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Abstract. In this paper, we study efficient algorithms towards the construction of any arbitrary Dicke
state. Our contribution is to use proper symmetric Boolean functions that involve manipulations with
Krawtchouk polynomials. Deutsch-Jozsa algorithm, Grover algorithm and the parity measurement tech-
nique are stitched together to devise the complete algorithm. Further, motivated by the work of Childs et
al (2002), we explore how one can plug the biased Hadamard transformation in our strategy. Our work
improves the results of Childs et al (2002).
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1 Introduction

Multipartite entanglement is one of the important ar-
eas in the field of quantum information that has many
applications including quantum secret sharing. In this
paper, we focus on the Dicke states [5], which are useful
building blocks in realizing multipartite entanglement.
The n-qubit weight w Dicke state, |Dn

w〉, is the equal su-
perposition of all n-qubit states of weight w. We refer
to [1, 8, 9, 10, 14, 15] and the references therein for de-
tailed discussion.

After the invention of quantum information, many ex-
perimental setups have been proposed and tested to ver-
ify some theoretical properties. Most of experiments have
been focused on the test of multipartite entanglement
such as EPR, GHZ, and W states. Since the result of
experimental tests depends on the steps for preparing,
processing, and measuring, all steps should be refined
as much as possible. Among them, the first priority is
to prepare the target state with very high fidelity and
with efficiency. In this work, therefore, we also focus on
the efficient way to prepare certain multipartite quantum
state.

In line of GHZ and W states, we have the Dicke state,
|Dn

w〉, which an equal superposition state of all n-qubit
states of weight w. Actually, Dicke state is more gen-
eral state than GHZ and W states since W state is |Dn

1 〉
and GHZ state is the superposition of |Dn

0 〉 and |Dn
n〉.

Therefore, the preparation method for Dicke state can
be utilized for other general case as well. At the same
time, similar to the above reason, Dicke state can be uti-
lized for many applications such as secret sharing [15] and
quantum networking [2]. Related to this, some previous
works have been done that focussed on the experimental
ways to prepare six-qubit Dicke state [15, 13] with fidelity
0.654± 0.024 and 0.56± 0.02, respectively.

While the main focus from the viewpoint of experimen-
tal physics is to actually provide the implementation of
specific Dicke states, our focus is from theoretical algo-
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rithmic angle and the only result presented in this direc-
tion appeared in [1]. In this work, we show how one can
efficiently construct Dicke states by using the combinato-
rial properties of symmetric Boolean functions, two well-
known quantum algorithms, and the generalized parity
measurement. By efficient, we mean that the resource
requirements in terms of quantum circuits and number
of execution steps is poly(n) to obtain |Dn

w〉.
Let us consider n-qubit states in the computa-

tional basis {0, 1}n that can be written in the form∑
x∈{0,1}n ax|x〉, where

∑
x∈{0,1}n |ax|2 = 1. Thus, x can

also be interpreted as a binary string and the number of
1’s in the string is called the (Hamming) weight of x and
denoted as wt(x). Based on this an arbitrary Dicke state
can be expressed as follows:

|Dn
w〉 =

∑
x∈{0,1}n,wt(x)=w

1√(
n
w

) |x〉.
Let us also define a symmetric n-qubit state as

|Sn〉 =
∑

x∈{0,1}n

awt(x)|x〉, where

n∑
i=0

(
n

i

)
|ai|2 = 1.

2 Contribution

First, we show how one can prepare a symmetric n-
qubit state with the property that

(
n
w

)
|aw|2 is Ω( 1√

n
)

by using Deutsch-Jozsa algorithm [4]. This requires cer-
tain novel combinatorial observations related to symmet-
ric Boolean functions. Then the quantum state out of
Deutsch-Jozsa algorithm is measured using the parity
measurement technique [8] to obtain |Dn

w〉 with a proba-
bility Ω( 1√

n
). Thus, O(

√
n) runs are sufficient to obtain

the required Dicke state. Note that a direct approach
to construct a symmetric state has been presented in [1]
using biased Hadamard transform. While the order of
probability to obtain Dicke state by ours and that of [1]
are the same, enumeration results show that the exact
probability values are better in our case than that of [1].

Further, motivated by the idea in [1], we improve our
algorithm further with a modified Deutsch-Jozsa opera-
tor that involves the biased Hadamard transform. Since



biased Hadamard transform also helps to generate the
target symmetric state, the overall probability to obtain
the Dicke state increases.

Finally, we can also apply the Grover operator [7] be-
fore the measurement. Since Grover algorithm amplifies
the amplitude of target symmetric state, this helps to
reduce the necessary number of steps into O( 4

√
n).

The brief non-technical description of the complete al-
gorithm is as follows:

• We use combinatorial properties of Boolean func-
tions, to be specific, symmetric Boolean functions
and Krawtchouk polynomials [3, 6].

• We refer to the relationship [11] of Deutsch-Jozsa
algorithm [4] with Walsh spectrum of Boolean func-
tions to produce the symmetric states.

• Based on our combinatorial construction, we pro-
duce symmetric states with higher amplitudes for
weight w states.

• We apply Grover’s algorithm [7] to obtain quadratic
improvement in the run time.

• We use parity measurement techniques [8] to obtain
the Dicke state asked for.

3 Conclusion

In summary, we study several quantum algorithms to
construct arbitrary Dicke state in a disciplined manner.
The key idea is to find a suitable symmetric Boolean func-
tion for Deutsch-Jozsa algorithm for the given n and w,
use of the Grover algorithm and the generalized parity
measurement strategy. Further, we show that it is pos-
sible to obtain improved results using biased Hadamard
transform suitably. Our results improve the probabilities
obtained in [1] and provide faster method to construct
Dicke states.

The problem open in this area is to characterize the
enumeration results in case of modifying the Deutsch-
Jozsa algorithm with biased Hadamard transform. Ob-
taining the exact bias in biased Hadamard transform with
the corresponding symmetric function to optimize the
probability corresponding to the Dicke state seems to be
an interesting problem.

Though we look at the problem from theoretical an-
gle, the algorithmic blocks used by us have experienced
major advancement towards actual implementation. One
may refer to [12, Section 7] for literature related to im-
plementation of quantum gates as well as Deutsch-Jozsa
algorithm, Grover algorithm and several measurement
techniques. As example, the idea of implementing bi-
ased Hadamard transform is related to the Fabry-Perot
cavity [12, Page 299].
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