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The study of correlations of bipartite systems has been invigorated over the last cou-

ple of decades. Various measures and approaches to demarcate the classical and quantum

content of correlations have been presented. Entanglement has been the most popular of

these correlations due to its inherent advantages in performing quantum computation and

communication tasks [1]. Recently, however, motivated from a measurement perspective,

other types of correlations have been proposed which try to capture the classical-quantum

boundary [2, 3]. These include quantum discord, classical correlations, measurement induced

disturbance, quantum deficit, and geometric variants of these measures. Of these, quantum

discord has received enormous attention [4].

Quantum discord tries to capture quantum aspects of correlations beyond entangle-

ment [5, 6]; there exist separable states which return a non-zero value of quantum discord.

A recent avenue has been to try and find advantages of these correlations, both in the

theoretical and experimental domain. For example, some interesting applications of quan-

tum discord in quantum computation [7], state merging [8], remote state preparation [9],

entanglement distillation [10], and representations of open quantum systems [11], have been

reported.

Here we undertake a comprehensive study of the problem of quantum discord of the X-

states of a two-qubit system. Several aspects of this problem has already been explored by

a large number of authors [12]. The present study is largely provoked by the work of M.

Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A. 81, 042105 (2010), considered to be a

seminal work on this problem (as indicated by the 300 plus citations in three years). Their

group-theoretic argument is of an unusual kind. It goes like : since the X-state problem

has a particular symmetry, the optimal solution should necessarily be invariant under this

symmetry. [The more modest folklore wisdom has it that the solution to a problem just needs

to be covariant under the symmetry of the problem]. With this invariance argument, Ali

et al. simply assert that the optimal measurement for X-states is always the von-Neumann
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measurement along either x or z direction, it being understood that the conditional state of

A post measurement on the system B commutes with σz, and that the conditional state of

A under σx measurement is purer than that under σy measurement.

We can not make sense of this argument. We can, indeed, exhibit an X-state for which,

despite the symmetry, neither the x nor z-projection is the best; perhaps more importantly,

we can arrange both to return the worst value among all von-Neumann measurements.

Several authors have more recently presented isolated examples wherein the Ali et al. as-

sertion either fails or is doubtful, numerically; but the need for our comprehensive study

originates in the fact that the Ali et al. argument is non-maintainable even in cases where

their assertion somehow turns out to be numerically correct.

Our approach is geometric in nature, and we take advantage of methods involving notions

like Stokes vectors, Poincare sphere, and Mueller matrix which have been in use in classical

polarization optics for several decades [13], and we use symmetry to first bring the generic

X-state problem to the simplest canonical form without loss of generality.

Correlations in a bipartite state ρAB are fully captured by the collection of all possible

conditional states of A post measurements on B. For the two-qubit system, this collection

is an ellipsoid [14] inside the Poincare sphere P , and this is true for all ρAB: X-states are

distinguished by the fact that the center of P , the center of the ellipsoid, and trB ρAB are all

collinear. This geometric, hence intrinsic, rendering and understanding of the 11-parameter

family of X-states, in place of the ‘shape’ X of ρAB in the computational basis, proves central

to our analysis.

Our geometric approach reproduces all known results, often in a much more economical

manner, and underpin their geometric meaning. It leads also to several new results, and we

mention a few :

• We identity a large class of states, which we call circular states, for which the optimal

measurement and hence quantum discord are (perhaps surprisingly) as ‘obvious’ or

manifest as those of Bell mixtures, even though trBρAB is not maximally mixed for the

circular states. This class can therefore be viewed as a generalization of Bell mixtures

in respect of the present context.

• Some misconceptions in the literature [15] regarding X-states of vanishing quantum

discord are clarified: X-states with two-way vanishing discord is a much larger family
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than the intersection of X-states of one-way vanishing discord, from A and B sides.

• A rigorous and geometric understanding as to why the optimal measurement for X-

states never requires a four-element POVM (three-element POVM always suffices) is

presented.

• Our analysis gives a clear understanding as to why Ali et al. assertion is numerically

correct in a large portion of the parameter space of the family of X-states, notwith-

standing their unusual argument.
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