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Abstract. We prove a monogamy relation for contextual inequalities by exploiting the principle of no-
disturbance. This implies that monogamy of quantum correlation exists beyond multipartite scenarios. A
necessary and sufficient condition is given using graph theoretic techniques to identify a set of mutually
exclusive measurements that exhibit monogamy.
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1 Motivation and summary

It is known that we cannot assign a value to all ob-
servables in quantum mechanics, which has an observ-
able consequence when there are several measurements
that can be jointly performed [1]. For example, sup-
pose we have four measurements A,B,C, and D, out
of which the pairs (A,B), (B,C), (C,D), and (D,A)
can be jointly measured. The outcomes of a jointly per-
formable measurements yield a joint probability distri-
bution such as p(a, b) for A and B, where the lower case
letters shall indicate the outcomes of the respective mea-
surements. Let each measurement return value 1 or −1.
If the outcomes of all the measurements were determined
prior to the time of measurement, the probability dis-
tributions p(a, b), p(b, c), p(c, d) and p(d, a) must satisfy
the Clauser-Horne-Shimony-Holt (CHSH) inequality [2],∣∣∣∑a,b,c,d=1,−1 ab · p(a, b) + bc · p(b, c) + cd · p(c, d) − da ·

p(d, a)
∣∣∣ ≤ 2. In quantum mechanics, the CHSH in-

equality can be violated up to 2
√

2, which is a signa-
ture of quantum correlation. The CHSH inequality ap-
plies to any physical setup where there are at least four
dichotomic observables satisfying the said joint measur-
ablility. Hence, for some physical system with more than
four measurements, multiple CHSH inequalities can be
defined, but this does not imply that all can be violated
simultaneously. In fact, such simultaneous violation for
certain combinations of CHSH inequalities is prohibited.

The impossibility of the simultaneous violation implies
that quantum correlation exhibits a monogamous behav-
ior. Monogamy of quantum correlation for other Bell
inequalities is also known [3] and found to be useful in
secure quantum key distribution [4] and interactive proof
systems [5]. Applications of monogamies go beyond these
multi-party protocols [6, 7].

Despite its usefulness, the monogamy based on Bell
inequalities applies only to spacelike separated measure-
ments. For other types of measurements, quantum cor-
relations can be identified by a broader class of inequal-
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ity known as contextual inequalities [8]. In this work,
we prove that monogamy also exists for quantum corre-
lations of general measurements by exploiting contextual
inequalities. Our proof of monogamy is based on the prin-
ciple of no-disturbance, which asserts that jointly per-
formable measurements should not influence each other.
We also formulate a necessary and sufficient condition for
a set of measurements to admit monogamy using graph
theoretic techniques.

2 Monogamy of KCBS-type inequalities

The Klyachko-Can-Binicoglu-Shumovsky (KCBS) in-
equality [8] is the simplest contextual inequality that was
introduced to test a nonclassical feature of a single (three-
level) system. The KCBS inequality uses five measure-
ments A1, . . . , A5 with outcomes ai = 0, 1. These mea-
surements are cyclically compatible (i.e., joint probability
distributions p(ai, ai+1) exist for i = 1, . . . , 5, where a6 is
identified with a1) and exclusive (i.e., aiai+1 = 0). These
measurements can be represented by the “commutation
graph” corresponding to a pentagon, where the vertices of
the pentagon graph represent the five measurements and
edges between any two vertices indicate that the two cor-
responding measurements can be jointly performed and
are mutually exclusive (see the pentagons in Fig. 1). The

KCBS inequality reads,
∑5

i=1 p(Ai = 1) ≤ 2.
Consider two sets of cyclically compatible and exclu-

sive measurements {Ai} and {A′i}. Each set gives rise
to a KCBS inequality. Let us assume that the triples
(A1, A

′
1, A

′
2) and (A4, A5, A

′
5) are each jointly measurable

and mutually exclusive. This scenario is represented by
the commutation graph in Fig. 1. Therefore, in addition
to p(ai, ai+1) and p(a′i, a

′
i+1), one can experimentally de-

termine probabilities p(a1, a
′
1, a
′
2) and p(a′5, a4, a5).

We then introduce the principle of no-disturbance,
which is formulated as follows. Suppose that one can
perform several different measurements A,B,C, etc. As-
sume that measurement pairs (A,B) and (A,C) can be
jointly performed, which implies the existence of the
joint probabilities p(a, b) and p(a, c). The principle of
no-disturbance is then the condition that the marginal
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Figure 1: Graphical representation of two KCBS inequal-
ities that satisfies the monogamy relation.

probability p(a) calculated from p(a, b) is the same as
that of calculated from p(a, c), i.e.,

∑
b p(A = a,B =

b) =
∑

c p(A = a,C = c) = p(A = a). In the KCBS
scenario, the no-disturbance principle is satisfied by set-
ting p(A1 = 1) = p and p(A′5 = 1) = q for all mea-
surement combinations that are jointly measurable and
include A1 or A′5. Mutual exclusiveness implies that
p(A′1 = 1) + p(A′2 = 1) ≤ 1− p and p(A4 = 1) + p(A5 =
1) ≤ 1 − q in addition to p(Ai = 1) + p(Ai+1 = 1) ≤ 1
and p(A′i = 1) + p(A′i+1 = 1) ≤ 1, together which imply
the monogamy relation

5∑
i=1

p(Ai = 1) +

5∑
i=1

p(A′i = 1) ≤ 4. (1)

Clearly, only one KCBS inequality out of the two sets
{Ai} and {A′i} can be violated. Similar monogamies hold
for any inequalities of this kind [9].

Having illustrated the method for deriving monogamy
relations for contextual inequalities we now proceed to
formulate it using some graph-theoretic notions.

Proposition 1 A commutation graph G representing a
set of n measurements (for any n) admits a joint proba-
bility distribution for these measurements if it is a chordal
graph.

A chordal graph is a graph that does not contain an in-
duced cycle of length greater than 3.

We now proceed to explicitly identify the commutation
graphs that give rise to monogamy relations for a given
set of n KCBS-type contextual inequalities (with classical
bound R).

Proposition 2 Consider a commutation graph repre-
senting a set of n KCBS-type contextual inequalities each
of which has classical bound R. Then this graph gives rise
to a monogamy relation using the outlined method if and
only if its vertex clique cover number is n ∗R.

The vertex clique cover number is the minimal number of
cliques required to cover all the vertices of the graph. The
above Proposition can be extended to the case when when
one is interested in the monogamy of a set of nk different
contextual inequalities with different classical bounds Rk,
with

∑
k nk = n. Then the condition becomes that the

vertex clique cover number equal
∑

k nkRk.

The argument so far proves that the monogamy re-
lation (1) exists provided that there are measurements
obeying the constraints represented by the commutation
graph. In Ref. [10], we present a set of projectors in a
four-dimensional real space that meets these constraints.
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S. Shumovsky. Simple Test for Hidden Variables
in Spin-1 Systems. Phys. Rev. Lett., 101(2):020403,
2008.
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