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Abstract. Hardy’s nonlocality argument, which establishes incompatibility of quantum theory with
local-realism, can also be used to reveal the time-nonlocal feature of quantum states. For spin- 12 systems,
the maximum probability of success of this argument is known to be 25%. We show that this maximum
remains 25% for all finite-dimensional quantum systems with suitably chosen observables.
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For testing the existence of superposition of macro-
scopically distinct quantum states, Leggett and Garg [1]
put forward the notion of macrorealism. This notion rests
on the classical paradigm [2, 3] that (i) physical prop-
erties of a macroscopic object exist independent of the
act of observation and (ii) any observable can be mea-
sured non-invasively, i.e., the ideal measurement of an
observable at any instant of time does not influence its
subsequent evolution.

These original assumptions of [1], namely the assump-
tions of ‘macroscopic realism’ and ‘noninvasive measur-
ability’, have been made stronger to derive a tempo-
ral version of the Bell-CHSH inequality irrespective of
whether the system under consideration is macroscopic
or not [4, 5]. Unlike the original Bell-CHSH scenario [6]
where correlations between measurement results on two
distantly located physical systems are considered, tem-
poral Bell-CHSH inequalities are derived by focusing on
one and the same physical system and analyzing the cor-
relations between measurement outcomes at two different
times under the following two assumptions: (i) Realism:
The measurement results are determined by hidden prop-
erties of the particles carrying prior to and independent
of observation and (ii) Locality in time: The result of
measurement performed at time t2 is independent of any
measurement performed at some earlier or later time t1.

These inequalities get violated in Quantum Mechan-
ics and thereby give rise to the notion of entanglement
in time which has been a topic of current research in-
terest [4, 3, 7, 8, 10, 9, 11]. Interestingly, the original
argument of Hardy, which establishes the incompatibil-
ity of Quantum Theory with the notion of local-realism
[12, 13], can also be used to reveal this time-nonlocal
feature of quantum states [7, 8, 9]. Recently, Hardy’s ar-
gument has been studied in the case of two observables
setting at each time of measurement [7, 8]. It has been
shown there that the maximum probability of success of
this argument can assume up to 25% for a spin- 12 particle
[7, 8, 9], the experimental verification of the above fact
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followed soon after in [9].
Hardy’s argument was generalized by Clifton and Nie-

mann [14] to show the spatial nonlocal feature of two
spin-s systems. This argument was later reduced to its
minimal form by Kunkri and Choudhary [15]. Inspired
by [15], we write below the temporal version of Hardy’s
nonlocality conditions for d-level systems.

Consider a single d-level physical system on which an
observer (Alice) chooses to measure one of two observ-
ables Â1 or Â2 at time t1, whereas at a later time t2,
another observer (Bob) [16] measures either of the two
observables B̂1 and B̂2. Consider now the following set
of conditions on the probabilities for Alice and Bob to
obtain outcomes ai and bj when measuring observables

Âi and B̂j respectively; i, j ∈ {1, 2}:

prob(Â1, a1 ; B̂1, b1) = 0, (1)

prob(Â1,¬a1 ; B̂2, b2) = 0, (2)

prob(Â2, a2 ; B̂1,¬b1) = 0, (3)

prob(Â2, a2 ; B̂2, b2) > 0. (4)

The first condition says that if Alice chooses to measure
the observable Â1 and Bob chooses observable B̂1, he will
not obtain b1 as measurement result whenever Alice has
detected the measurement value a1. The remaining equa-
tions can be analyzed in a similar manner (¬ai denotes a
measurement with any result other than ai and similarly
¬bj d enotes a measurement with any result other than
bj). These four conditions together form the basis of the
temporal version of Hardy’s argument for d-level physi-
cal systems. This version of Hardy’s argument makes use
of the fact that not all of the conditions (1)-(4) can be
simultaneously satisfied in a time-local realistic theory,
but they can be in quantum mechanics (see ref. [17] for
the details) .

In this work, we study the above mentioned version of
Hardy’s argument for arbitrary observables of the sys-
tem and find that the maximum success probability of
this argument remains 25% irrespective of the dimen-
sion of the system and the type of observables involved
(for details, we refer to [17]). For the special case of
spin measurements, for spin-1 and spin-3/2 observables,
we provide the state and the observables setting which



achieve this maximum. We conjecture further that this
maximum can be observed for higher spin systems too.
This is in sharp contrast with the findings of reference
[7] where for spin observables it has been stated that the
maximum probability of success of Hardy’s argument de-
creases with increase in spin value of the system involved.
We also discuss the reason of this discrepancy.

Thus this temporal nonlocality persists as opposed to
the idea that quantum systems with higher dimensional
state space behave more classical which was put forward
in [14]. Our result is at par with the findings for spa-
tially separated systems where the success probability for
Hardy’s argument is also independent of the dimension
of systems’ Hilbert space [18, 19]. Moreover, contrary to
the implications from [7], our result ensures the possibil-
ity to probe the existence of quantum superpositions for
macroscopic systems by means of Hardy’s argument and
thus independent of the Leggett-Garg inequality.
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Conf. Proc. 734 281, arXiv:quant-ph/0402127.

[5] There is one more difference: while in [1], the observer
measures a single observable at different times under
the supposition that its value is independent whether
or not a measurement (of the same observable) was
performed at some earlier or later time, in [4] at any
given time the observer has a choice between two (or
more) different measurement settings. The value as-
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