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Abstract. We exhibit a possible road towards a strong converse for the quantum capacity of degradable
channels. In particular, we show that all degradable channels obey what we call a “pretty strong” converse:
When the code rate increases above the quantum capacity, the fidelity makes a discontinuous jump from
1 to at most 1√

2
, asymptotically. A similar result can be shown for the private (classical) capacity.

Furthermore, we prove that if the strong converse holds for symmetric channels (which have quantum
capacity zero), then degradable channels obey the strong converse: The above-mentioned asymptotic jump
of the fidelity at the quantum capacity is then from 1 down to 0.
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Introduction.—Consider quantum communication via
the memoryless quantum channel N⊗n (for asymptoti-
cally large integer n), given by a completely positive and
trace preserving (cptp) map N : L(A′) → L(B), with
finite Hilbert spaces A′ and B. The quantum capacity
Q(N ) of N is defined as the maximum rate at which
quantum information can be transmitted asymptotically
faithfully over that channel, when using it n→ ∞ times.
To make this precise, for a given channel N , we need

to have encoding and decoding cptp maps

E : L(C) → L(A′), D : L(B) → L(C),

which together form a quantum code; the information
to be sent is subjected to the overall effective channel
D ◦ N ◦ E : L(C) → L(C).
There are many ways of defining mathematically the

notion that the output is a good approximation of the in-
put, and we refer the reader to the comprehensive treat-
ment of Kretschmann and Werner [2] for a discussion of
all the concomitant ways of defining the capacity and the
proof that asymptotically and for vanishing error they are
the same. Here, we will measure the degree of approxi-
mation between states by the fidelity, given as

F (ρ, σ) :=
∥

∥

√
ρ
√
σ
∥

∥

1
= max |〈ϕ|ψ〉|,

where the maximization is over all purifications |ϕ〉, |ψ〉
of ρ and σ, respectively. The error is then measured by
the purified distance P (ρ, σ) =

√

1− F (ρ, σ)2 between
any input state ρ and the output state σ = D(N (E(ρ))).
The maximum dimension |C| of C such that there exists
a quantum code for N⊗n with error ǫ, is denoted N(n, ǫ),
or more precisely N(n, ǫ|N ) if we want to refer explicitly
to the channel. The quantum capacity is now defined as

Q(N ) = inf
ǫ>0

lim inf
n→∞

1

n
logN(n, ǫ).
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A Shannon-style formula for the quantum capacity was
first given by Lloyd and later proved in full by Shor and
then Devetak: more precisely, in these papers the direct
(achievability) part was proven; earlier, Schumacher and
Nielsen had shown that the same quantity is an upper
bound. The formula is given in terms of the coherent
information

I(A〉B)ρ = −S(A|B)ρ = S(ρB)− S(ρAB),

where S(ρ) = −Tr ρ log ρ is the von Neumann entropy,
of a state ρAB = (id ⊗ N )φAA′

with a “test state” φ on
AA′. Namely,

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n),

with the single-letter expression

Q(1)(N ) = max
φ∈S(AA′)

{

I(A〉B)ρ s.t. ρ = (id⊗N )φ
}

.

Weak, strong and “pretty strong” converse.—The
fact that the coherent information gives an upper bound
on the quantum capacity of general channels has been
known since Schumacher and Nielsen. To be precise, they
showed that for any entanglement generating code with
code space C, for a channel N : L(A′) → L(B) with
error ǫ, there exists an input test state φAA′

such that
with ρAB = (id⊗N )φ,

(1− 2ǫ) log |C| ≤ I(A〉B)ρ + 1.

Hence, for ǫ < 1
2 ,

1

n
logNE(n, ǫ) ≤

1

1− 2ǫ

1

n
Q(1)(N⊗n) +

1

(1 − 2ǫ)n
, (1)

hence the result that for n → ∞ and ǫ → 0, the opti-
mal rate cannot exceed limn

1
n
Q(1)(N⊗n), which we know

is also asymptotically achievable, thanks to Lloyd-Shor-
Devetak.



However, for any non-zero ǫ > 0, the upper bound
in Eq. (1) is a constant factor away from the capacity,
which is the hallmark of a weak converse; it leaves room
for a trade-off between communication rate and error,
asymptotically.
If the quantum capacity Q(N ) is zero, Eq. (1) says

something a bit stronger, namely that NE(n, ǫ) ≤ O(1),
at least when ǫ < 1

2 . We call such a statement pretty
strong converse, i.e. a proof amounting to

lim sup
n→∞

1

n
logNE(n, ǫ) ≤ Q(N ),

at least for error ǫ below some threshold ǫ0 > 0. A strong
converse would require the above for all ǫ < 1.
Two simple examples of channels for which the strong

converse holds are PPT entanglement binding channels
(which have capacity 0) and the ideal channel.
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Figure 1: Schematic of a degradable quantum channel,
with the input state φ between A′ and the reference A,
the channel output and environment state ϕ and the state
ψ shared between A, F and the two copies of the original
environment, E and E′.

Main results.—In all the following statements, N :
L(A) → L(B) is a degradable channel; full proofs are
found in [3].

Theorem 1 For error ǫ < 1√
2
,

logN(n, ǫ) ≤ logNE(n, ǫ) ≤ nQ(1)(N ) +O
(

√

n logn
)

.

Together with the direct part we thus get:

Corollary 2

Q(N ) = lim
n→∞

1

n
logN(n, ǫ) = lim

n→∞
1

n
logNE(n, ǫ),

for any 0 < ǫ < 1√
2
. Compared to the original definition

this is simpler as we do not need to vary ǫ, and there is
convergence rather than reference to lim inf or lim sup.

Note that the error 1√
2

is precisely that achieved

asymptotically by a single 50%-50% erasure channel act-
ing on the code space, and of other suitable symmetric
(i.e., degradable and anti-degradable) channels.

For a given channel N , we denote the largest number
M of messages such that there exists a private classical

code with error ǫ and privacy δ (which is itself defined in
terms of the fidelity of the complementary channel N c,
see [3]) by M(n, ǫ, δ). The (weak) private capacity of N
is then defined as

P (N ) = inf
ǫ,δ>0

lim inf
n→∞

1

n
logM(n, ǫ, δ).

A capacity formula for P was determined by Devetak and
Cai, Winter and Yeung; like Q it is only known as a reg-
ularized characterization in general. By the monogamy
of entanglement, we know that P (N ) ≥ Q(N ), but in
general this inequality is strict. However for degradable
channels, it was proved by Smith that the private capac-
ity P (N ) equals the quantum capacity Q(N ) = Q(1)(N ),
and is hence given by a simple single-letter formula.

Theorem 3 For error ǫ and privacy δ such that ǫ+2δ <
1√
2
(e.g. ǫ = δ < 1

3
√
2
≈ .2357),

logM(n, ǫ, δ) ≤ nQ(1)(N ) +O
(

√

n logn
)

.

Corollary 4 For any ǫ, δ > 0 such that ǫ+ 2δ < 1√
2
,

P (N ) = lim
n→∞

1

n
logM(n, ǫ, δ).

Theorem 5 Let N : L(A) → L(B) be a degradable
channel, denoting its environment by E. Then there is an
associated symmetric channel M, such that N obeys the
strong converse for its quantum capacity, if M does (note
that by the no-cloning argument, Q(M) = 0). More pre-
cisely, there exists a constant µ such that with λ = 1−ǫ

5 ,

logNE(n, ǫ|N ) ≤ nQ(1)(N ) + µ

√

n ln
64n|A|2

λ2
+ 8 log

1

λ

+ logNE(n, 1− λ|M).

Conclusion.—While we have shown results for degrad-
able channels, we note that most channels are of course
not degradable (nor anti-degradable). For practically
all these others we do not have any approach to obtain
a strong or even a pretty strong converse. One might
speculate that other channels with additive coherent in-
formation, hence with a single-letter capacity formula,
are amenable, to our method. But already the very
attractive-looking class of conjugate degradable [1] chan-
nels poses new difficulties.
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