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Abstract. We present a new paradigm for capturing the complementarity of two observables (see original
article, arXiv:1305.3442). It is based on the entanglement created by the interaction between the system
observed and the two measurement devices used to measure the observables sequentially. Our main result
is a lower bound on this entanglement and resembles well-known entropic uncertainty relations. Besides its
fundamental interest, this result directly bounds the effectiveness of measurement operations for generating
entanglement, and has further application for decoupling and coherent teleportation.
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Heisenberg’s original formulation of the uncertainty
principle considered sequential measurements of comple-
mentary observables, like position and momentum, per-
formed on the same physical system, and the princi-
ple was that the second observable is unavoidably dis-
turbed by the measurement of the first [1]. An alterna-
tive scenario considers unavoidable uncertainty for inde-
pendent measurement of the two observables, with the
measurements performed on distinct but identically pre-
pared quantum systems [2, 3].
The latter formulation of the uncertainty principle

seems to receive more attention in modern times. For
example, entropic uncertainty relations [4] typically cap-
ture this unavoidable uncertainty; consider a well-known
example from Maassen and Uffink [5]. For any state ρS
of a finite-dimensional quantum system S they find

H(X) +H(Z) ⩾ log2(1/c), (1)

where X = {|Xj⟩} and Z = {|Zk⟩} are any two orthonor-
mal bases of HS , H(X) := −

∑
j p(Xj) log2 p(Xj) is the

Shannon entropy associated with the probability distri-
bution p(Xj) := ⟨Xj |ρS |Xj⟩ (similarly for H(Z)), and
c := maxj,k |⟨Xj |Zk⟩|2 quantifies the complementarity
between the X and Z observables.
Ref. [6] showed that an entropic uncertainty relation

like (1) has a correspondent entanglement certainty rela-
tion. They considered the generation of entanglement be-
tween measurement devices and independent, identically-
prepared copies of some system, and proved that, when
dealing with complementary observables, there is un-
avoidable creation of entanglement between at least one
copy of the system and one measuring device.
Main result.—In this work, we offer a new point of

view on complementarity. As Heisenberg did originally,
we consider sequential measurements performed on the
same physical system, rather than idependent copies of
the system; on the other hand, following [6, 7, 8], we focus
on the entanglement generated between the system and
the measurement devices. In general, for any X and Z,
we can lower-bound the entanglement E(X,Z) between
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Figure 1: Circuit diagram for the sequential measure-
ment of the X and Z observables on system S.

the system and the measurement devices created from
sequentially measuring X and Z with

E(X,Z) ⩾ log2(1/c), (2)

where the c factor appearing here is precisely the same c
appearing in Eq. (1). Here, we take E to be the distillable
entanglement, i.e., the optimal rate to distill Einstein-
Podolsky-Rosen (EPR) pairs using local operations and
classical communication (LOCC) in the asymptotic limit
of infinitely many copies of the state.
Our approach relates in a novel way two basic

concepts of quantum mechanics: complementarity—
in the sequential-measurement scenario—and entangle-
ment. Besides this fundamental interest, our results
have direct operational interpretations. On one hand,
they provide bounds on the usefulness of sequential bi-
partite operations—corresponding to the measurement
interactions—for entanglement generation. On the other
hand, we discuss below the application of our results to
decoupling [9] and coherent teleportation [10].
Figure 1 depicts the basic setup for our main result. At

the initial time, t0, the system is in an arbitrary state ρ
(0)
S .

It firsts interacts with device M1, which measures ob-
servable X, and later it interacts with device M2, which
measures observable Z. The measurements are depicted
with the controlled-NOT symbols although more gener-
ally they represent controlled-shift unitaries. We are in-
terested in the bipartite entanglement E(X,Z) between
S and the joint system M1M2 at the final time, t2.
The case where X and Z are fully complementary, so-

called mutually unbiased bases (MUBs), corresponds to



|⟨Xj |Zk⟩|2 = 1/d for all j, k, and hence c = 1/d, where
d = dim(HS). In the uncertainty relation (1), this leads
to the maximum tradeoff in knowledge, with the r.h.s.
becoming log2 d, and hence perfect knowledge of X im-
plies complete ignorance of Z. Likewise, in our main
result, the r.h.s. of (2) becomes log2 d. This implies that,

for any input state ρ
(0)
S , sequentially measuring X and

Z results in a maximally entangled state between S and
M1M2. It may seem surprising that this is even true if

we feed in a maximally-mixed state ρ
(0)
S = I/d.

Eq. (2) also allows us to say that if X and Z are almost
MUBs, then for any input state, S is almost maximally
entangled to M1M2 at time t2. Furthermore, as long as
log2(1/c) > 0, then there is guaranteed to be distillable
entanglement at time t2.
Ref. [11] provides two alternative proofs of (2). One is

based on the uncertainty principle with quantum memory
[12], applied at time t1 in Fig. 1. The other invokes the
monotonicity of entanglement under LOCC, which allows
us to derive a slightly stronger version of (2) given in [11].
In what follows, we discuss the implications of our main

result for decoupling and coherent teleportation.
Decoupling.—The correlations between two quantum

systems can be destroyed, turning an arbitrary bipartite
state ρSS′ into some tensor product σS⊗σS′ , with appro-
priate local operations. This idea, called decoupling [9]
has specific applications in state merging [13] and quan-
tum cryptography [14]. Our work identifies sequential
complementary measurements as one such method to de-
couple. This is due to the monogamy principle: because
S is highly entangled to M1M2 at time t2, then S cannot
be too correlated with any other system S′ at t2.
We make this precise by considering the relative en-

tropy D(σ∥τ) := Tr(σ log2 σ)−Tr(σ log2 τ). Letting ρ
(2)
SS′

denote the state of S and some other system S′ at time

t2, we find that, for any initial state ρ
(0)
SS′ ,

D(ρ
(2)
SS′ ||I/d⊗ ρ

(2)
S′ ) ⩽ log2(d · c), (3)

which is a corollary of Eq. (2). Indeed this implies that

the final state ρ
(2)
SS′ is almost completely decoupled if the

X and Z observables are almost fully complementary.
Coherent teleportation.—We have shown that the abil-

ity to produce entanglement and to decouple using se-
quential measurements is a quantification of the comple-
mentarity of those measurements. It turns out there is a
third perspective on complementarity. In the case when
X and Z are MUBs, there exists a local unitary applied

to M1M2 at time t2 that recovers the input state ρ
(0)
S on

device M1, i.e., we can “teleport” the input state of S
to one of the measurement devices. This is commonly
known as coherent teleportation [10]. In this case, the
channel E :S(t0) → S(t2) is completely noisy, while the
channel Ec :S(t0) → M1M2(t2) is perfect. As we reduce
the complementarity ofX and Z, the channel Ec becomes
less perfect, so we can consider the quantum capacity Q
of Ec, i.e., the optimal rate at which Ec allows for the
reliable transmission of quantum information [15], as a
measure of the complementarity of X and Z. We make

this idea quantitative with the following corollary of (2),

Q(Ec) ⩾ log2(1/c). (4)

Eq. (4) allows us to say that we can approximately tele-

port the state ρ
(0)
S when X and Z are almost MUBs.

Conclusions.—We give an alternative take on comple-
mentarity. Instead of discussing a trade-off of knowledge,
as in uncertainty relations, we propose that a signature
and quantification of complementarity of two observables
is given by the entanglement generated when the observ-
ables are sequentially measured on the same system via
a coherent interaction with corresponding measurement
devices. We also offer the perspectives of decoupling and
coherent teleportation. We find it intriguing that the
same complementary factor c appearing in uncertainty
relations also appears in these operational contexts.
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