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Abstract

We generalize entropic uncertainty relations in the presence of quantum memory [Nature
Physics 6 (659), 2010], and [Physical Review Letters 106 (110506), 2011] in two directions.
First, we consider measurements with a continuum of outcomes, and, second, we allow for
infinite-dimensional quantum memory. To achieve this, we introduce conditional differential
entropies for classical-quantum states on von Neumann algebras, and show approximation
properties for these entropies. As an example, we evaluate the uncertainty relations for
position-momentum measurements, which has applications in continuous variable quantum
cryptography and quantum information theory.

Introduction Uncertainty relations play a fundamental role in quantum mechanics. A first
uncertainty relation was discussed by Heisenberg [14] by analyzing the disturbance induced by
a position measurement with a certain resolution on a subsequent momentum measurement.
Shortly after Kennard [16] and Robertson [24] introduced an uncertainty relation in which the
product of the standard deviation of the distributions of two non-commuting observables ap-
plied to the same state is bounded from below. These uncertainty relations were then enhanced
by replacing the standard deviations by entropies leading to so-called entropic uncertainty re-
lations. For position and momentum operators they were first studied by Hirschman [15], and
subsequently improved by Beckner [1] and Bialynicki-Birula and Mycielski [5]. Deutsch stated
in [10] an entropic uncertainty relation for finite-dimensional observables, which was tightened
by Maassen and Uffink [19] following a conjecture of Kraus [17],

H(X) +H(Y ) ≥ log
1

c
, (1)

whereH(X) andH(Y ) are the Shannon entropies of the outcome distributions of non-degenerate
measurements X and Y and c = maxi,j |⟨xi|yj⟩|2 with |xi⟩ and |yj⟩ the eigenvectors of X and
Y , respectively. The inequality was further generalized to observables described by positive
operator valued measures, and to different entropies1 (see the recent review articles [32, 6] for
references).

But so far, the connection of uncertainty relations to another fundamental quantum feature,
entanglement, was not fully understood. The discussion already started in the famous EPR
paper in 1935 [11], but a quantitative and operationally useful criteria was missing. It was only
recently realized that uncertainty should not be treated as absolute, but with respect to the

1In [19], the inequality was already shown for general α-Rényi entropies [23].
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knowledge of an observer [13, 21, 2]. And if the side-information of the observer is quantum,
one obtains a subtle interplay between the observed uncertainty and the entanglement between
the measured system and the quantum side-information. This can be quantified by an entropic
uncertainty relation stated by conditional entropies [7, 21, 2, 30, 9, 8]. For a bipartite state ρAB

and measurements as above, we have [2]

H(X|B) +H(Y |B) ≥ log
1

c
+H(A|B) . (2)

Here, H(X|B) and H(Y |B) is the conditional von Neumann entropy of the measurement out-
comes of X and Y given the side information B,2 and H(A|B) is the conditional von Neumann
entropy of the state ρAB. The latter quantity can be negative in the presence of entanglement,
and measures the initial correlations between A and B. Because of the monogamy property of
entanglement, the tripartite scenario allows a particularly elegant formulation [2, 21]: it holds
for any tripartite quantum state ρABC and measurements as above,

H(X|B) +H(Y |C) ≥ log
1

c
. (3)

Note that the constant c is the same as in inequality (1) and the tripartite formulation can be
seen as a further generalization of the one shown by Massen and Uffink.

The entropic uncertainty relations with quantum side information have various applications
in quantum information theory. Most prominently, the tripartite version in (3) can be used as
a straightforward tool to prove security against arbitrary (coherent) attacks of certain quantum
key distribution protocol [2, 29]. For that purpose, the uncertainty relation stated in equa-
tion (3) in terms of the von Neumann entropy has been extended to the smooth min- and
max-entropies [30], which quantify the extractable key length in the one-shot scenario. For an
overview about the smooth min- and max-entropies we refer to [22, 31]. Recently, the tripartite
uncertainty relation has been generalized furrther to an entire class of entropies including von
Neumann and min-/max-entropy [8].

However, all of the previously mentioned results involving quantum side information assume
quantum systems with finitely many degrees of freedom. A first generalization of the tripartite
uncertainty relation to infinite-dimensional quantum systems has been derived for the smooth
min- and max-entropy by some of the authors in [3]. While the quantum side-information could
be arbitrary, only measurements withe a finite-number of outcomes were considered. Based
on this uncertainty relation, the first quantitative security analysis of a continuous variable
quantum key distribution protocol against arbitrary attacks has been presented in [8]. The
extension to infinite number or continuous outcomes was recently also addressed in [12] where
entropic uncertainty relations with quantum side information in terms of the von Neumann
entropy were derived, which also apply to continuous position-momentum measurements. Yet,
they only consider finite-dimensional quantum side information.

Results. In this work, we present tripartite entropic uncertainty relations with quantum side-
information for infinite-dimensional quantum systems without restrictions on the observables
and the quantum side information. The uncertainty relations are derived for the von Neumann
entropy as well as the (smooth) min- and max-entropy. Note that due to the fact that the
outcomes can be continuous, we have to use differential conditional entropies.

The proof strategy we are employing is to first introduce differential conditional von Neu-
mann h(X|B) and differential conditional min- and max-entropy, hmin(X|B) and hmax(X|B),
for classical systems X described by a measure space and quantum side-information B modeled

2More precisely, H(X|B) is the von Neumann entropy of the post-measurement state ρXB =∑
i (|xi⟩⟨xi|A ⊗ 1B) ρAB (|xi⟩⟨xi|A ⊗ 1B).
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by an observable algebra.3 Intuitively, continuous classical systems may be thought of as being
approximated by discrete systems in the limit of infinite precision. Hence, we expect that rea-
sonable defined differential entropic quantities have a similar behavior. We make this precise
by proving that the differential conditional entropies h(X|B), hmin(X|B) and hmax(X|B can be
approximated by their discretized counterparts. In particular, if X is a classical system with
outcome range being the real line, and Xδ its restriction to a covering of R by half open intervals
of length δ, then

h(X|B) = lim
δ→0

(
H(Xδ|B) + log δ

)
(4)

if the differential entropy h(X|B) is finite. A similar result is derived for the differential min-
and max-entropies hmin(X|B) and hmax(X|B).

The tripartite uncertainty relation for measurements with a continuous outcome range are
then derived by means of these approximation results from the discrete outcome case. In the
discrete case we follow a similar strategy to the one in [8], where the tripartite uncertainty
relation is derived from some elementary properties of the entropies.4 Among these properties
is the duality which says that H(A|B) = −H(A|C), whenever the state of the joint system ABC
is pure. This property turned out to be very important in connection with tripartite uncertainty
relations and is here proven for our general definition of a conditional von Neumann entropy.

The derived uncertainty relation holds in the general case where the measurements are
general positive operator valued measures on an appropriate measure spaces allowing sufficiently
nice partitions. The inequality reads exactly like in equation (2) exept that the entropies are
exchanged by their differential versions and the overlap is computed by a limit along finer and
finer partitions.

We then analyzed the uncertainty relation for position and momentum measurements in the
case of finite and infinite precision measurements. We start in the case of a finite measurement
resolution which we model by a binning of the outcome range into intervals of length δ. In that
case the overlap term only depends on δ and can be computed [28]. The behavior for small δ is
given by c(δ) ≈ δ2\(2π). We then show that the obtained uncertainty relation in terms of the
min- and max-entropy is tight even without side-information. In particular, a pure state which
has only support on one interval of the measurement for which the max-entropy is evaluated
achieves equality. The tightness question is more subtle in the case of the von Neumann entropy.
There we can only show that in the case of trivial side information equality cannot be achieved
for small δ.

In the case of infinite precision measurements, and thus, continuous outcomes the constant
can be obtained by taking the limit for δ → 0. The resulting inequality is then given by

h(Q|B)ω + h(P |C)ω ≥ log 2π,

which generalizes previous results in [20, 4, 25, 26, 27]. It turns out that the uncertainty realtion
is again tight for the min- and max-entropy without side-information. In the case of the von
Neumann entropy the inequality cannot achieve equality without side-information. But it is
still open if in the case with side-information (which enhances the inequality) the uncertainty
relation can be tight.

3The definition of the conditional von Neumann entropy with infinite-dimensional systems generalizes the one
recently given in [18].

4In the case of the min- and max-entropy the inequality can also be obtained from the one in [3] for finite
numbers of outcomes. But this strategy is not applicable to the von Neumann entropy.
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