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Abstract. Every choice of orthonormal frame in the Hilbert space of a bipartite system corresponds
to one set of all mutually commuting density matrices or, equivalently, to the classical state space of the
system; the quantum state space itself can thus be profitably viewed as an orbit of classical state spaces,
one copy for each orthonormal frame. We exploit this connection to study the relative volume of separable
states of a quantum bipartite system. While the two-qubit case is analysed in considerable detail, for
higher dimensional systems we fall back on Monte Carlo.
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States of a quantum system are represented by den-
sity operators (positive semidefinite unit-trace operators
acting on a Hilbert space of dimension d). The set of all
density operators of a system constitutes a convex sub-
set of Rd 2−1; this is the state space of the system. An
understanding of the geometry of the state space is of
fundamental importance. The state space of a two-level
system or qubit is the well-known Bloch (or Poincaré)
sphere, while the generalized Bloch sphere of higher di-
mensional system is much richer, and more complex to
visualize and analyze. When d is non-prime, it is possible
that the system is composite, i.e. made up of two or more
subsystems. For example a 4 dimensional system could
be a single quantum system with four levels or classical
states, or a pair of two-level systems (qubits). In the case
of composite systems, the issue of separability becomes
important, entanglement being a characteristic feature of
quantum theory, and a key resource in quantum informa-
tion processing.

During a recent reading of the seminal paper by
K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewen-
stein [1] on this subject—a paper which we had read sev-
eral times in the past—the following passage therein cap-
tured our attention: “Our numerical results agree with
these bounds, but to our surprise the probability that a
mixed state ρ ∈ H2×H2 is separable exceeds 50%.” Their
paper established an interesting analytical lower bound
for the probability of separability (fractional volume of
separable states) of a two-qubit system to be 0.302, and
on numerical (Monte Carlo) estimation they found it to
be definitely above 50%. An attempt to remove this ‘sur-
prise’ element was the humble beginning of the study
whose results are reported here.

Compared to the quantum state space, the classical
(statistical) state space of a d-state system is extremely
simple. Indeed, it is the regular simplex ∆d−1 ⊂ Rd−1,
the convex body defined by d equidistant vertices. The
quantum state space itself can be viewed as the union
of an orbit of simplices ∆d−1, and this fact is funda-
mental to both our point of view and analysis. Mutu-
ally commuting density operators constitute a simplex,
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Figure 1: Separable regions for different values of (θ, α).
The tetrahedron represents the set of all density matri-
ces with same eigenvectors. The volume enclosed by
the shaded surface shows the separable region for the
given frame. We find that the separable set is the entire
tetrahedron for (θ, α) = (0, 0) and is an octahedron for
(θ, α) = (π/4, π/4) as expected. For other values of (θ, α)
we find the separable set to be the tetrahedron limited
by planes and conic surfaces.

and change of basis [determined by an unitary matrix
U ∈ SU(d)] labels the points along the orbit of simplices.
It is true that simplices at two distinct points on the orbit
are not necessarily non-overlapping. But such overlap is
obviously of zero measure, since only density operators
with degenerate spectra can sit in two distinct simplices.

For a d1 × d2 system the relevant simplex is ∆d1d2−1,
the dimension of the orbit is d1d2(d1d2− 1). Separability
issues are invariant under local unitaries Ud1 × Ud2 , so
it is sufficient to restrict attention to locally inequivalent
simplices. This removes d 2

1 + d 2
2 − 2 parameters, and

the orbit of locally inequivalent simplices has dimension
(d 2

1 −1)(d 2
2 −1)−d1d2 + 1. We begin with the two-qubit

system, so the simplex ∆3 is the tetrahedron. Each choice
of orthonormal basis, frame hereafter, corresponds to a
∆3 and we are interested in frames which are not locally
equivalent—a 6-parameter family. The fractional separa-
ble volume f = Vsep/Vtot is computed for each frame or
tetrahedron and is shown to be in the range 0.5 ≤ f ≤ 1,
the lower limit 0.5 obtaining if and only if all the four vec-
tors of the frame are maximally entangled, and for the
upper limit they are products. It thus becomes ‘obvious’
that the ensemble average of fractional volume would be
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Figure 2: (a) Volume of separable states as a function of the two entanglement parameters sin 2θ, sin 2α in the case of
the two-parameter family. We find that the volume is minimum for (π/4, π/4) which corresponds to the Bell-diagonal
frame. (b) Top panel shows mean and minimum of separable volume over frames as a function of Hilbert space
dimension, showing an exponential decrease. It also shows the lower bounds given by [1] as solid line, and that given
by [2] as dashed line. Bottom panel shows the corresponding mean frame entanglement with different symbols for
different dA for fixed dAdB .

strictly greater than 0.5.
For clarity of presentation, we begin with a special two-

parameter family of locally inequivalent frames which are
obtained as linear combinations of the computational ba-
sis pair {|00〉, |11〉} and the pair {|01〉, |10〉}, with no su-
perposition across pairs:

|Ψ1〉 = cos θ |00〉+ sin θ |11〉,
|Ψ2〉 = sin θ |00〉 − cos θ |11〉,
|Ψ3〉 = cosα |01〉+ sinα |10〉,
|Ψ4〉 = sinα |01〉 − cosα |10〉.

(1)

These frames can be viewed, in an obvious manner, as a
two-parameter generalization of the Bell or magic frame
of maximally entangled states. In Fig. 1 we picture the
separable region (inside the tetrahedron) for a few values
of (θ, α). The boundaries of the separable region consist
entirely of conic surfaces and planes, and this fact has
simple analytic basis. The Bell or magic frame corre-
sponds to θ = α = π/4 (as is well known the separable
region is an octahedron in this case), also shown in the
figure. We numerically calculate the volume of the sepa-
rable region for all values of (θ, α), and the result is pic-
tured in Fig. 2 (a). The volume decreases with increasing
‘entanglement of the frame’.

A canonical parameterization of the full six-parameter
family of locally inequivalent frames, as also the distri-
bution of fractional volume of separable states over these
frames, has been obtained.

To gain quick insight into the situation in respect
of higher dimensional systems we perform Monte Carlo
sampling following the scheme in [1]. We show in
Fig. 2 (b) the mean and minimum separable volume
and mean frame entanglement as a function of Hilbert

space dimension. Consistent with earlier work [1], we
find that the separable volume decreases exponentially
with Hilbert space dimension. However we point out
that this exponential decrease in the volume of separa-
ble states with increasing Hilbert space dimension im-
plies an increase in ‘effective radius’ for separable states.
This provides some new insights, as earlier results have
claimed a decreasing lower bound on this effective ra-
dius [3]. More importantly, there exists one claim that
an upper bound on this effective radius also decreases
with increasing Hilbert space dimension [3] for the case
of quantum systems composed of many qubits.

Our approach generalizes to higher dimensional sys-
tems, wherein qualitatively new features emerge. For
instance, for the qutrit-qutrit systems not all frames of
maximally entangled states are locally equivalent and,
consequently, they lead to unequal fractional volume of
separable states and, perhaps surprisingly, the Bell frame
is not the one to result in minimum separable volume.
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