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1 Introduction

Entanglement is known as an important resource in
quantum information systems. Entangled states by
nonorthogonal states called “quasi-Bell states”[1, 2], such
as coherent states of light, have been shown to be capable
of “perfect entanglement” and are expected to be robust
against attenuation in quantum channel.
In this study, we consider the entanglement-assisted

classical communication[3] using quasi-Bell states. As
previous studies, a classical information transmission as-
sisted by a quasi-Bell state was considered for an ideal
channel[4] and a lossy channel[5]. In these papers, an
approximate encoding which works for sufficiently large
coherent amplitude was assumed. Recently, we showed
the capacity of a classical communication assisted by
a degraded quasi-Bell state using rigorously realizable
encodings[6]. In Ref.[6], the capacity was computed by
optimizing a priori distribution, whereas a fixed encoding
function was used. Therefore, simultaneous optimization
of a priori distribution and an encoding function is de-
sired. However, to optimize directly the both quantities
is computationally hard, so that reduction of computa-
tional complexity is necessary.
In the present paper, we apply a quantum version[7]

of the Arimoto-Blahut algorithms[8, 9] to compute the
capacity. As a result, simultaneous optimization of a
priori distribution and an encoding function is achieved.

2 Preliminary

2.1 Quantum Arimoto-Blahut algorithm[7]

Quantum Arimoto-Blahut algorithm is known for com-
puting the capacity of quantum channel or the Holevo
capacity[7]. There are some examples of applications of
the algorithm (e.g. [10, 11]). We apply it to our problem
partially. Figure 1 describes a diagram of the algorithm.
Let Πn = {(p1, · · · , pn;σ1, · · · , σn)} be the set of pos-

sible input. Here, {pi} is a priori probability distribution
and {σi} is a set of input quantum states. Let I(π) be
the Holevo information or the quantum mutual informa-
tion for an input π ∈ Πn. Then the Holevo capacity is
defined as

C = sup
π∈Πn

I(π). (1)
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Figure 1: Quantum Arimoto-Blahut algorithm.

In Ref.[7], a two-variable extension J(π, π′) of I(π) was
introduced. It holds that

I(π) = J(π, π) = max
π′∈Πn

J(π, π′). (2)

Let the sequence {π(k)}∞k=1 be defined by

π(k+1) = argmax
π

J(π, π(k)). (3)

Then

I(π(k)) ≤ J(π(k+1), π(k)) ≤ I(π(k+1)). (4)

We can recursively compute I(π(k)) and the limit value
I(π(∞)) is expected as the Holevo capacity if the algo-
rithm works well.

2.2 Quasi-Bell state by coherent states

Quasi-Bell states are based on nonorthogonal states[1].
A coherent state whose amplitude α is expressed as |α⟩.
We use one of these, which is |Ψ4⟩ = h4(|0⟩|0⟩ − |α⟩|β⟩).



2.3 Entanglement-assisted classical communica-
tion

The entanglement-assisted classical communication[3],
which is also called the quantum superdense coding, had
been shown that the use of entanglement enhances clas-
sical communications(Fig.2). In the ideal qubit channel,
two bits can be obtained by transmitting 1-qubit.

Figure 2: Schematic diagram of a classical communica-
tion assisted by an entangled state.

3 Computing the capacity

3.1 Case of fixed input states

First, we consider the case that the input states are
fixed and a priori probability distribution will be opti-
mized. Figure 3 shows the Holevo information I(π(r)) =
J(π(r), π(r)) in the process of the recursion π(r) → π(r+1).
Figure 4 shows the variation of the Holevo information
J(π(r+1), π(r+1)) − J(π(r), π(r)). We can see that it

approaches 0 when r >∼ 10. In this case, J(π(r), π(r)) is
monotonically nondecreasing. There is some possibility
that the limit value is a local maximum because the algo-
rithm does not assure us of the global maximum. There-
fore we executed the algorithm many times by changing
the initial inputs. Since the Holevo informations converge
at the same value for every initial inputs, the obtained
value is expected as the global maximum.

3.2 Case of searched input states

Next, we consider the full optimization. Figure 5 shows
the Holevo information J(π(r), π(r)) in the process of the
recursion π(r) → π(r+1) with searched input states. Here,
we use the quantum Arimoto-Blahut algorithm only for
optimization of the probability distribution and the input
quantum states are optimized using another algorithm.
Because, in our problem, input quantum states are re-
stricted to the states obtained by local operations and
the quantum Arimoto-Blahut algorithm can not be di-
rectly applied for optimizing input quantum states. How-
ever, since the input quantum states can be optimized by
one parameter [6], optimization of states only are com-
putationally easy problem and any algorithm is allow-
able. Figure 6 shows the variation of the Holevo infor-
mation J(π(r+1), π(r+1)) − J(π(r), π(r)). We see that it
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Figure 3: The Holevo information J(π(r), π(r)) in the
process of the recursion π(r) → π(r+1) with fixed input
states.
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Figure 4: J(π(r+1), π(r+1))−J(π(r), π(r)) with fixed input
states.

approaches 0 when r >∼ 10. Since the limit value might
be a local maximum, we executed the algorithm many
times by changing the initial input distributions as in
the previous section. Figure 5 is an example. Although
the values of J(π(r), π(r)) are different depending on the
initial inputs for small r and they are not monotonically
nondecreasing, they converge the same value. Therefore,
the obtained value is expected as the global maximum
and the full optimization is achieved.

4 Conclusion

We apply the quantum Arimoto-Blahut algorithm to
computation of the Holevo capacity for the entanglement-
assisted classical communication when quasi-Bell state is
used as the shared initial entanglement.
The capacity is computed sufficiently fast with high

precision. As a typical example, comparing with a ran-
dom search which was used in the previous study, preci-
sion is 10000 times higher and computation time is more
than 100 times faster.
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Figure 5: The Holevo information J(π(r), π(r)) in the pro-
cess of the recursion π(r) → π(r+1) with searched input
states.
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Figure 6: J(π(r+1), π(r+1)) − J(π(r), π(r)) with seacrhed
input states.
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