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Abstract. We present an algebraic approach to the quantum net construction developed by Wootters
and coworkers in the context of finite field based phase space formulation of quantum systems described by
a complex Hilbert space of prime power dimensions. Our method of construction of quantum nets is based
on what we call a Dirac inspired square root approach to Wigner distributions which has been shown in our
earlier works, not only reproduces the original Wigner construction for quantum systems with Cartesian
degrees of freedom but also proves to be extremely useful in providing a finite ring based phase space
description for quantum systems of arbitrary but finite (complex Hilbert space) dimensions. We suggest
that in even prime dimensions our method leads to the same family of Wigner distributions as given by
the quantum net construction of Wootters et al. On the other hand, in odd prime power dimensions, we
find that this is not so. Among various possibilities afforded by their approach our method yields only the
Clifford covariant or the most symmetric choice.
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Over the years the phase space description of quantum
systems, as originally formulated by Wigner [1] in the
context of quantum systems with one or more Cartesian
degrees of freedom, has proved to be extremely fruitful
in developing semi classical approximations in statisti-
cal mechanics, classical and quantum optics [2]. More
recently, the Wigner description has provided the start-
ing point towards characterizing Gaussian states [3] and
in obtaining necessary and sufficient condition for entan-
glement in such states [4]. These developments have, in
recent years, prompted vigorous activity aimed at devel-
oping similar descriptions for treating finite state quan-
tum systems. A notable effort in this direction has been
the work of Wootters and coworkers [5] who developed
an elegant phase space description for N -state quantum
systems for the case when N = pn where p is a prime
number. ( The case of a general N is handled by taking
tensor products appropriately). The phase space is taken
to be an N × N grid where the coordinates q and mo-
menta p take values in the finite field Fpn . The fact that
the phase space variables take values in a field, albeit fi-
nite, endows the corresponding phase space with several
geometric properties:

• The phase space has exactly N + 1 isotropic lines
–‘straight’ lines through the origin.

• Each isotropic line gives rise to N − 1 lines par-
allel to it and thereby generates a striation of the
phase space – decomposition of the set of N2 phase
points constituting the phase space space into N
lines containing N points each. As there are N + 1
lines, one has N + 1 striations.

• Any two non parallel lines intersect at exactly one
point and there are exactly N + 1 lines through a
given phase point.

The ‘classical net’ comprising N + 1 striations, each con-
taining N lines is then turned into a quantum net by

∗vsvijayaraghavan@ucdavis.edu
†scsp@uohyd.ernet.in

associating a rank one projector with each line in a man-
ner that is consistent with translational covariance. The
requirement of translational covariance together with the
geometrical properties listed above has the consequence
that the projectors associated with lines in a striation
are trace orthogonal and that the projectors associated
with lines in different striations are mutually unbiased
[6]. Phase point operators are then obtained from the
projectors by adding up all the projectors correspond-
ing to the lines passing through the chosen phase point
and subtracting off the identity Each quantum net, set
up in this manner, then defines a collection of N2 phase
point operators, one at each phase space point, which in
turn leads to a possible definition of the Wigner distri-
bution. Elementary considerations then show that the
above construction leads to NN−1 distinct ways of asso-
ciating a Wigner distribution with an N -state quantum
system. Further, it is also clear that to construct these
Wigner distributions one needs explicit knowledge of the
N + 1 mutually unbiased bases.

In a recent work [7], we developed a procedure for set-
ting up Wigner distributions in the original context based
on what we call a Dirac inspired square root approach.
In a later work [8] we showed how this approach could be
fruitfully employed for obtaining a phase space descrip-
tion for N - state quantum systems. Here the underlying
phase space in this work was taken to be a torroidal lat-
tice – an N × N grid consisting of phase points (q, p)
where the coordinates q and momenta p take values in
the ring ZN , and we showed how one could set up Wigner
distributions on such a phase space without introduc-
ing redundance in the description as was found necessary
in some earlier treatments of this problem. The square
root approach entails finding the square root of a certain
matrix kernel which brings into play one undetermined
sign at each phase point. Imposition of marginals condi-
tions on isotropic lines fixes or relates these undetermined
signs. Each choice of signs consistent with the marginals
conditions then leads to a possible definition of Wigner



distribution. For odd N , all the signs get uniquely fixed
leading to a unique definition of the Wigner distribution
akin to the original Wigner definition. In the N even case
the situation turns out to be quite different. One finds
that the marginals condition can not be imposed consis-
tently on all isotropic lines but only on specific subsets
thereof–orbits under SL(2,ZN ). The marginals property,
restricted to the largest such subset, then leads to condi-
tions on signs which are such that not all signs get fixed.
Each choice for the set of free signs then leads to a pos-
sible definition of the Wigner distribution.

It is evident from the discussion above that both the
approaches mentioned above lead to a multitude of defi-
nitions of Wigner distributions. In the quantum net ap-
proach this arises from the way vectors drawn from mu-
tually unbiased bases are assigned to the lines while in
our approach this is linked to the way the free signs are
chosen. In the present work we investigate the question
whether the two approaches are related. In particular, we
apply our approach to the case treated by Wootters et al
[5] i.e. the situation where N = pn and the cooordinates
and the momenta take values in a finite field Fpn . Inter-
estingly, we find that for N = 2n our approach seems to
reproduce all the various definitions of Wigner distribu-
tions of Wootters et al purely algebraically without the
explicit knowledge of the mutually unbiased bases in such
dimensions. For odd prime powers, on the other hand,
we recover only one of their definitions of Wigner distri-
butions, the one that is Clifford covariant [9] and can be
viewed as a direct descendent of that in the continuum
case.

Our algebraic construction may find useful applica-
tions in investigating properties of quantum random ac-
cess codes (QRAC) developed in [11] based on the full
set of NN+1 phase point operators beyond N = 8.
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