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Abstract. We consider the approximate joint measurement of two incompatible observables on a given
quantum state, and present a tight relation characterizing the optimal trade-off between the error on one
observable vs. the error on the other. As a particular case, our approach allows us to characterize the
disturbance of an observable induced by the approximate measurement of another one; we introduce an
even stronger error-disturbance relation for this scenario.
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1 Introduction

Uncertainty Relations, first suggested by Heisenberg
in 1927 [1], are among the main pillars of quantum the-
ory. One of the best known versions is for instance the
one due to Robertson [2], which writes ∆A∆B ≥ |CAB |,
where ∆A, resp. ∆B, is the standard deviations of the
measurement of an observable A, resp. B, on a quantum
state |ψ〉, and CAB = 〈ψ|[A,B]|ψ〉/2i.

It is often argued that such uncertainty relations im-
ply that incompatible observables cannot be jointly mea-
sured on quantum states such that CAB 6= 0, or that the
measurement of one necessarily implies a disturbance on
the other (which is in fact the original idea presented by
Heisenberg in [1]). This is however not what the Robert-
son relation above tells, as it only bounds the statistical
deviations of the measurement results of A and B, when
either of each measurement is performed many times, on
several independent copies of |ψ〉.

Instead of considering such statistical deviations on
many measurements of either A or B, we address here the
following problem: if A and B are incompatible and can-
not be perfectly jointly measured on |ψ〉, it may still be
possible to jointly approximate the measurement of both
observables, at the price of introducing errors; what is
then the optimal trade-off between the errors εA and εB
introduced in the measurement of A and B, respectively?

2 Approximate joint measurements

In order to approximate the measurement of an observ-
able A on a quantum system in the state |ψ〉, a general
strategy consists in measuring another, “approximate”
observable A, possibly on an extended Hilbert space—
i.e., on the joint system composed of the state |ψ〉, and
of an ancillary system in the state |ξ〉. In this picture,
the impossible joint measurement of two incompatible
observables A and B on |ψ〉 can thus be approximated
by the perfect joint measurement of two compatible (i.e.,
commuting) observables A and B on |ψ, ξ〉 = |ψ〉 ⊗ |ξ〉.
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Following Ozawa (e.g. [3, 4]), we characterize the qual-
ity of the approximations A and B of A and B, respec-
tively, by defining the root-mean-square (rms) errors

εA = 〈ψ, ξ| (A−A⊗ 11)2 |ψ, ξ〉1/2, (1)

εB = 〈ψ, ξ| (B −B ⊗ 11)2 |ψ, ξ〉1/2. (2)

3 Error-trade-off relations for approxi-
mate joint measurements

The fact that quantum theory forbids perfect joint
measurements of incompatible observables implies that
the rms errors (εA, εB) can in general not take arbitrary
values.

A common misconception is that Robertson’s relation
should still hold if the standard deviations ∆A and ∆B
are simply replaced by the rms errors εA and εB, so that
εA εB ≥ |CAB |. While this relation, often attributed to
Heisenberg himself or to Arthurs and Kelly [5], can in-
deed be proven under some restrictive assumptions, it is
worth emphasizing that in general it does not hold [6].

Only recently did Ozawa show [4] how one could de-
rive a universally valid “uncertainty relation” for joint
measurements, namely

εA εB + ∆B εA + ∆A εB ≥ |CAB |. (3)

The three terms in Ozawa’s relation come from three in-
dependent uses of Robertson’s relation to different pairs
of observables. While this indeed leads to a valid relation
and allows one to exclude a large set of impossible values
(εA, εB), this is not optimal, as the three Robertson’s re-
lations (and therefore Ozawa’s relation) in general cannot
be saturated simultaneously.

3.1 A new, tight error-trade-off relation for joint
measurements

Using a general geometric inequality for vectors in a
Euclidean space, we could show [7] how to improve upon
the sub-optimality of Ozawa’s proof, and derive the fol-
lowing error-trade-off relation for approximate joint mea-



surements:

∆B2 ε2A + ∆A2 ε2B + 2
√

∆A2∆B2 − C2
AB εA εB ≥ C2

AB .

(4)

It can easily be checked that Ozawa’s relation (3) can di-
rectly be derived from our new relation above. Further-
more, not only is our relation stronger than Ozawa’s, it is
actually tight : for any A,B and |ψ〉, any values (εA, εB)
saturating inequality (4) can be obtained [7]. Hence, con-
trary to previously derived relations, our new one does
not only tell what cannot be done quantum mechanically,
but also what can be done.

3.2 The error-disturbance scenario and the
same-spectrum assumption

The error-disturbance scenario, as first discussed by
Heisenberg [1], can be treated as a particular case of the
general framework for approximate joint measurements.

In this context, one considers the disturbance ηB in the
statistics of one observable, B, due to the unsharp mea-
surement of another observable, A. The approximation
of A can again be described by the measurement of an
observable A, while the subsequent measurement of B on
the disturbed system can be written as the measurement
of an observable B on the original state. Using the same
formalism as in the joint measurement framework, the
rms error εB is now interpreted as the rms disturbance
ηB of B, with formally the same definition [3]: ηB = εB
as defined in (2).

Any error-trade-off relation derived in the more gen-
eral framework of joint measurements thus remains valid
in this error-disturbance scenario. In particular, when
interpreting εB as the rms disturbance ηB, Ozawa’s rela-
tion (3) writes

εA ηB + ∆B εA + ∆A ηB ≥ |CAB |. (5)

This error-disturbance relation was actually introduced
by Ozawa before its previous version (3) for joint mea-
surements [3]. In a similar manner, our new error-trade-
off relation (4) also implies a new error-disturbance rela-
tion, by simply replacing εB by ηB.

The difference with the previous, more general scenario
of joint measurements is however not merely in the inter-
pretation of εB. A crucial point is that as the approxi-
mate measurement B corresponds to the actual measure-
ment of B on the disturbed system, it necessarily has the
same spectrum as B—which was not assumed previously.
Because of this constraint, one may expect stronger re-
strictions on the possible values of ηB to hold, and that
stronger “error-disturbance relations” can be derived.

To illustrate this, we could show [7] that for the case
of a dichotomic observable B with eigenvalues ±1 (such
that B2 = 11), and for a state |ψ〉 for which 〈B〉 = 0
(which implies ∆B = 1), if one imposes the same spec-
trum assumption to B (i.e. that B2 = 11 as well), then an
analogous relation to (4) holds, where εB is replaced by

ηB

√
1− η2B

4 . If A is also such that A2 = 11 and 〈A〉 = 0,

and if one also imposes the same-spectrum assumption
to A, then one can derive the error-disturbance [7]
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4

)
+ η2B
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4
≥ C2

AB . (6)

This new error-disturbance relation is strictly stronger
than (4) (and than Ozawa’s relation (5)). Furthermore,
we could show [7] that it is tight when |〈ψ|AB|ψ〉| = 1:
for any A,B and |ψ〉 satisfying the constraints above, one
can reach any values (εA, ηB) that saturate the inequality,
using approximate measurements such thatA2 = B2 =11.

4 Conclusion

Our new error-trade-off relation (4) quantifies precisely
the optimal trade-off between the rms errors εA and εB
introduced in any approximate joint measurement of A
and B, thus answering the question posed in our title.
In the case where one imposes that the approximations
should have the same spectrum as A and B, one can
derive stronger constraints, as e.g. our error-disturbance
relation (6) for the case of ±1-valued observables.

The tightness of these relations is a crucial feature:
they do not only indicate what cannot be done quan-
tum mechanically, but also what can be done. Two re-
cent experiments [8, 9] verified the validity of Ozawa’s
error-disturbance relation (5) (and the violation of the
“Heisenberg-Arthurs-Kelly relation” εA ηB ≥ |CAB |), but
were nowhere near saturating it—which is indeed in gen-
eral not possible. However, an adequate setup (such as
the one of [9]) should allow one to saturate our error-
disturbance relation (6), as well as our error-trade-off re-
lation (4) if the approximate measurements are not re-
stricted to output eigenvalues of A and B.
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