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Abstract. Positive Operator Valued Measures (POVMs) are of great importance in quantum information
and quantum computation. Using the well-known spherical tensor operators, we propose a scheme of
constructing a set of N−qubit POVMs operating on the symmetric state space of dimension N + 1 which
is a subspace of the 2N dimensional Hilbert space. By invoking Neumark’s theorem we show for a 2-qubit
case, that POVM’s in the 3 dimensional symmetric space can be physically realized as projection operators
in the larger 4-dimensional Hilbert space.
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1 Introduction

Positive-Operator-Valued-Measures(POVMs), are the
most general class of quantum measurements, of which
von Neumann measurements are merely a special case.
The rapidly developing quantum information theory has
generated a lot of interest in the construction and ex-
perimental implementation of POVMs [1]. Some tasks
that cannot be performed using projective measurements
can be completed using POVMs. For example, a set of
non-orthogonal states cannot be distinguished using pro-
jective measurements, but can be discriminated unam-
biguously using POVMs [2]. This concept can be used
to construct POVMs in conclusive teleportation [3]. Re-
cently, POVMs instead of usual projective measurements
has been utilized to realize some quantum communica-
tion protocols [4]. In the context of Remote State Prepa-
ration (RSP), POVM has already attracted a lot of at-
tention [5]. Recently it has been shown [6] how quantum
filtering can be performed in the POVM setting.

In this paper we introduce the most general method
of constructing POVMs in terms of detection operators,
on N + 1 dimensional symmetric space which is a sub-
space of 2N dimensional Hilbert space in which N qubits
reside. A set of N -qubit pure states that respect per-
mutational symmetry are called symmetric states. Sym-
metric space can be considered to be spanned by the
eigen states |jm >,−j ≤ m ≤ +j of angular momentum
operators J2 and Jz, where j = N/2. A large number
of experimentally relevant states [7] possesses symmetry
under particle exchange, which significantly reduces the
computational complexity. The detection operators are
found to be the well known irreducible tensor operators
τk
q which are used for the standard representation [8] of

spin density matrices. Further, by invoking Neumark’s
theorem [9], we demonstrate the physical implementa-
tion of our symmetric two-qubit POVMs as projection
operators in the two qubit tensor product space.
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2 Operator representation in terms of ir-
reducible tensors

The systematic use of tensor operators was first sug-
gested by Fano[8]. In this representation, any Hermitian
matrix ‘H’ in the symmetric space of dimension N +1 in
terms of spherical tensor parameters can be expressed as

H( ~J) =
2j∑

k=0

+k∑
q=−k

hk
q τ

k†

q ( ~J) (1)

where τk
q
′s (with τ0

0 = I , the identity operator) are
the irreducible (spherical) tensor operators of rank ‘k’ in
the (2j + 1) dimensional spin space. The operators τk

q
′s

of rank ’k’ and projection ’q’ are homogeneous polyno-
mials constructed out of angular momentum operators
Jx, Jy, Jz. In particular, following the well known Weyl
construction [10] for τk

q
′s in terms of angular momentum

operators, we have

τk
q ( ~J) = Nkj ( ~J · ~5)k rk Y k

q (r̂) , (2)

where Nkj are the normalization factors and Y k
q (r̂) are

the spherical harmonics.
The τk

q
′s satisfy the orthogonality relations

Tr(τk†

q τk
′

q′
) = (2j + 1) δkk′ δqq′ (3)

and
τk†

q = (−1)qτk
−q ,

Here the normalization has been chosen so as to be in
agreement with Madison convention [11]. The matrix
elements of the tensor operator are given by

〈jm′|τk
q ( ~J)|jm〉 =

√
2k + 1 C(jkj;mqm′) (4)

where C(jkj;mqm′) are the Clebsch-Gordan coefficients.

3 Positive Operator valued Measure

The spherical tensor operators can be used as detection
operators in constructing a set of POVMs for a symmetric



space as

Ek
q =

τk
q τ

k†

q

N2
, (5)

satisfying the properties of partition of unity, hermiticity
and positivity.

3.1 Partition of unity

Since Ek
q ’s add up to unity i.e.,

∑
kq E

k
q = 1, we have

〈jm|
∑
kq

τk
q τ

k†

q

N2
|jm′〉 = δmm′ (6)

with
N2 =

∑
k′q′

[k′]2C(jk′j;m− q′ q′m)2 (7)

3.2 Hermiticity

Since
(τk

q τ
k†

q )† = (τk†

q )†τk†

q = τk
q τ

k†

q , (8)

Ek†

q = Ek
q for all k, q

3.3 Positivity

We can also show that 〈ψ|Ek
q |ψ〉 ≥ 0 for all k, q and

all 〈ψ| ∈ H, i.e., Ek
q are positive operators.

It can be shown that the above POVMs do not
form an orthogonal set.
If we perform the measurement and do not record the
results then the post measurement state is described by
the density operator,

ρf = Ek
q ρ

iEk
q (9)

4 Neumark’s Theorem

Next, we address the question, can a POVM Ek
q acting

on a symmetric space, be interpreted as resulting from a
measurement on a larger space? The answer is yes. For
eg., Consider one of the POVM’s, namely

E1
1 =

1
3

 1 0 0
0 1 0
0 0 0

 (10)

in the symmetric |1m〉 basis, m = 1, 0,−1. The relation-
ship between |1m > basis and the computational basis is
such that |11〉 = | ↑↑〉, |10〉 = |↑↓〉+|↓↑〉√

2
and |1−1〉 = | ↓↓〉.

The Matrix representation of E1
1 in the 2-qubit state

space of dimension 4, in the computational basis
| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉 is given by

ε11 = U†(E1
1 ⊕ 0)U, (11)

where ⊕ represents the direct sum and

U =


1 0 0 0
0 1√

2
1√
2

0
0 0 0 1
0 1√

2
− 1√

2
0

 , (12)

is the unitary matrix which transforms computational ba-
sis to the angular momentum basis |11〉, |10〉, |1−1〉, |00〉.
Thus

ε11|ψ〉 =
1
3


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0




a
b
c
d

 =
1
3


a

b+c
2

b+c
2
0


(13)

where

|ψ〉 = a| ↑↑〉+b| ↑↓〉+c| ↓↑〉+d| ↓↓〉; |a|2+|b|2+|c|2+|d|2 = 1
(14)

is the most general pure state in the 2-qubit state space.
Observe that the resultant state is a symmetric state
and is given by 1

3a|11〉 + 1
3
√

2
(b + c)|10〉. Thus Ek

q ’s
project vectors in the 4-dimensional Hilbert space onto
3-dimensional symmetric space. Note that ε11 can be ex-
pressed in terms of the well-known Pauli spin matrices,
given by

ε11 =
1
6
[
(I1 ⊗ I2) +

1
2
(σz(1)⊗ I2) +

1
2
(I1 ⊗ σz(2))

+
1
2
(σx(1)⊗ σx(2)) +

1
2
(σy(1)⊗ σy(2))

]
. (15)
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