
Qubit Arrangement Problems for Topological Quantum Computation

Shigeru Yamashita1 ∗ Shinnosuke Hiratsuka1 † Simon Devitt2 ‡ Kae Nemoto2 §

1 College of Information Science and Engineering, Ritsumeikan University
2 National Institute for Informatics

Abstract. We formulate the logic level circuit optimization problem for topological quantum computation.
Observing the properties of brading operations in topological quantum computation, we formulate our
problem as to find a good gate order and a good initial qubit one-dimensional layout in the conventional
quantum circuit model. The optimization of initial qubit order is NP-hard, thus we then propose an
efficient optimization method by utilizing an algorithm for clique finding. Moreover, we show that using
two dimensional qubit layouts can optimize the circuit further, and propose a heuristic to find a good qubit
layout order for topological quantum computation.
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1 Introduction

To realize a quantum computation, we need to have
fault-tolerant quantum gates, i.e., quantum gates with
a very low operational error rate. We use quantum er-
ror correction codes for that purpose in the conventional
quantum circuit model.
Topological quantum computation [1] is another possi-

ble way to have fault-tolerant quantum gates. Recently,
this model of quantum computation has been considered
to be much more promising than conventional model of
quantum circuits in terms of error corrections. The way
of encoding logical qubits in topological quantum com-
putation is very different from the conventional quantum
circuit model, and thus the logical primitive operations
are also very different. The primitive operation called
a braiding operation can be seen as drawing a line be-
tween logical qubits with some special rules. We need
to consider such special rules when we design a quantum
circuit. Therefore, it should be difficult to utilize the con-
ventional quantum circuit design naively, and thus it is
desirable to have a dedicated quantum circuit optimiza-
tion method in logic level with considering special rules
of braiding operations.

2 Our Contribution

In our work, we formulate a quantum circuit opti-
mization problem especially for the topological quantum
computation. First we observe that our design strategy
should be different from the conventional quantum cir-
cuit design as follows. To understand the difference, let
us see the circuit in Fig. 1. In the conventional quan-
tum circuit model, we often assume that multiple CNOT
gates can be performed at the same time if their inter-
acting qubits are different, and the depth of a circuit is
calculated based on this assumption. For example, we
can perform g1 and g2 in the circuit in Fig. 1 at the same
time. The important observation here is that such a re-
lation of two gates does not change even if we change
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the qubit order (qubit layout). Thus, in the conventional
quantum circuit design, we do not need to consider the
qubit order.
Contrary to the above, in topological quantum compu-

tation, we can assume any two gates can be performed
parallelly only if their gate symbols on the circuit dia-
gram are not overlapped in the horizontal direction. (The
rigorous discussion can be found in the attachment.) For
example, we cannot perform g1 and g2 in the circuit in
Fig. 1 at the same time unlike the conventional circuit
model.
Therefore, the qubit orders (i.e., qubit layout) may be

really important for the computation time for topological
quantum computation. Our problem is intuitively to find
a good qubit order for a given circuit as shown in Fig. 1.
By our proposed method, we can optimize the circuit
in Fig. 1 to the one in Fig. 2. Here, the two circuits are
logically equivalent but with different initial qubit orders.
The number of the logical time steps in the circuit in
Fig. 1 is 8, which is optimized by our method to be 3 as
shown in Fig. 2.
Moreover we consider two-dimensional qubit layout. In

one-dimensional qubit layout, it can be shown that one
single qubit order does not allow us to perform the above
circuit with two time steps. For example, at the one-
dimensional qubit layout of the qubit order as shown in
Fig. 2, the three gates, g4, g1 and g5 (or g7), are over-
lapped with each other; we need at least three time steps.
In contrast, if we layout the qubits two-dimensionally as
shown in Fig. 2, we can perform the circuit with only two
logical time steps. This is because the two-dimensional
qubit layout allows us to perform g1, g2, g3 and g4 at the
same time as shown on the left-hand side of Fig. 3. Our
proposed method can find such a good two-dimensional
qubit layouts efficiently. As far as we know, our method
is the first systematic synthesis method for topological
quantum circuits by considering two-dimensional qubit
layouts. Both of our optimization methods for one-
dimensional and two-dimensional layouts utilize clique
finding efficiently.
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Figure 1: An Initial Circuit: 8 Steps.
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Figure 2: The Optimized One-Dimensional Qubit Layout
by Our Method: 3 Steps.

3 Optimization Algorithms for Qubit

Arrangement Problems

The k-th CNOT gate in a given CNOT-based circuit
is denoted by gk, and the target and the control qubits
of gate gk are denoted by T (gk) and C(gk), respectively.
First we introduce a terminology “overlapped” as follows.

Definition 1 A pair of consecutive gates gk+1 and gk
are said to be overlapped with a given qubit order if

the group of qubits placed between T (gk) and C(gk), and
the group of qubits placed between T (gk+1) and C(gk+1)
do not have a common qubit with the given qubit order.

If gk+1 and gk are not overlapped, they are said to be

non-overlapped with each other.

Our algorithm for one-dimensional layouts is as fol-
lows. Let Q be a given circuit. In our method for one-
dimensional layouts, we maintain a set of qubit orders,
denoted by P . The initial P is the set of all the possible
qubit orders. Let the current target circuit to find paral-
lel gates with the largest group size be C. The initial C
is set to Q.
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Figure 3: The Optimized Two-Dimensional Qubit Layout
by Our Method: 2 Steps.

Step 1. Construct a graph where each node corresponds
to each gate in C, and we have an edge between two
nodes iff the corresponding two gates in C are ad-
jacentable in the given Q and non-overlapped with
at least one qubit order in P .

Step 2. Find a maximum clique in the graph con-
structed at Step 1. (If there are more than one max-
imum clique, just choose one of them randomly.)

Step 3. Let G be the set of gates corresponding to the
nodes in the maximum clique at Step 2.

Step 4. Let P ′ be the set of qubit orders such that all
the gates inG can be non-overlapped with the qubit
orders. Update P as P ∩ P ′. Also update C by
removing all the gates of G from C. If C becomes
empty, finish the procedure and the solution can
be one of the qubit orders in P . Otherwise, goto
Step 1 with the updated C and P .

In the case of two-dimensional layouts, we need to
modify the terminology “overlapped” as follows: A pair
of consecutive gates gk+1 and gk are said to be over-

lapped with a given two-dimensional qubit layout if
the line between T (gk) and C(gk) and the line between
T (gk+1) and C(gk+1) cross each other in the given two-
dimensional qubit layout. If gk+1 and gk are not over-
lapped, they are said to be non-overlapped with each
other.
Let C be a given circuit, and our algorithm for two-

dimensional layouts is as follows.

Step 1. Construct a graph where each node corresponds
to each gate in C, and we have an edge between
two nodes iff the corresponding two gates in C are
adjacentable.

Step 2. Partition the graph obtained at Step 1 into min-
imal number of cliques, C1, C2, · · · , Cm. (This is
called a clique cover problem.)

Step 3. Divide the gates in C into groups,
G1, G2, · · · , Gm from the beginning of the circuit
such that each Gi corresponds to one of the cliques
obtained at Step 2. In other words, the original
circuit is equivalent to performing the gates in
G1, G2, · · · , Gm in this order.

Step 4. For eachGi there is at least one one-dimensional
qubit order such that all the gates in Gi can be
performed at the same time. Let the condition of
such a qubit order for Gi be Condi. Find a two-
dimensional qubit layout such that as many Condi
as possible can be satisfied.
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