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Over the years the phase space description of quantum systems, as orig-
inally formulated by Wigner [1] in the context of quantum systems with one
or more Cartesian degrees of freedom, has proved to be extremely fruitful in
developing semi classical approximations in statistical mechanics, classical
and quantum optics [2]. More recently, the Wigner description has provided
the starting point towards characterizing Gaussian states [3] and in obtaining
necessary and sufficient condition for entanglement in such states [4]. These
developments have, in recent years, prompted vigourous activity aimed at
developing similar descriptions for treating finite state quantum systems. A
notable effort in this direction has been the work of Wootters and coworkers
[5] who developed an elegant phase space description for N -state quantum
systems for the case when N = pn where p is a prime number. ( The case of
a general N is handled by taking tensor products appropriately). The phase
space is taken to be an N × N grid where the coordinates q and momenta
p take values in the finite field Fpn . The fact that the phase space variables
take values in a field, albeit finite, endows the corresponding phase space
with several geometric properties:

• The phase space has exactly N + 1 isotropic lines –‘straight’ lines
through the origin.

• Each isotropic line gives rise to N − 1 lines parallel to it and thereby
generates a striation of the phase space – decomposition of the set
of N2 phase points constituting the phase space space into N lines
containing N points each. As there are N + 1 lines, one has N + 1
striations.

• Any two non parallel lines intersect at exactly one point and there are
exactly N + 1 lines through a given phase point.

The ‘classical net’ comprising N + 1 striations, each containing N lines is
then turned into a quantum net by associating a rank one projector with
each line in a manner that is consistent with translational covariance. The
requirement of translational covariance together with the geometrical prop-
erties listed above has the consequence that the projectors associated with
lines in a striation are trace orthogonal and that the projectors associated
with lines in different striations are mutually unbiased [6]. Phase point oper-
ators are then obtained from the projectors by adding up all the projectors
corresponding to the lines passing through the chosen phase point and sub-
tracting off the identity Each quantum net, set up in this manner, then
defines a collection of N2 phase point operators, one at each phase space
point, which in turn leads to a possible definition of the Wigner distribution.
Elementary considerations then show that the above construction leads to
NN−1 distinct ways of associating a Wigner distribution with an N -state
quantum system. Further, it is also clear that to construct these Wigner
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distributions one needs explicit knowledge of the N + 1 mutually unbiased
bases.

In a recent work [7], we developed a procedure for setting up Wigner
distributions in the original context based on what we call a Dirac inspired
square root approach. In a later work [8] we showed how this approach could
be fruitfully employed for obtaining a phase space description for N - state
quantum systems. Here the underlying phase space in this work was taken
to be a torroidal lattice – an N × N grid consisting of phase points (q, p)
where the coordinates q and momenta p take values in the ring ZN , and we
showed how one could set up Wigner distributions on such a phase space
without introducing redundance in the description as was found necessary
in some earlier treatments of this problem. The square root approach entails
finding the square root of a certain matrix kernel which brings into play one
undetermined sign at each phase point. Imposition of marginals conditions
on isotropic lines fixes or relates these undetermined signs. Each choice
of signs consistent with the marginals conditions then leads to a possible
definition of Wigner distribution. For odd N , all the signs get uniquely
fixed leading to a unique definition of the Wigner distribution akin to the
original Wigner definition. In the N even case the situation turns out to be
quite different. One finds that the marginals condition can not be imposed
consistently on all isotropic lines but only on specific subsets thereof–orbits
under SL(2,ZN ). The marginals property, restricted to the largest such
subset, then leads to conditions on signs which are such that not all signs
get fixed. Each choice for the set of free signs then leads to a possible
definition of the Wigner distribution.

It is evident from the discussion above that both the approaches men-
tioned above lead to a multitude of definitions of Wigner distributions. In
the quantum net approach this arises from the way vectors drawn from mu-
tually unbiased bases are assigned to the lines while in our approach this is
linked to the way the free signs are chosen. In the present work we investi-
gate the question whether the two approaches are related. In particular, we
apply our approach to the case treated by Wootters et al [5] i.e. the situa-
tion where N = pn and the cooordinates and the momenta take values in a
finite field Fpn . Interestingly, we find that for N = 2n our approach seems
to reproduce all the various definitions of Wigner distributions of Wootters
et al purely algebraically without the explicit knowledge of the mutually un-
biased bases in such dimensions. For odd prime powers, on the other hand,
we recover only one of their definitions of Wigner distributions, the one that
is Clifford covariant [9] and can be viewed as a direct descendent of that in
the continuum case.

Our algebraic construction may find useful applications in investigating
properties of quantum random access codes (QRAC) developed in [11] based
on the full set of NN+1 phase point operators beyond N = 8.

3



References

[1] E. P. Wigner Phys. Rev. 40, 749 (1932).

[2] M. Hillery, R. F. O’Connell, M. O. Scully, E. P. Wigner Phys. Repts. 106
121 (1984); Y. S. Kim and M. E. Noz , Phase-Space Picture of Quantum
Mechanics (World Scientific, Singapore, 1991); W. P. Schleich Quantum
Optics in Phase Space (Wiley-VCH, Weinheim, 2001)

[3] B. L. Schumaker, Phys. Rep. 135, 317 (1986); R. Simon, N. Mukunda
and B. Dutta, Phys. Rev. A bf 49, 1567 (1994).

[4] R. Simon, Phys. Rev. Lett. 84, 2726 (2000); L.-M. Duan, G. Giedke,
J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

[5] W. K. Wootters, Ann. Phys. NY, 176 1 1987 ; K. S. Gibbons, M J Hoff-
man andWKWootters, Phys. Rev. A 70, 062101 (2004); W KWootters
Quantum measurements and finite geometry arXiv:quant-ph0406032 v1.

[6] For a recent review see T. Durt, B-G Englert, I. Bengtsson and
K.Życzkowski, Int. J. Quantum Information,

[7] S. Chaturvedi, N. Mukunda, and R. Simon, J. Phys A 43, 075302
(2010).

[8] S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, R.
Simon J.Phys. A 39, 1405 (2006).

[9] D. Gross Diploma Thesis. University of Potsdam,(2005), Available on-
line at http://gross.qipc.org ; D. Gross J. Math. Phys 47 122107 (2006);
S. Chaturvedi, E. Ercolessi, G. Marmo , G. Morandi, N. Mukunda and
R. Simon, Pramana –Journal of Physics 65, 981 (2006).

[10] A Vourdas J. Phys. A 38, 8453 (2005).

[11] A Casaccino, E F Galvão, S Severini Phys Rev A 78, 022310 (2008).

4


