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Abstract. We provide a non–deterministic quantum protocol that approximates Rx(φ21φ
2
2) using Rx(φ1)

and Rx(φ2) and a constant number of Clifford and T operations. We then use this method to construct a
“floating point” implementation of a small rotation wherein we use the aforementioned method to construct
the exponent part of the rotation and also to combine it with a mantissa. This causes the cost of the
synthesis to depend more strongly on the relative (rather than absolute) precision required. We analyze
the mean and variance of the T–count required to use our techniques and show that, with high probability,
the required T–count will be lower than lower bounds for the T–count required to do ancilla–free circuit
synthesis. We also discuss the T–depth of our method and show that the vast majority of the cost of the
resultant circuits can be shifted offline.

The ability to inexpensively perform single–qubit ro-
tations is vital for quantum computing. These rota-
tions form the core of several quantum algorithms in-
cluding the quantum Fourier transform, quantum simu-
lation and the synthesis of multi–qubit unitaries, among
many others. Optimizing the cost of synthesizing single–
qubit rotations is vitally important for designing prac-
tical algorithms on the first generation of fault–tolerant
quantum computers. Until very recently, the Solovay–
Kitaev theorem [1] was the best known technique for
synthesizing such rotations. A revolution has occurred
in the last several months in the field of circuit synthesis,
providing a polynomial improvement over the Solovay–
Kitaev theorem, causing the cost of circuit synthesis to
approach information theoretic bounds for the optimal
scaling [2, 3, 4]. The question that remains is: “how ef-
ficient can we make the task of synthesizing single–qubit
rotations?”

We address this question by providing a new paradigm
for synthesizing small single–qubit rotations that is not
only more efficient than existing methods, but is also
more efficient than any method that does not use ancil-
las to assist the synthesis. The key insight behind this
method is that a floating point representation of the rota-
tion angle can be used to simplify the synthesis of small
rotations. Traditional circuit synthesis methods, in ef-
fect, treat every leading zero in a decimal representation
of a small rotation as a significant digit. This makes syn-
thesizing these rotations costly in cases where a small
rotation angle is needed, but the number of digits of pre-
cision that are required of the rotation is small. Our
floating point representation solves this problem by pro-
viding a way to multiply small rotation angles, which ad-
dresses the issue of extraneous digits of precision for cir-
cuit synthesis in exactly the same way that floating point
representations of decimal numbers remove the need to
keep track of irrelevant digits of precision in arithmetic
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problems.
There are two central components to our method.

The first component is a non–deterministic circuit that
can combine two rotations Rx(α) and Rx(β) to ap-
proximate Rx(α2β2). The second component is a non–
deterministic circuit that can inexpensively generate
small X–rotations. The intuition behind how these two
components combine to form our floating point represen-
tation is demonstrated in the following example. Imag-
ine that we want to implement the rotation Rx(a× b−γ),
where b ≈ 0.029, γ is an integer and 1 > a > b. This ro-
tation can be approximated using the first component
of our method to combine the rotations Rx(

√
a) and

Rx(b−γ/2), which we call the mantissa and exponent uni-
taries respectively. The mantissa unitary can be syn-
thesized inexpensively using traditional circuit synthesis
methods because it requires relatively few digits of preci-
sion; whereas the exponent unitary is implemented using
the non–deterministic circuits that are the second com-
ponent of our method.

It should be noted that although our circuits are non–
deterministic, any failures that occur can be corrected us-
ing Clifford operations. This means that our circuits will
always succeed, although the total cost of implementing
our circuits will vary. We show that, despite the uncer-
tainty in the cost of synthesizing the rotation, our floating
point method will be less expensive than the best known
techniques with high probability.

We consider three different scenarios in which to as-
sess the cost of our algorithm. In all three scenarios, we
assume that the most expensive gate in the {Clifford, T}
gate library is the T gate and assume for simplicity that
Clifford operations are free. In the first scenario, we mea-
sure the cost by counting the total number of T gates re-
quired to synthesize the rotation. This cost analysis is ap-
propriate in situations where a serial quantum computer
is used to execute the floating point circuits. The sec-
ond scenario assumes that the quantum computer is mas-
sively parallel and hence the T–depth of the circuit best



represents the time required to execute the circuit. Fi-
nally, we consider the online cost of our algorithm, which
is an appropriate measure in cases where “factories” can
be employed that constantly produce resource states that
can be consumed cheaply throughout the protocol. All
three scenarios show that our approach has substantial
advantages over the best known synthesis methods.

The reduction in the T–count is perhaps the strongest
result that arises from our method. We show that,
on average, floating point synthesis of a small rota-
tion θ using a fixed number of digits of precision re-
quires a number of T gates that approximately scales
as 1.14 log2(1/θ). This is significant because an informa-
tion theoretic lower bound gives that O(log2(1/θ)) scal-
ing is optimal for the T–count required to synthesize a
small rotation [5]. Apart from achieving optimal scal-
ing, we actually can show that floating point synthesis
is superior to the best possible circuit synthesis method
that only uses single–qubit Clifford at T gates, which we
show requires a number of T gates that scales approxi-
mately as 2.98 log2(1/θ). To the best of our knowledge,
this is the first conclusive demonstration that synthesis
methods that use ancillas and classical feedback are more
powerful those that do not.

As a particular example of the performance of our
method, we compare the cost of synthesizing the rotation
e−iZπ/2

16

(which is used in the quantum Fourier trans-
form) using the {Clifford, T} gate library with our float-
ing point synthesis method to the best possible method
for synthesizing the rotation using only single–qubit Clif-
ford and T gates in Table 1. This shows that floating
point synthesis can provide advantages for synthesizing
even modestly small rotations that appear in important
quantum algorithms. Additionally, the classical algo-
rithm for finding the optimal quantum circuit (drawn
from the single–qubit Clifford and T library) is ineffi-
cient. This prevents the optimal synthesis method from
synthesizing rotations smaller than 10−16 rad. Floating
point synthesis suffers no such drawback.

We find that the T–depth and the online cost of float-
ing point synthesis for Rx(θ), for a fixed number of digits
of precision, scales as Θ(log log(1/θ)). In contrast, tra-
ditional circuit synthesis leads to T–depths and online
costs that scale as O(polylog(1/ε)), where ε is the abso-
lute error tolerance and ε < θ. This is significant because
it shows that massive parallelism can be used to expo-
nentially speed up the implementation of these rotations,
which means that performing the small rotations required
in quantum simulation algorithms or Shor’s algorithm on
a parallel quantum computer is far cheaper than existing
methods, such as the Solovay–Kitaev algorithm, would
suggest.

Now that we have discussed the improvements that
floating point synthesis can bring, we will now describe
in greater detail how our method achieves these per-
formance improvements. Our circuit for combining the
mantissa unitary, Um, with the exponent unitary, Ue, to
form the floating point representation is surprisingly sim-
ple and is given in Fig. 1.

|0〉 Um • U†m

|0〉 Ue • U†e

|ψ〉 −iX

Figure 1: Circuit for combining mantissa and exponent
parts of rotation angle

If both measurements yield zero, then the circuit will
implement

e−i tan
−1(tan2(sin−1(|Um1,0||Ue1,0|)))X ≈ e−i|Um1,0|2|Ue1,0|2X .

In all other cases the circuit implements eiXπ/4, which
can be inverted using Clifford operations. The success
probability for implementing small rotations using this
circuit is nearly 100%; furthermore, the cost of failure is
minimal using this circuit because errors can be corrected
using Clifford operations which are typically assumed to
be inexpensive in circuit synthesis problems. This means
that this circuit cannot possibly fail, although it may
have to be applied several times before success is achieved
in rare cases.

Our method for generating small rotations uses simi-
lar principles. The intuition behind the method is that it
generates a small rotation by (approximately) iteratively
squaring the rotation angle. To see how this works, let
us assume for simplicity that a circuit is known that im-
plements an X–rotation: exp(−iθX) for some value of θ.
The circuit in Figure 2 (a) then, upon measurement of
zero, enacts exp(−i tan−1(tan2(θ))) ≈ exp(−iθ2X) and
failure results in the application of a Clifford operation,
which can be corrected inexpensively. By using this cir-
cuit recursively d–times, it is possible to generate a ro-

tation that is approximately exp(−iθ2dX) when the out-
come of every measurement is zero. An example of this
recursively constructed circuit for d = 3 is given in Fig-
ure 2 (b). We take U = HTH, rather than choosing
it to be an X–rotation. This leads to the circuit imple-
menting, upon success, a rotation that is approximately
exp(−i8.67×10−4X). Continuing the same recursive pat-
tern to d = 9 results in a rotation that is smaller than
10−200 radians. Although the error correction process is
more involved in this case, it is conceptually identical,
and any fault can be corrected using Clifford operations.

The rotation angles constructed by this method with

U = HTH approximately scale as tan−1(tan2d(π/8)),
which means that recursing to a depth d ∈
Θ(log log(1/θ)) is necessary to achieve a rotation through
an angle of size θ or smaller. This method alone is insuf-
ficient to generate the exponent unitary because it does
not give precise control over the resultant rotation. We
increase the precision of the exponent unitary by com-
bining D ∈ Θ(log log(1/θ)) such rotations together to
form a rotation through an angle that is approximately

tan(π/8)4(2
D−1), for any D ≥ 1. This allows us to con-

struct an exponent unitary that shrinks as powers of



Mantissa Unitary (Floating Point Synthesis) Mean Variance 95% Confidence Relative
T–count Interval Error

HZTHZTHZTH 24.2 11.8 [21,33] 0.35
HTHTHTHTHTHTH 30.3 14.0 [27,39] 0.13

Circuit (Optimal single–qubit Synthesis) T–count – – Relative
Error

Non–Trivial Approximation With Smallest T–Count 57 0.17
Non–Trivial Approximation With 2nd Smallest T–Count 60 0.058

Table 1: This table compares the T–counts that result from synthesizing e−iZπ/2
16

using our floating point method
to those that arise from optimal synthesis using the gate library {Clifford,T} . V1 and V2 are the two shortest circuits

that provide a better approximation to the rotation than e−iZπ/2
16 ≈ 1. The mean and confidence intervals were

calculated using 500 samples.

|0〉 Rx(θ) • Rx(−θ)

|ψ〉 −iX

(a)

|0〉 U • U† |0〉 U • U† |0〉 U • U† |0〉 U • U†

|0〉 −iX • iX |0〉 −iX • iX

|0〉 −iX • iX

|ψ〉 −iX

(b)

Figure 2: Circuits for implementing small rotations by (approximate) repeated squaring of the rotation angle. (a)
shows the basic circuit for recursion depth d = 1. (b) shows the analogous circuit for recursion depth d = 3, where U
represents an arbitrary unitary operation (typically taken to be HTH in practice).

tan(π/8)4 ≈ 0.029, which enables the construction of a
floating point rotation of the form Rx(a × b−γ), where
b ≈ 0.029 and a ∈ (b, 1).

This work is significant because it provides a new ap-
proach to quantum circuit synthesis that is not only more
efficient than existing circuit synthesis approaches for
synthesizing small rotations, and because it reveals that
the cost of circuit synthesis depends more strongly on
the number of digits of precision required, rather than
the absolute precision. Our work also shows that the use
of ancillas allows rotations to be synthesized at lower cost
than the best possible ancilla–free single–qubit synthesis
algorithm that does and that parallelism can be exploited
to exponentially reduce the time required to synthesize
a given rotation. The performance improvements offered
by our floating point synthesis method are especially im-
portant because they can be used to substantially reduce
the costs of performing quantum simulation algorithms
and Shor’s algorithm fault–tolerantly, and in turn allow
us to get one step closer to the dream of performing a
practical quantum computation.
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