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Abstract. We give a simpler proof of one of the results of Kobayashi, Le Gall, and Nishimura [8], which shows
that any QMA protocol can be converted to a one-sided error protocol, in which Arthur and Merlin initially share a
constant number of EPR pairs and then Merlin sends his proof to Arthur. Our protocol is similar but somewhat
simpler than the original. Our main contribution is a simpler and more direct analysis of the soundness property
that uses well-known results in quantum information such as properties of the trace distance and the fidelity, and
the quantum de Finetti theorem.
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1 Introduction
The class MA was defined by Babai [2] as the natural

probabilistic extension of NP. In the definition of MA, the
prover (Merlin) gives a polynomial length ‘proof’ to the
verifier (Arthur), who then performs a polynomial-time
randomized computation and has to decide if an input x
is in a language L or not. The verifier is allowed to make
some small error in his decision, but he must satisfy two
conditions. If x ∈ L then he has to accept a valid proof
with high probability and otherwise he has to reject with
high probability. The probability that he rejects a valid
proof is called the completeness error and the probability
that he accepts an invalid proof is called the soundness
error. One of the first questions one may ask is whether
it is possible to get rid of one or both types of error. It
is easy to see that forcing the soundness error to zero
collapses MA to NP. So we can’t eliminate the soundness
error completely. On the other hand, it is known that
having perfect completeness, also called as one-sided error,
doesn’t change the power of MA [11].
Quantum Merlin-Arthur proof systems (and the class

QMA) were introduced by Kitaev [7] as the natural quan-
tum extension of MA and NP. QMA has natural com-
plete problems, such as the ‘k-local Hamiltonian’ prob-
lem [7], for k ≥ 2 [6], which can be thought of as a
quantum analogue of k-SAT. Interestingly, we don’t
know if QMA ?= QMA1 and it is a long-standing open
problem. Besides its inherent importance, giving a pos-
itive answer to it would imply that the QMA1-complete
problems are also complete for QMA. Most notable of
these is the ‘Quantum k-SAT’ problem [3], for k ≥ 3
[4], which is considered as a more natural quantum gen-
eralization of k-SAT than the k-local Hamiltonian prob-
lem. Unfortunately, all previous techniques used to show
one-sided error properties of quantum interactive proof
systems require adding extra messages to the protocol,
so they can’t be used directly in QMA. Moreover, Aaron-
son [1] proved that there exists a quantum oracle relative
to which QMA 6= QMA1. Another difficulty with QMA
is that the acceptance probability can be an arbitrary
irrational number. However, if certain assumptions are
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made about the maximum acceptance probability then
QMA can be made to have one-sided error [9]. There
are other variants of QMA where we also know that per-
fect completeness is achievable [5, 10]. The most recent
and strongest result towards proving the QMA vs. QMA1
question is by Kobayashi et al. [8]. They showed that we
can convert a QMA proof system to have one-sided error,
if we allow the prover and the verifier of the resulting pro-
tocol to share a constant number of EPR pairs before the
prover sends the proof to the verifier. The corresponding
class is denoted by QMAconst-EPR

1 . With this notation,
their result can be formalized as the following theorem.

Theorem 1 ([8]) QMA ⊆ QMAconst-EPR
1 .

The above result implies that QMA ⊆ QIP1(2).
Our contribution is a conceptually simpler and more

direct proof of Theorem 1, compared to the original one
in Ref. [8]. The algorithm of our verifier is also simpler,
but the main difference is in the proof of its soundness.
We believe that our proof helps to understand the result
better and we think that it may be simplified further.

2 The Idea Behind Our Proof
The basic idea to achieve perfect completeness is very

similar to Ref. [8]. For any input x, let us define
Mx

def= ΠinitV∗xΠaccVxΠinit, where Πinit is the projec-
tor that corresponds to projecting the private space of
the verifier to the all zero vector, Πacc is the projector
that corresponds to acceptance, and Vx is the circuit
of the verifier. Note that 0 ≤ Mx ≤ 1. It is easy to
see that the maximum acceptance probability of Vx is
‖Mx‖∞. The completeness property implies that if x ∈ L
then ‖Mx‖∞ ≥ 1/2. First, we modify Mx such that its
maximum eigenvalue is exactly 1/2. We do this by us-
ing an auxiliary qubit (stored in register S) and defining
M′

x
def= Mx⊗

(
|0〉〈0|SW∗

q |1〉〈1|SWq |0〉〈0|S
)
, where Wq

is a rotation about the x̂ axes in the Bloch sphere by
an angle of 2 arcsin

(√
q
)
and q

def= 1
2p ∈

[ 1
2 , 1

]
. It is

easy to see that ‖M′
x‖∞ = 1/2 and we can write M′

x as
M′

x = ∆Π∆, where projectors ∆ and Π are defined as
∆ def= Πinit ⊗ |0〉〈0| and Π def= V∗xΠaccVx ⊗W∗

q |1〉〈1|Wq.
Now, we construct a test that accepts with probability
1. Let the principal eigenvector of M′

x be denoted by
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|ω〉 ⊗
∣∣0̄〉

. The test receives this eigenstate as the input,
applies the unitary operator 1− 2Π, and performs a mea-
surement defined by operators {∆,1−∆}. If the state is
projected to ∆ the test rejects and otherwise accepts. It
is easy to see that with this input we never project to ∆.

However, a polynomial-time verifier may not be able to
perform this test, because it is possible that Wq can’t be
expressed by a polynomial-size quantum circuit and the
verifier may not even know the exact value of q. To over-
come this, the verifier expects the prover to give several
copies of the normalized Choi-Jamiołkowski representa-
tions of W∗

q , besides |ω〉. These can be used to perform
Wq and W∗

q . Since Wq is applied to |0〉, we can produce
Wq |0〉 by applying a suitable unitary on the C.-J. rep-
resentation. To perform W∗

q we use a procedure that is
similar to teleportation, which we call post-selection. Un-
fortunately, post-selection fails with probability 1/2, with
the honest prover, in which case we accept in order to
maintain perfect completeness. This is the main idea to
prove completeness and it is basically the same as in [8].
The harder part is to prove the soundness and this

is where our proof differs from the one in [8]. Let us
first give a high-level overview of the soundness proof
of Kobayashi et al. [8]. The main idea in their proof is
to perform a sequence of tests (i.e., quantum algorithms
with measurements at the end), which together ensure
that the registers that are supposed to contain the C.-J.
representations of the desired operator, actually contain
the C.-J. representations of some operator. Then they
show that doing the so-called ‘Reflection Simulation Test’,
the one just described above, with these states in the reg-
isters, will cause rejection with some constant probability.
The tests they use to ensure that the states are close
to C.-J. representations are the ‘Distillation Procedure’
(which is used to remove the entanglement between the
register of the original proof and the registers of the C.-J.
representations), the ‘Space Restriction Test’ (which tests
that the states are in a certain subspace), and the SWAP
Test. In their analysis they also use the de Finetti theo-
rem. We don’t describe these tests here, as the interested
reader can find them in [8]. We just list them in order to
compare them to the tools we use.
Our main idea behind the soundness proof is concep-

tually different. We don’t argue that the states are close
to C.-J. representations, but we analyze our version of
the Reflection Simulation Test directly. As we described
this test above, there are two measurements in it. The
first measurement is in the post-selection and the sec-
ond is given by {∆,1−∆}. So, roughly speaking, we
have to prove two things. First, we have to show that
post-selection can’t always fail, as otherwise we would
end up always accepting without reaching the end of the
procedure. In order to prove this, we only need two
assumptions. The first assumption is that the state be-
ing measured in the post-selection is separable, which is
guaranteed by the de Finetti theorem. The second as-
sumption is that the state of some registers is close to
being completely mixed, which is obviously true because
these registers hold parts of EPR pairs.

The second part of the soundness proof is to show that
conditioned on the post-selection being successful, we get
a state that projects to ∆ with constant probability. We
first argue that the private space of the verifier projects to
Πinit. This follows from simple properties of the trace dis-
tance. We then show that the state of register S projects
to |0〉〈0|. To prove this, we use the SWAP Test on the
registers that are supposed to contain the C.-J. represen-
tations. This ensures that the state of these registers are
close to the same pure state. We also use a simplified
version of the Space Restriction Test, which is not really
a test but an application of a super-operator on the above
mentioned registers. We can think of it as performing a
projective measurement that corresponds to the Space
Restriction Test and forgetting the outcome. Using the
above tools, it follows by direct calculation that the state
of S projects to |0〉〈0|.
Note that we don’t use the Distillation Procedure of

[8] and we use a simpler form of the Space Restriction
Test. Besides that, it’s worth mentioning that the tools
we use can be grouped into two sets based on whether we
use them in the analysis of the first or the second mea-
surement. For the analysis of the first measurement, we
need that some state is close to being maximally mixed,
while in the analysis of the second, we use the SWAP
Test and the above mentioned super-operator. This prop-
erty of the proof may be useful for simplifying it further,
because for example, to omit the SWAP Test, one would
only need to re-prove that the state of S projects to |0〉〈0|
in the last measurement.
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