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Abstract. In this paper, the decoherence and entanglement properties for the two site Bose-Hubbard
model in the presence of a non-linear damping is studied. The techniques of thermo field dynamics and
Hartree-Fock approximation are applied to solve the corresponding master equation (ME). The expectation
values of the approximated field operators appearing in the solution of ME, are computed self-consistently.
We solve this master equation for a small time t so that we get the analytical solution, thereby we compute
the decoherence and entanglement properties of the solution of the two-mode bosonic system.
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1 Introduction

In recent years, there is lot of interest generated in
the study of entanglement properties of ultra cold atoms
[1, 2, 3, 4, 5, 6]. In one such study, the single-site address-
ability in a two-dimensional optical lattice [7] has been
demonstrated which could be a natural resource for appli-
cations of quantum information processing with neutral
atoms. In all the experimental demonstrations of ultra
cold atoms, loss is an important role which gives rise to
decoherence and in turn destroying the quantum correla-
tions. The losses due to decoherence can be modelled by
a master equation. One such model is examined in the
ref [5, 6] for a linear damping using the Bose-Hubbard
model. The Bose-Hubbard model [8] is one of the pop-
ular models used to study the evolution of cold atoms
and the Bose-Einstein condensates in optical lattice. In
this paper, we examine the two-site Bose-Hubbard model
to study the entanglement and decoherence properties of
two-mode states under the action of non-linear damping.
We consider the following master equation for density
matrix ρ in a non-linear medium
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∂t
ρ =
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~
[H, ρ] + κ

K∑
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†
kb

†
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†
kb

†
k]), (1)

here κ is a damping coefficient, ak and bk bosonic annihi-
lation operators referring to atoms in the internal states
|N1⟩ and |N2⟩, respectively, with one boson in the kth
lattice site and K is the number of lattice sites and H is
the Hamiltonian for the Bose-Hubbard model which de-
scribes the optical lattice. In this paper, we are studying
the model in the presence of non-linear damping corre-
sponding to the term associated with κ.
For solving this master equation we use the techniques

of thermo field dynamics (TFD) [9, 10] and thereby the
Hartree-Fock approximation to convert the two-site Bose-
Hubbard model into a two-mode bosonic system (see ref
[11] for details). The two-site Bose-Hubbard model is
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used to study Josephson tunneling between two Bose-
Einstein condensates. The expectation values of the ap-
proximated field is computed self-consistently. We solve
the corresponding master equation for a small time t so
that we get the analytical solution, thereby we compute
the decoherence and entanglement properties of the two-
mode bosonic system.
In TFD, any master equation reduces to,

∂

∂t
|ρ(t)⟩ = −iĤ|ρ⟩, (2)

where |ρ⟩ is a vector in the extended Hilbert spaceH⊗H∗

and −iĤ = i(H − H̃) + L, here L is Liouville term, H
and H̃ corresponds to non tildian and tildian Hamiltoni-
ans respectively, and H∗ is the added Hilbert space( for
further details, see ref [11]).

2 Two site Bose-Hubbard Model

To study the decoherence and the entanglement prop-
erties of Bose-Hubbard model, for simplicity, we consider
a toy model, in which the Bose-Hubbard model is written
for the two site interaction only. Than the master equa-
tion for the two site Bose-Hubbard model is obtained by
taking K = 1 in the equation (1)

∂

∂t
ρ = −iω(a†aρ− ρa†a)− iJ(a†bρ− ρa†b)

−iJ(b†aρ− ρb†a) + i
Ua

2
(a†a†aaρ− ρa†a†aa)

−iω(b†bρ− ρbb†) + i
Ub

2
(b†b†bbρ− ρb†b†bb)

+i
Uab

2
(a†b†abρ− ρa†b†ab)

+
κ

2

(
2abρa†b† − a†b†abρ− ρa†b†ab

)
. (3)

The interaction term J in the Hamiltonian describes the
induced hopping between adjacent cells. ω is the fre-
quency of the atom in the lattice. The on-site interac-
tions of atoms are described by Ua and Ub, and a nearest-
neighbour interaction by Uab. For further details see ref
[8].



At first we consider the special case to solve this master
equation with J = Ua = Ub = 0 and Uab = U , which
corresponds to the Mott insulating phase. We apply the
thermo field dynamics techniques to convert the master
equation (3) into a Schrödinger equation (2) by applying
|I⟩ from the right to the eq (3), (The state vector |I⟩ takes
a normalized vector to an another normalized vector in
the extended Hilbert space H⊗H∗ for detail ref [11]) and
using Hartree Fock approximation we get the solution to
be

|ρ(t)⟩ =
(
exp[−i

∫
dtH1]⊗ exp[−i

∫
dtH2]

)
|ρ(0)⟩, (4)

where |ρ(0)⟩ is an initial state in H⊗H∗. Here

H1 = ω(a†a+ b†b) +
iκ∆(t)

2

(
ab− a†b†

)
−U∆(t)

2
(a†b† + ab) (5)

and similar H2 is with the tildian terms. By exploiting
the su(1, 1) symmetry of the Hamiltonian and calculating
the ∆(t) ( is given in eq (32) ref [11]) self consistently one
gets the solution to be, for details refer to [11].

3 Entanglement

The solution of the master equation (3) in the system
Hilbert space H is given by :

ρ(t) =
(
exp[Γa+K+]exp[ln(Γa3N ]exp[Γa−K−]ρ(0)

×
(
exp[Γb+K+]exp[ln(Γb3N ]exp[Γb−K−]

)
,(6)

where ρ(0) is taken to be the initial state, N = a†a +

b†b,K+ = a†b†,K− = ab and Γi± = −∆(0)ζt
2 (1 +

ω2t2

4 )e±iϕ, here i stands for a and b. One can clearly
see that this a two-mode squeezed state. It is well known
that two-mode squeezing gives rises to entanglement [12].
By taking the initial state ρ(0) to be the two mode ther-
mal state, the amount of entanglement in ρ(t) is given in
terms of logarithmic negativity

EN (r) = −1

2
[Log(e−4r/n)], (7)

where is r is the squeezing parameter and n = n1 = n2

is are the sympletic eigenvalues of covariance matrix of
two-mode thermal state (for details ref to [11]).
To calculate decoherence effects of ρ(t) we compute

{ρ(t)}2 = ρ2(t) and is given by eq (56) in ref [11]. One
can see immediately that for the short time it self as the
value of damping coefficient increases the system deco-
heres faster (see figures 1 and 2 in ref [11] for further
details).

4 Conclusion

We show that the entanglement for two site Bose-
Hubbard model for a short time increases when the initial
state is a two-mode thermal state. We interpret this be-
haviour due to the existence of the non-linear medium.

To get the exact picture for the long time behaviour of
the entanglement, one has to do the numerical studies.
It can be seen from the decoherecnce plot, (see figures 1
and 2 in ref [11]), that as the value of the damping co-
efficient increases the damping in the system is faster as
expected. We expect that the further numerical studies
using this model will give better results and these results
may be applied to condensed matter systems.
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