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We show a scheme to universally implement a projective measurement in the energy eigen-
basis on a system evolving by an unknown Hamiltonian H based on the phase estimation
algorithm. To apply the phase estimation algorithms for unknown Hamiltonian systems,
two new algorithms are introduced. One is for asymptotically but universally implementing
a controlled-unitary operation CU(t) of a unitary operation U(t) = e−iHt up to the global
phase of U(t) for an unknown Hamiltonian H using dynamical decoupling. Another is a new
deterministic quantum computation with one pure qubit (DQC1) algorithm for evaluating
the absolute value of the trace of U(t) without using CU(t). We analyze accuracy of the
implementation of CU(t) by using this DQC1 algorithm. The DQC1 algorithm is also used
for removing the ambiguity due to the periodicity of the phase and the effect of the global
phase to obtain the energy eigenvalue as an outcome.

I. MOTIVATION AND SUMMARY

One of the hallmarks of quantum mechan-
ics is that a measurement operation generally
changes the state of the measured system. Espe-
cially, a projective measurement of an observable
sets the measured system in an eigenstate of the
observable. Let us consider the case where a pro-
jective measurement is performed on a system
evolving according to its own internal Hamilto-
nian and the internal Hamiltonian is chosen for
the observable of the projective measurement. In
this case, the system will be projected onto an
energy eigenstate, which can be useful to stabi-
lize the system as energy eigenstates are station-
ary states, and is also important for experimen-
tal confirmation of the recent theories on micro-
scopic origins of thermodynamical relations [1–
3]. The system left alone, however, evolves ac-
cording to a unitary evolution determined by the
internal Hamiltonian. Hence, the implementa-
tion of the energy eigenbasis projective measure-
ment requires manipulation from the outside of
the system, which is possible if there is another
system on which we can implement any quan-
tum map at our will. A system with such high
controllability is a quantum computer.

Using a quantum computer, it is a trivial task
to implement the energy eigenbasis projective
measurement if the internal Hamiltonian is al-
ready identified. Simply, we transfer the state of

the system into the quantum computer, perform
the energy eigenbasis projective measurement
within the quantum computer, and return the
resulting state back to the system. The resource
required for this method largely depends on the
implementation of the projective measurement
within the quantum computer. A straightfor-
ward implementation is to use a unitary trans-
formation that maps the energy eigenbasis to the
computational basis and perform the projective
measurement in the computational basis. A re-
alization of a such unitary transformation must
first compute the eigenvectors of the Hamilto-
nian, which makes this naive method extremely
inefficient. A better implementation involves
Kitaev’s phase estimation algorithm [4] and is
known to provide a polynomial implementation
of the energy eigenbasis projective measurement
for local Hamiltonians [5, 6].

On the other hand, for unknown Hamiltoni-
ans, the schemes presented above (with or with-
out the phase estimation algorithm) are inappli-
cable. Brute-force methods to estimate unknown
Hamiltonians, such as process tomography [7],
require time resource of O(d2), where d is the
dimension of the system, hence increases expo-
nentially in the number of systems.

One proposal assumes that the input is en-
coded in a particular subspace and that there
is another subspace on which the Hamiltonian
acts as the identity operator [8]. In this case,
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the phase estimation algorithm can be applied
without estimating the Hamiltonian. The as-
sumptions are satisfied in particular setups such
as in linear optical quantum computation using
photon qubits, but cannot be generally applied
to other settings

In this paper, we propose a scheme to im-
plement the energy eigenbasis measurement on
a system evolving under an unknown, general
Hamiltonian and achieve exponential speedup
over the brute-force method. In fact the running
time is independent of the dimension of the sys-
tem. We also analyze the accuracy of the scheme
and prove the running time to be exponential
in the accuracy of the measurement, hence con-
firm that our scheme respects the computational
complexity hierarchy.

Our scheme is based on two new subroutines.
The first implements an approximated operation
of the controlled unitary evolution operator by
using the dynamical decoupling method [9]. The
other evaluates a quantity needed to run the
first algorithm and is based on the determinis-
tic quantum computation with one pure qubit
(DQC1) algorithm [10].

II. PHASE ESTIMATION ALGORITHM

The phase estimation algorithm is a quan-
tum algorithm to estimate the phase factor 0 ≤
θi < 2π of the eigenvalue eiθi of a unitary op-
eration U , when an eigenstate |θi⟩ is given as
an input state. The algorithm uses controlled-
unitary operations of U,U2, U22 , · · · , U2N where
N denotes the number of control qubits. A
controlled-unitary operation CU of an unitary
operation U is defined by

CU := |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗ U (1)

on Hc ⊗ Ht where the Hilbert spaces of the
control system and the target system are rep-
resented by Hc = C2 and Ht = Cd, respectively.

As N increases, the probability to obtain an
outcome outside a fixed range of an eigenvalue
decreases exponentially in terms of N , whereas
the total calling time of U increases exponen-
tially. If we apply the phase estimation algo-
rithm to an arbitrarily superposed input state
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FIG. 1. A quantum circuit representation of the al-
gorithm approximately implementing CU (t) on the
controlled and target systems. The two generalized
Pauli operations σi in a sequence are identical but
they have to be chosen randomly for each iteration.

|ϕ⟩ =
∑

i αi|θi⟩ ∈ Ht where
∑

i |αi|2 = 1, the
algorithm implements a projective measurement
{|θi⟩⟨θi|} on Ht as N → ∞.

III. UNIVERSAL CONTROLLIZATION

We consider to perform the energy eigenba-
sis measurement on an unknown Hamiltonian
H using the phase estimation algorithm. The
controlled unitary operations CU , CU2 , · · ·CU2n

are required to run the algorithm. We propose
an algorithm that asymptotically and universally
implements a controlled unitary operation when
the unitary operation is given as U(t) = e−iHt

for an unknown Hamiltonian H, without iden-
tifying the description of H by Hamiltonian to-
mography.

The algorithm is the following. We add an
ancilla system where its Hilbert space is repre-
sented by Ha = Cd and its initial state is pre-
pared in a maximally mixed state I/d. We di-
vide the time evolution U(t) on Ht into m it-

erations of U( t
m) = e−iH t

m , and insert Fredkin
gates and randomly chosen general Pauli oper-
ations before and after each U( t

m) as shown in
Fig. 1. The random Pauli operations causes the
dynamical decoupling effect between the ancilla
system and the other systems. Thus the unde-
sired entanglement between the ancilla system
and the other systems is weakened and m iter-
ations of this procedure Γm

U(t/m) implements a
map that is an approximation of CU(t).

The difference between the maps CU(t) and
Γm
U(t/m) can be evaluated in terms of the dia-
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FIG. 2. Quantum circuits representing the DQC1
algorithm for evaluating |TrU(t)|2.

mond norm [11] by∣∣∣∣∣∣C(mφU(t/m))

U(t) − Γm
U(t/m)

∣∣∣∣∣∣
⋄
= 1− (aU(t/m))

m(2)

where

aU(t/m) := |Tr[U(t/m)]/d|. (3)

The factor aU(t/m) can be evaluated by

aU(t/m) = O[((TrH)2 − TrH2)t2/(dm)2]

≤ 1 +O[(∆Emax)
2t2/m2], (4)

where Ei = −θim/t is an eigenvalue of H corre-
sponding to the eigenstate |θi⟩ and ∆Emax is the
maximum energy difference (the largest eigen-
value minus the smallest eigenvalue) of H. Thus

the right hand side of Eq. (2) can be bounded
by [(∆Emax)

2t2/m].

IV. EVALUATING TrU(t) WITHOUT
CONTROLLIZATION

We need to choose (aU(t/m))
m high enough

for universal controllization. Namely, we need to
evaluate the value of |TrU(t/m)| = |Tre−iHt/m|
for unknown H. We present a new DQC1 al-
gorithm evaluating |TrU(t)| for an arbitrary t
by using the relationship |Tr(U(t) ⊗ U †(t))| =
|TrU(t)|2. The algorithm is represented in the
quantum circuit shown in Fig. 2. Note that only
the measurement in the computational basis is
required in our algorithm, since we only need to
know the absolute value of TrU(t).

This algorithm can be also used for evaluat-
ing the maximum energy gap of the unknown
Hamiltonian. We prove that the probability of
finding (aU(t))

2 greater than 1/2 is exponentially

small in terms d for ∆Et > 4π, if we consider
Hamiltonians randomly sampled from the Circu-
lar Unitary Ensemble. By repeating the evalua-
tion of the value of (aU(t/2k))

2 for k = 2, 3, · · · ,
we estimate ∆Emax by searching k′ such that
(aU(t/2k′ ))

2 ≥ 1/2 using the DQC1 algorithm.
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