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1 Intoroduction

The optimum quantum receiver is defined as a quan-
tum receiver minimizing the average error probability[1].
To study realization of optimum quantum receivers is one
of important subjects in quantum information theory.
There are many attempts of this subject. As a pioneer-

ing work, Kennedy proposed a quasi-optimum quantum
receiver (so-called Kennedy receiver) for binary coherent-
state signals in 1973[2]. After that, Dolinar proposed an
optimum quantum receiver (so-called Dolinar receiver)
for binary coherent-state signals[3]. Another realiza-
tion method of binary quantum-state signals were pro-
posed by Sasaki et al.[4] developping an idea of received
quantum state control[5, 6, 7] and were generalized to
codeword-states[8] and M -ary coherent-state signals[9].
However, realization of the optimum quantum receiver
for M -ary signals based on Ref.[9] is extremely difficult
for current technology. As for quasi-optimum quantum
receivers, Kennedy receiver was generalized to QPSK
coherent-state signals[10] and to M -ary coherent-state
signals[11]. Although the quasi-optimum quantum re-
ceivers shown in Refs.[2, 10, 11] have closer performance
to the optimum quantum receivers when the average
number of photons of the signals is large, they are worse
than Homodyne or Heterodyne receivers when the signals
are very weak.
To cope with this problem, Tamori showed that

Kennedy receiver is improved by regulating the ampli-
tude of local oscillator light and the improved receiver
always outperforms Homodyne receiver[12]. Takeoka et
al. rediscovered Tamori’s result and showed that the re-
ceiver is further improved by using squeezing[13].
In this paper, we improve quasi-optimum quantum

receivers for M -ary signals by applying the method in
Refs.[12, 13] and show that the improved receivers al-
ways outperform Heterodyne receiver1.

2 Quasi-optimum quantum receiver

Figure 1 shows the quasi-optimum quantum receiver
for M -ary PSK coherent state signals[10, 11]. For ex-
planation, we express a process of the local oscillator by
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Figure 1: Block diagram of the quasi-optimum quantum
receiver.

using a shift operator D̂(·) on the Hilbert space which
corresponds to whole signal duration. Note that cer-
tain conversion is necessary for exact treatment. Let
|αm⟩ (m = 0, 1, · · · ,M − 1) be the input signal state
to the receiver. Here, αm = αe2imπ/M is the complex
amplitude of the coherent state and we assume that α
is a positive real number. The input state is first ap-
plied the shift operator D̂(−α), by which the signal |α0⟩
is transformed into vacuum, and is input to the detector.
If a photon is detected, the result is fed back to the phase
shifter and the phase of the local oscillator is shifted. If
no photon is detected, we decide that the signal is i when
feedback is applied i times. The feedback is applied at
most M − 1 times.

3 Improvement of quantum receiver

3.1 Improvement by regulating amplitude and
phase of local oscillator

Following Refs.[12, 13], we optimize amplitude and
phase of local oscillator of the quantum receiver for M -
ary signals. Then we can expect improvement of the
average error probability.

3.2 Improvement by increasing feedback

In order to consider further improvement of the quan-
tum receiver for M -ary signals, we increase the number
of times of feedback more than M −1 times. In Kennedy



receiver[2] and the improved receiver[12, 13], no feedback
is used. However, it is well known that feedback is ap-
plied infinite times in Dolinar receiver. So we can expect
further improvement of the average error probability.

4 Performance

Here we show error performances of various quantum
receivers for 3-ary and 4-ary PSK coherent-state signals.

4.1 3PSK

Figure 2 shows the average error probabilities of the
classical optimum receiver (Heterodyne receiver), the op-
timum quantum receiver, the quasi-optimum receiver [11]
and one of improved receivers in which the amplitude of
the shift operator is optimized for 3-ary PSK coherent-
state signals. Note that a recently analyzed displacement
receiver with infinite-step feedforward [16] has exactly
the same performance as that of the quasi-optimum re-
ceiver without improvement [11]. We see that the im-
proved quasi-optimum quantum receiver always outper-
forms the classical optimum receiver. The quasi-optimum
quantum receiver is further improved by optimizing the
phase of the shift operator and by increasing the number
of feedback. Figure 3 shows the average error proba-
bilities of various improved quasi-optimum quantum re-
ceivers. Here, feedback is increased from two times to
three times. From Fig.3, feedback is more effective than
the phase optimization for 3-ary PSK signals.

4.2 4PSK

Figure 4 shows the comparison of one of the improved
receivers with existing receivers and Fig.5 shows the com-
parison of the improved receivers. As in the case of 3-
PSK signals, the improved quasi-optimum quantum re-
ceivers always outperform the classical optimum receiver.
For 4-PSK signals, we increase feedback from three to
four times. In the case of 4-PSK signals, if the increase
of feedback is only one time, the improvement of the er-
ror performance is very small. However, the phase op-
timization is effective. Actually, the effect of the phase
optimization for 4-PSK signals is greater than that for
3-PSK signals (Fig.6).

5 Conclusion

We have shown the error performances of the quasi-
optimum quantum receivers are improved by optimizing
a shift operator and by increasing feedback. As a result,
the improved receivers always outperform the classical
optimum receiver. It is expected that optimization of
the phase of a shift operator is more effective when the
number of signals increases. On the other hand, if the
number of signals increases, further increase of feedback
is desired.
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Figure 2: The average error probabilities of the classical
optimum receiver (Heterodyne receiver), the optimum
quantum receiver, the quasi-optimum receiver [11] and
one of improved receivers in which the amplitude of the
shift operator is optimized for 3-ary PSK coherent-state
signals.

Figure 3: The average error probabilities of various im-
proved quasi-optimum quantum receivers for 3-ary PSK
coherent-state signals.
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Figure 4: The average error probabilities of the classical
optimum receiver (Heterodyne receiver), the optimum
quantum receiver, the quasi-optimum receiver [10] and
one of improved receivers in which the amplitude of the
shift operator is optimized for 4-ary PSK coherent-state
signals.

Figure 5: The average error probabilities of various im-
proved quasi-optimum quantum receivers for 4-ary PSK
coherent-state signals.

Figure 6: Difference of average error probabilies of im-
proved quasi-optimum quantum receivers with and with-
out phase optimization.


