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Abstract

In this paper, we have studied the e�ciency of Quantum algorithms

towards the primality testing algorithm. Our contribution here is to

point out where massive computation power of quantum turing ma-

chines can be directed in the existing classical primality testing algo-

rithm for signi�cant increase in computational speed.

1 Introduction & Motivation

In terms of e�ciency quantum algorithms outperforms the best known classi-
cal algorithms in several scenarios. The performance of quantum algorithms
has been studied in many domains of both computer science and mathemat-
ics. In recent years, researchers have started to solve the mystries of prime
numbers using the computation power of quantum turing machine [9]. This
paper is also another approach in that direction.

Prime numbers always ba�ed mathematicians around the globe. In mod-
ern times, prime numbers are found to be very important for classical cryp-
tography. It is necessary to �nd a large prime number for several crypto-
graphic techniques viz. public key cryptography (RSA) [2]. Conforming to
that necessity opens up a crucial question - how do we know if that large
number n is a prime? Therefore, having found a large enough number, the
next step is to �nd out if that is a prime number. This process is known as
primality testing (PT). There are several randomized polynomial time algo-
rithm techniques available for PT viz. Miller-Rabin Test, Solovay-Strassen
Test [2], [4] etc.
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Until 2002 existence of a deterministic polynomial time algorithm for
primality testing was not con�rmed. In that year, Agarwal et. al [1] has
come up with an a�rmative answer to that. This algorithm is known as
AKS primality testing algorithm, after the name of the inventors.

AKS algorithm is based upon Fermat's little theorem [2]. The main step
of AKS algorithm [1] is following,

Theorem 1 Given an integer n > 1, let r be an integer such that or(n) >
log2 n. Suppose

(x+ a)n ≡ xn + a (mod xr − 1, n) for a = 1, ..., b
√
φ(r) log nc. (1)

Then, n has a prime factor ≤ r or n is a prime number.

The running time of AKS algorithm is O(r1.5 log3 n), where r is a pa-
rameter in the algorithm. In AKS [1] , Agarwal et al. showed that the value
of

√
φ(r) is of O(log5 n). So, running time of that algorithm is O(log10.5 n).

Many improvements were proposed on the value of r latter on. The de-
tailed improvements of the AKS algorithm is described in the given refer-
ences [3].[5]. In every improvement of the AKS algorithm there is loop, for
testing some condition λ is satis�ed for each 1 ≤ a ≤ g(r), where g is a
real valued function. This paper points out those iterations and used am-
plitude ampli�cation algorithm assuming the availability of the oracle U for
performing the conditioning operation λ. Use of amplitude ampli�cation al-
gorithm reduces the number of times the oracle operator needs to be called
or the condition checking operator for the operation λ quadratic times. In
this article, we have used the original AKS algorithm as an example and
shown how we get quadratic improvements from classical AKS algorithm.

2 Quantum Algorithm for Primality Testing

In this section we have described our approach for solving the primality test
problem. As described in the previous sections, our algorithm is based upon
the classical AKS algorithm. Here we have used quantum amplitude ampli-
�cation technique as a subroutine for the main computational step of AKS
algorithm. The structure of AKS algorithm allows us to apply the quantum
amplitude ampli�cation algorithm directly. The main computational task
of the AKS algorithm is given in Theorem 1. In Theorem 1 the parameter
or(n) is the smallest number j for which,

nj ≡ 1 (mod r) (2)

φ(r) is the Euler's totient function of r [2].
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For the computation of equation 1 using quantum amplitude ampli�ca-
tion algorithm, we have called a subroutine named QPrime, in which we
have created an equal superposition state of all a's such that a ∈ {0, b

√
φ(r) log(n)c}.

Then we have assumed that there exists an oracle operator UP , which has
the following characteristics,

UP |a〉 = −|a〉 if (X + a)n 6≡ Xn + a (mod Xr − 1, n) & a 6= 0

= |a〉 otherwise

This subroutine will return 0, i� @a ∈ {1, b
√
ϕ(r) log(n)c} such that

(X+a)n 6≡ Xn+a (mod Xr−1, n). The subroutine uses quantum amplitude
ampli�cation technique for checking the existance of such a. Using general-
ized version of quantum amplitude ampli�cation [7], [8] we have solved this
problem. The detailed step by step operation has been shown in the detailed
version.

QPrime subroutine is a typical amplitude ampli�cation algorithm set-
ting and our goal here is to test whether the function P corresponding UP

is a constant or not. This will give us quadratic speed up from classical se-
quential searching. So, in quantum setting it will take O(dφ(r))

1
4 (log n)

1
2 e)

many evaluations of UP instead of O(b
√
φ(r) log nc), which is a quadratic

speed up. The analysis of the query complexity of QPrime subroutine is
given in the detailed version of this paper. One can use BBHT [7] algorithm
instead of QPrime for �nding the existance of such a.

3 Conclusion

The quantum reversible circuit realization of the operation (X + a)n ≡
Xn + a (mod Xr − 1, n) with optimal number of elimentary gates may also
reduce the actual time complexity of the original AKS algorithm. Our future
work includes the study of the realization of UP operator for AKS algorithm
and also the circuit realization of the corresponding oracle operators for im-
plementing the condition operation λ.
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