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Abstract. In this article, by treating minimum error state discrimination as a complementarity problem,
we obtain the geometric optimality conditions. These can be used as the necessary and sufficient conditions
to determine whether every optimal measurement operator can be nonzero. Using these conditions and an
inductive approach, we demonstrate a geometric method and the intrinsic polytope for N-qubit mixed-state
discrimination. When the intrinsic polytope becomes a point, a line segment, or a triangle, the guessing
probability, the necessary and sufficient condition for the exact solution, and the optimal measurement
are analytically obtained. We apply this result to the problem of discrimination to arbitrary three-qubit
mixed states with given a priori probabilities and obtain the complete analytic solution to the guessing
probability and optimal measurement.
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The goal of quantum state discrimination is to discrim-
inate the quantum states of a given set as well as possible.
In fact, in classical physics, every state can be orthogo-
nal to each other and therefore perfectly distinguished
[1]. However, in quantum physics, a state cannot be
perfectly discriminated because of the existence of non-
orthogonal states [2, 3, 4]. Quantum state discrimination
[5] is classified into minimum error discrimination, orig-
inally introduced by Helstrom [2],unambiguous discrimi-
nation [6, 7, 8], and maximum confidence discrimination
[9]. The purpose of minimum error strategy is to find the
optimal measurement and the minimum error probabil-
ity (or guessing probability) for arbitrary N qudit-mixed
quantum states with arbitrary priori pobabilities. In the
case of N = 2, regardless of the dimension, the Helstrom
bound [2] gives an analytic solution to the problem. In
the N = 3 case, the analytic solution for the pure qubit
states is provided by [10, 11]. In [12] the analytic so-
lution for the mixed qubit states is considered without
the necessary and sufficient conditions for a solution. In
other words, full understanding for the discrimination of
3 qubit-mixed quantum states has not yet been provided.

The von Neumann measurement [13] is used for op-
timal measurement for linearly independent quantum
states . However, if the given quantum states are linearly
dependent, the von Neumann measurement may not
be optimal. Therefore, the Positive-Operator-Valued-
Measure (POVM ) should be used for arbitrary quan-
tum states. From the point where POVM can be used
as the measurement and the probability to guess the
quantum states correctly becomes convex, the minimum
error discrimination problem may be solved by convex
optimization[14]. Other efforts to solve it have been made
using the dual problem [15] or complementarity problem
[16]. By applying qubit state geometry to the optimality
conditions for the measurement operators and comple-
mentary states, Bae [17] obtained a geometric method
to find the guessing probability and the optimal mea-
surement for some special cases. However, they did not
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include the case where the optimal measurement can-
not be POVM when every element is nonzero. In this
paper, we show that the case where the optimal mea-
surement cannot be POVM and where every element is
nonzero can be understood through the existence of pa-
rameters satisfying the geometric optimality conditions
[16]. We also clarify the meaning of these geometric con-
ditions. Through the conditions and an inductive ap-
proach, we propose a method to discriminate arbitrary
N qubit-mixed quantum states with arbitrary a priori
probabilities. In this method, we define the intrinsic
polytope for discrimination problems. When the poly-
tope becomes a point, line segment, or triangle, we find
the guessing probability, the necessary and sufficient con-
dition for the exact solution, and the optimal measure-
ment analytically. By the number of the extreme points
for the intrinsic polytope and the geometric optimality
conditions, we can provide a complete analysis for dis-
crimination of the 3 qubit-mixed state. We also obtain
its guessing probability and optimal measurement.
First of all, let us briefly explain the notations. Let qi

and ρi(i = 1, · · · , N) be the priori probability and d× d
density matrix, where d and N denote the dimension and
number of states to be discriminated. Hereafter, qi is or-
dered by qi ≥ qi+1. When {Mi}N

i=1 is used for measure-
ment to {qi, ρi}N

i=1, the probability to guess the quantum
states correctly becomes Pcorr =

∑N
i=1 qitrρiMi. The

goal of the minimum error state discrimination is to ob-
tain the maximum of Pcorr, called the guessing probability
Pguess, using POVM.
Here is our first lemma and corollary[18].

Lemma 1 (geometric KKT conditions) The fact
that every optimal POVM element can be nonzero is
equivalent to the fact that {ri, ~wi}N

i=1 satisfying the
geometric KKT conditions exists.

Corollary 2 If the number of the extreme points to
P{qi, ρi}N

i=1 is one, every optimal POVM element except
M1 is zero, and the guessing probability is q1.

Furthermore we can obtain another corollary.



Corollary 3 If the number of the extreme points to
P{qi, ρi}N

i=1 is two, the guessing probability becomes

Pguess = max
i 6=j

1
2

(
qi + qj + ‖qiρi − qjρj‖1

)
. (1)

When a and b(> a) are the indices giving the optimal
value, if ‖qa~va − qb~vb‖2 < qa − qb, every optimal POVM
element except M1 is zero. However, if ‖qa~va − qb~vb‖2 ≥
qa − qb, the optimal POVM elements are given as

Ma =
1
2

[
I2 +

(
qa~va − qb~vb

‖qa~va − qb~vb‖2

)
· ~σ

]
,

Mb =
1
2

[
I2 +

(
qb~vb − qa~va

‖qa~va − qb~vb‖2

)
· ~σ

]
,

Mi = 0 ∀i 6= a, b. (2)

From this we can have the following lemma.

Lemma 4 (three quantum states discrimination)
When arbitrary three quantum states {qi, ρi}3

i=1 are given
with given priori probabilities, the guessing probability
can be classified into the following three cases: (i) When
the number of the extreme points to P{qi, ρi}3

i=1 is one,
the guessing probability becomes q1 by the corollary 2.
(ii) When the number of the extreme points is two or
three and the following conditions

(i) l1 > e1, l2 > e2,

(ii)
l1 cos θ1 + e1

l1 + e1
<

l1 − e1

l2 − e2
,

l2 cos θ1 + e2

l2 + e2
<

l2 − e2

l1 − e1
,

(iii)
l21 − e2

1

2(l1 cos χ + e1)
<

l1 sin θ2

sin(χ + θ2)
, (3)

cannot be satisfied, the guessing probability can be found
by the corollary 3. (iii) When the number of the extreme
points is three and the condition of Eq.(3) is satisfied, the
guessing probability can be given by

Pguess = q1 +
l21 − e2

1

2(l1 cos χ + e1)
. (4)
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