel. Figure 2 shows E(R,P )
(blue line) and E2(R, P ) (red line) when p = 0.142. In
this case, the yield of the 1-EPP is higher than that of
the 2-EPP [5]. However, E2(R, P ) > E(R,P ) when
R <∼ 0.18. This implies a possibility that the 2-EPP is
superior to the 1-EPP at low rates, which is contrary to
the result of yields.

4.2 Phase-damping channel

In this section, we show E(R,P ) and E2(R,P ) when a
channel is assumed to be a phase-damping channel. Since
the bound E(R, P ) is expected to be tight for a phase-
damping channel, the result in this subsection provides
a clear conclusion. Figures 3 and 4 show E(R,P ) (blue
line) and E2(R, P ) (red line) when p = 0.2 and p =
0.142, respectively. Here, p is defined in Sec.2.1.2. Since a
simple 2-EPP is performed before performing asymptotic
1-EPP, the yield of the 2-EPP is smaller than that of the
1-EPP. However, E2(R,P ) > E(R,P ) when R <∼ 0.2 and
it is concluded that a specific 2-EPP is superior to 1-
EPPs at low rates.

5 Conclusion

In the present paper, we showed a property of an expo-
nential bound on 1 − F for EPPs, which corresponds to

Figure 3: Exponential bound on fidelity for phase damp-
ing channel (1). Case of p = 0.2.

Figure 4: Exponential bound on fidelity for phase damp-
ing channel (2). Case of p = 0.142.

the bound on error exponent in usual information trans-
mission, when the initial shared entanglement is degraded
by a depolarizing or a phase-damping channels. By com-
paring the exponential bound on 1−F of a specific 2-EPP
to that of 1-EPPs, we see that the former is higher than
the latter at low rates even if the yield of the 2-EPP is
less than that of 1-EPPs. In particular, the result for
the phase-damping channel clearly shows that a 2-EPP
is superior to 1-EPPs and use of 2-EPP saves the number
of initial shared entanglements even if there is only one
kind of error. We will consider asymptotic 2-EPPs as
shown in Ref.[19] and show its effectiveness for degraded
entanglement by a phase-damping channel.
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