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Abstract—We exhibit a possible road towards a strong converse
for the quantum capacity of degradable channels. In particular,
we show that all degradable channels obey what we call a
“pretty strong” converse: When the code rate increases above
the quantum capacity, the fidelity makes a discontinuous jump
from 1 to at most 1√

2
, asymptotically. A similar result can be

shown for the private (classical) capacity.

Furthermore, we can show that if the strong converse holds
for symmetric channels (which have quantum capacity zero),
then degradable channels obey the strong converse: The above-
mentioned asymptotic jump of the fidelity at the quantum
capacity is then from 1 down to 0.

I. INTRODUCTION

Communication via noisy channels is one of the information

tasks by which, following the fundamental work of Shan-

non [18], we have learned to quantify information and noise.

One of the most important models considered from these early

days of information theory is that of a discrete memoryless

channel, for which Shannon gave his famous single-letter

formula for the capacity (i.e. the maximum communication

rate achievable by asymptotic error-free block coding).

The analogous model in quantum Shannon theory is the

memoryless quantum channel N⊗n (for asymptotically large

integer n), given by a completely positive and trace preserving

(cptp) map N : L(A′) → L(B), with Hilbert spaces A′ and B

that we assume to be finite dimensional throughout this paper.

The quantum capacity Q(N ) of N is informally defined

as the maximum rate at which quantum information can be

transmitted asymptotically faithfully over that channel, when

using it n → ∞ times. As for all channel capacity theorems,

the quantum capacity theorem consists of a direct part and a

converse. The direct part states that for rates below a certain

threshold there exist codes with decoding error (quantified as

a certain distance from noiseless transmission) tending to 0
in the number of channel uses. The converse states that if the

rate lies above this threshold then the error does not go to

0 for any sequence of codes. To be precise, this is known

as a weak converse and the threshold rate sometimes called

weak capacity. A strong converse states that for rates above

the capacity the error converges to its maximum 1 as n→ ∞.

Strong converse theorems have been shown to hold for

other types of information sent over memoryless quantum

channels, including classical information encoded into product

states [15], [27] and for general input states (i.e. allowing

the possibility of entangled input signal states) over certain

classes of quantum channels [11]. The strong converse also

holds for entanglement-assisted classical communication over

memoryless quantum channels, by the Quantum Reverse Shan-

non Theorem [1], [2]. Strong converses do not hold by default;

certain quantum channels with memory have a weak capacity

but fail the strong converse [6], [9].

The paper is structured as follows: In section II we recall

the definition of codes, error criteria and the quantum capacity.

Then, in section III we discuss the weak converse for the

quantum capacity and the possibility of strong converses. In

section IV, we review the concept of degradable channels and

some of the analysis of Devetak and Shor [8] of their quantum

capacity. Then in section V, we state our main result (Theo-

rem 1) strongly bounding the rate of channels with sufficiently

small error. Subsequently, we state an analogous rate bound

for the private classical capacity (Theorem 3), and then show

that a strong converse for all symmetric channels implies the

strong converse for all degradable channels (Theorem 5). The

proofs for all theorems and lemmas stated in this sections are

proved in the longer version of this paper [14]. We conclude

in section VI with a brief discussion of what was achieved

and highlight open problems.

II. QUANTUM CHANNEL CAPACITY

For a given channel N : L(A′) → L(B), consider encoding

and decoding of quantum information, given by cptp maps

E : L(C) → L(A′), D : L(B) → L(C),

which together form a quantum code; the information to be

sent is subjected to the overall effective channel D ◦ N ◦ E :
L(C) → L(C). For a Hilbert space H, we denote the set of

states by S(H) = {ρ ≥ 0 s.t. Tr ρ = 1}.
There are many ways of defining mathematically the notion

that the output is a good approximation of the input, and we re-

fer the reader to the comprehensive treatment of Kretschmann

and Werner [12] for a discussion of all the concomitant ways

of defining the capacity and the proof that asymptotically and

for vanishing error they are the same. In the present paper we

will measure the degree of approximation between states by

the fidelity, given as

F (ρ, σ) :=
∥∥√ρ√σ

∥∥
1
= max |〈ϕ|ψ〉|,

where the maximization is over all purifications |ϕ〉, |ψ〉 of ρ

and σ, respectively [26], [10].

The maximum dimension |C| of C such that there exists a

quantum code for N⊗n with error ǫ, is denoted N(n, ǫ), or

more precisely N(n, ǫ|N ) if we want to refer explicitly to the

channel.



If we have a code with error ≤ ǫ, this means that we can

use it with the maximally entangled state |Φ〉CC′

at the input,

to get an output state

σCC
′

= (id⊗D ◦ N ◦ E)Φ,

which is ǫ-close to being maximally entangled, using the

fidelity as a distance measure. This motivates the definition of

an entanglement-generating code with error ǫ. The maximum

dimension |C| of C such that there exists an entanglement-

generating code for N⊗n with error ǫ, is denoted NE(n, ǫ),
or more explicitly, NE(n, ǫ|N ). Clearly, N(n, ǫ) ≤ NE(n, ǫ).

The quantum capacity is now defined as

Q(N ) = inf
ǫ>0

lim inf
n→∞

1

n
logN(n, ǫ).

One obtains the same capacity when using lim sup and NE ,

see [12] for a proof of this and the equivalence of other

variations of the definition.

A Shannon-style formula for the quantum capacity was

first stated by Lloyd [13] and proved rigorously by Shor

[20] and Devetak [7]: more precisely, in these papers the

direct (achievability) part was proven; earlier, Schumacher and

Nielsen [17] had shown that the same quantity is an upper

bound, i.e. the weak converse.

The formula is given in terms of the coherent information

I(A〉B)ρ = −S(A|B)ρ = S(ρB)− S(ρAB),

where S(ρ) = −Tr ρ log ρ is the von Neumann entropy, of

a state ρAB = (id ⊗ N )φAA
′

with a “test state” φ on AA′.
Namely,

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n),

with the single-letter expression

Q(1)(N ) = max
φ∈S(AA′)

{I(A〉B)ρ : ρ = (id⊗N )φ}.

Remark The quantum capacity is known to be non-additive

[25]. So is the single-letter quantity Q(1)(N ) [22], meaning

that the regularization above is necessary, at least as long as

we base our capacity formula on the coherent information. It is

not known whether there is a single-letter formula for Q(N ),
or even an efficient approximation scheme [21]. As a matter

of fact, we do not even know how to characterize the quantum

capacity of the qubit depolarizing channel as a function of the

noise. �

III. WEAK AND STRONG CONVERSE

The fact that the coherent information gives an upper

bound on the quantum capacity of general channels has been

known since Schumacher and Nielsen [17]. To be precise, they

showed that for any entanglement generating code with code

space C, for a channel N : L(A′) → L(B) with error ǫ, there

exists an input test state φAA
′

such that with ρAB = (id⊗N )φ,

(1− 2ǫ) log |C| ≤ I(A〉B)ρ + 1.

Applying this to a maximal code for N⊗n yields, for ǫ < 1
2 ,

1

n
logNE(n, ǫ) ≤

1

1− 2ǫ

1

n
Q(1)(N⊗n) +

1

(1− 2ǫ)n
, (1)

hence the result that for n → ∞ and ǫ → 0, the optimal

rate cannot exceed limn
1
n
Q(1)(N⊗n), which we know is also

asymptotically achievable, thanks to Lloyd-Shor-Devetak.

However, for any non-zero ǫ > 0, the upper bound in Eq. (1)

is a constant factor away from the capacity, which is the

hallmark of a weak converse; it leaves room for a trade-off

between communication rate and error, asymptotically.

If the quantum capacity Q(N ) is zero, Eq. (1) says some-

thing a bit stronger, namely that NE(n, ǫ) ≤ O(1), at least

when ǫ < 1
2 . In this article we call such a statement pretty

strong converse, i.e. a proof amounting to

lim sup
n→∞

1

n
logNE(n, ǫ) ≤ Q(N ),

at least for error ǫ below some threshold ǫ0. A strong converse

would require the above for all ǫ < 1.

Two simple examples of channels for which the strong

converse holds are PPT entanglement binding channels (which

have capacity 0) and the ideal channel; for space reasons we

omit the simple argument [14].

IV. DEGRADABLE AND ANTI-DEGRADABLE CHANNELS

By the Stinespring dilation theorem, any channel can be

defined by an isometric embedding U : A′ −→ B ⊗ E

followed by a partial trace over the environment system

E, such that N (ρ) = TrEUρU
†. Tracing over B rather

than E we obtain the corresponding complementary channel,

N c(ρ) := TrBUρU
†.

A channel N is called degradable if it can be degraded to its

complementary channel, i.e. if there exists a cptp map M such

that N c = M◦N . Introducing the Stinespring dilation of M
by an isometry V : B −→ F ⊗E′, the channel output system

B can be mapped to the composite system E′ ⊗ F such that

the channel taking A′ to E is the same as the channel taking

A′ to E′ (with an isomorphism between E and E′ fixed once

and for all). The above information process is illustrated in

Fig. 1.

If the complementary channel is degradable, i.e. if N =
M ◦ N c for some cptp map, we call N anti-degradable. A

channel that is both degradable and anti-degradable is called

symmetric [23].
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A′

A

B
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V

Fig. 1. Schematic of a degradable quantum channel, with the input state φ
between A′ and the reference A, the channel output and environment state
ϕ and the state ψ shared between A, F and the two copies of the original
environment, E and E′.

The identity between the channels L(A′) → L(E) and

L(A′) → L(E′) (defined by conjugating by V U and tracing

over E′F and EF , respectivey) is expressed by the equation

ψAE = ψAE
′

, (2)



modulo the implicit isomorphism between E and E′. This was

enough for Devetak and Shor [8] to prove that for degradable

channels the coherent information is additive; see also [5,

Sec. A.2]. The crucial point in their argument is that the

coherent information can be rewritten as a conditional entropy,

I(A〉B)ϕ = S(F |E′)ψ .

Then, based on the observation that the state ψFE
′

on the

r.h.s. is a linear function of the reference state ρA
′

= TrAφ,

and using strong subadditivity, one gets subadditivity of the

coherent information of a product channel, hence additivity of

Q(1), and so Q(N ) = Q(1)(N ).

V. MAIN RESULTS

A. Pretty strong converse

Theorem 1 Let N : L(A) → L(B) be a degradable channel

with finite quantum systems A and B. Then, there exists a

constant µ such that for error ǫ < 1√
2

and every integer n,

logN(n, ǫ) ≤ logNE(n, ǫ)

≤ nQ(1)(N ) +O
(√

n logn
)
.

Together with the direct part (achievability proved in [13],

[7], [20]) we thus get:

Corollary 2 For a degradable channel N , the quantum ca-

pacity is given by

Q(N ) = lim
n→∞

1

n
logN(n, ǫ) = lim

n→∞
1

n
logNE(n, ǫ),

for any 0 < ǫ < 1√
2

. Compared to the original definition this is

simpler as we do not need to vary ǫ, and there is convergence

rather than reference to lim inf or lim sup. �

Remark The error 1√
2

is precisely that achieved asymptoti-

cally by a single 50%-50% erasure channel acting on the code

space, and of other suitable symmetric (i.e., degradable and

anti-degradable) channels. �

B. Pretty strong converse for the private capacity

We start by reviewing the basic definitions, which we adapt

from Renes and Renner [16]: A private classical code for

a channel N : L(A′) → L(B) consists of a family of

signal states ρx ∈ S(A′) (x = 1, . . . ,M ), and a decoding

measurement (POVM) (Dx)
M
x=1, i.e. Dx ≥ 0,

∑
xDx = 11B .

The latter can also be viewed as a cptp map D : L(B) → X̂ .

For a given channel N , we denote the largest M such

that there exists a private classical code with error ǫ and

privacy δ (which is itself defined in terms of the fidelity of

the complementary channel N c) by M(n, ǫ, δ). The (weak)

private capacity of N is then defined as

P (N ) = inf
ǫ,δ>0

lim inf
n→∞

1

n
logM(n, ǫ, δ).

The above quantity was determined in [7], [4], and like Q it is

only known as a regularized characterization in general. By the

monogamy of entanglement, we know that P (N ) ≥ Q(N ),
but in general this inequality is strict.

However for degradable channels, it was proved by

Smith [24] that the private capacity P (N ) equals the quantum

capacity Q(N ) = Q(1)(N ), and is hence given by a simple

single-letter formula.

Next we state a theorem for a pretty strong converse for the

private capacity.

Theorem 3 Let N : L(A) → L(B) be a degradable channel

with finite quantum systems A and B. Then, for error ǫ and

privacy δ such that ǫ+2δ < 1√
2

(e.g. ǫ = δ < 1
3
√
2
≈ .2357),

and every integer n,

logM(n, ǫ, δ) ≤ nQ(1)(N ) +O
(√

n logn
)
.

Together with the direct part (achievability proved in [7],

[4]) we thus get:

Corollary 4 For a degradable channel N , the private capac-

ity is given by

P (N ) = lim
n→∞

1

n
logM(n, ǫ, δ),

for any ǫ, δ > 0 such that ǫ+ 2δ < 1√
2

. �

C. Strong converse for symmetric channels implies it for

degradable channels

Theorem 5 Let N : L(A) → L(B) be a degradable channel,

denoting its environment by E. Then there is an associated

symmetric channel M, such that N obeys the strong converse

for its quantum capacity, if M does (note that by the no-

cloning argument, Q(M) = 0). More precisely, there exists a

constant µ such that

logNE(n, ǫ|N ) ≤ nQ(1)(N ) + µ

√
n ln

64n|A|2

λ2
+ 8 log

1

λ

+ logNE(n, 1− λ|M),

with λ = 1−ǫ
5 . �

VI. CONCLUSION

For degradable quantum channels, whose quantum and

private capacities are given by the single-letter maximization

of the coherent information (which is then also additive on the

class of all degradable channels), we have shown bounds on

the optimal quantum and private classical rate, for every finite

blocklength n. These bounds improve on the well-known weak

converse in that they give asymptotically the capacity as soon

as the error (parametrized by the purified distance) is small

enough: for Q this was 1√
2

, the error of a 50%-50% erasure

channel, for P we could get 1
3
√
2

. Since this says equivalently

that the minimum attainable error jumps from 0 to at least

some threshold as the coding rate increases above the capacity,

we speak of a “pretty strong” converse (halfway between a

weak and a proper strong converse).

We have shown furthermore that it is enough to prove a

strong converse for certain universal symmetric (degradable

and anti-degradable) channels, namely those whose Stine-

spring dilation is the embedding of Sym2(E) into E ⊗ E′

as a subspace; then the strong converse would follow for all

degradable channels.

To close this discussion, we note that most channels are

of course not degradable (or anti-degradable). For practically

all these others we do not have any approach to obtain a

strong or even a pretty strong converse. One might speculate

that other channels with additive coherent information, hence

with a single-letter capacity formula, are amenable, too, to

our method. But already the very attractive-looking class of

conjugate degradable [3] channels poses new difficulties.
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