Effect of Bloch Vectors on Quantum Discord of Non-X State

Jingjing Yao¹ *

Yuli Dong¹[†]

¹School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China

Abstract. When the Bloch vectors are perpendicularly oriented, the level surfaces of quantum discord of non-X state are formed by three "tubes" along orthogonal directions. The level surfaces shrink when the Bloch vectors are increased while they expand when the quantum discord are increased. For different Bloch vectors, the tube along one direction may disappear while tubes along other directions may still exist.

Keywords: quantum discord, Bloch vector, nonclassical correlation

1 Introduction

The entanglement plays an important role in quantum information processing [1]. Various quantum information processing tasks can be achieved based on entanglement. However, entanglement is not the only kind of correlation useful in quantum information theory. It was recently demonstrated that the absence of entanglement is not the sign of being quantum locality in quantum correlation [2]. For some cases, the quantum correlation can show some quantum properties of the system when the entanglement is zero [3]. So it is necessary to characterize and quantify quantum correlations.

To measure the quantum correlation, quantum discord (QD) was introduced by Ollivier and Zurek [4] and by Henderson and Vedral [5]. The QD is the difference between two expressions of mutual information for a quantum system and attracts much attention in recent years. It shows that QD may be a more general nonclassical correlation compared with entanglement, and only the state with zero QD represents purely classical correlation.

The dynamics of QD shows that QD is more robust than entanglement under the Markovian and non-Markovian dissipative processes. It is known that Belldiagonal state [6] is a special X-state with zero Bloch vectors. Recently, QD for a class of two-qubit states with parallel nonzero Bloch vectors is investigated [7].

In this article, the quantum discord of non-X state with Bloch vectors in the x and z directions is investigated. The Bell-diagonal states [8] and X-states [9] are included as the special cases. The analytical expressions of the eigenvalues of a two-qubit state are derived. The deformation of the geometric objects, such as tetrahedron T and octahedron O are obtained. The level surfaces are presented when the Bloch vectors and the quantum discord are varied.

2 Quantum Discord for Non-X State

For a non-X state, if the Bloch vectors \vec{r} and \vec{s} are orthogonal vectors with $\vec{r} = (r, 0, 0)$ and $\vec{s} = (0, 0, s)$, the state can be written in the matrix form as

$$\rho = \frac{1}{4} \begin{pmatrix} 1+s+c_3 & 0 & r & c_1-c_2 \\ 0 & 1-s-c_3 & c_1+c_2 & r \\ r & c_1+c_2 & 1+s-c_3 & 0 \\ c_1-c_2 & r & 0 & 1-s+c_3 \end{pmatrix}.$$
(1)

where c_1, c_2, c_3 are parameters orthogonal with each other.

Shiqun Zhu¹[‡]

According to the positivity condition of ρ , one can obtain the deformation of the tetrahedron T of the above matrix T_{rs} by letting the minimum eigenvalues be zero

$$\min\left(\lambda_1, \lambda_2, \lambda_3, \lambda_4\right) = 0. \tag{2}$$

The deformation of octahedron O_{rs} can also be achieved by the positivity condition of the positive partial transpose of the above matrix.

In Fig. 1, the deformation of tetrahedron T_{rs} and octahedron O_{rs} is plotted. In order to compare them more clearly, not only the tetrahedron T and the T_{rs} are plotted together in Figs. 1(a) and 1(b), but also the octahedron O and the O_{rs} together in Figs. 1(c) and 1(d). From Figs. 1(a) and 1(b), one can see that the T_{rs} becomes smaller when the Bloch vectors become larger. This means that increase Bloch vectors can shrink the tetrahedron toward the center of T because of the limitation tr $(\rho^2) \leq 1$. It is also seen that the T has sharp edges while the T_{rs} has smooth surface. The squeezing of T is asymmetric since the Bloch vectors \vec{r} and \vec{s} are different. When the Bloch vectors become larger, the edges of T_{rs} become smoother. In Figs. 1(c) and 1(d), similar phenomenon is shown for O and O_{rs} .

The quantum discord can be written as

$$Q(\rho) = S(\rho^B) + \sum_{i=1}^{4} \lambda_i \log_2 \lambda_i + \min\left[S(\rho | \{B_k\})\right], \quad (3)$$

where $(\rho^B) = 1 - \frac{1-s}{2} \log_2(1-s) - \frac{1+s}{2} \log_2(1+s)$ is the von Neumann entropy, λ_i are the four eigenvalues of Eq. (1) and are functions of r, s, c_i .

The level surface of quantum discord is plotted in Fig. 2 when the Bloch vectors are varied. In Figs. 2(a) and 2(b), the level surfaces of the discord are formed by three intersecting "tubes" along the orthogonal directions of c_1, c_2 and c_3 . The diameters of the tubes decrease as

^{*}yaojingying19882@163.com

[†]yldong@suda.edu.cn

[‡]szhu@suda.edu.cn

Figure 1: The deformation of the tetrahedron T_{rs} and T are plotted for s = 0.3 (a) r = 0.1, (b) r = 0.5; and the octahedron O_{rs} and O for r = 0.3, (c) s = 0.1, (d) s = 0.5.

 c_1,c_2 and c_3 increases. When the Bloch vectors $|\overrightarrow{s}|=0.3$ and $|\overrightarrow{r}|$ is increased from r=0.1 to r=0.5, the level surfaces (tubes) are squeezed towards the center of the coordinate. It is noted that the tube along c_2 axis disappears when r=0.5. That is, the tube along c_2 axis disappears when r=0.5. That is, the tube along c_2 axis disappears when r is increased. In Figs. 2(a) and 2(c), the quantum discord is increased from $Q(\rho)=0.03$ to $Q(\rho)=0.15$. The tubes are expanded and cut off by the state tetrahedron T. Similar phenomenon is also found in Figs. 2(c) and 2(d) when r is increased.

3 Conclusion

The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors \vec{r} and \vec{s} are not zero and perpendicularly oriented. For some parameters and certain directions of Bloch vectors, the states are reduced to either Bell-diagonal state or Xstate. The level surfaces of constant discord are formed by three intersecting "tubes" along three orthogonal directions of c_1, c_2 and c_3 . The level surfaces shrink to the center when the Bloch vectors are increased. They are expanded and cut off by the state tetrahedron T when the quantum discord is increased. When the Bloch vector \vec{s} is fixed while \vec{r} is increased, the tube along one of the c_i axis may disappear. This can be used to control the quantum discord by varying Bloch vectors.

Acknowledgements

The financial supports from the NNSFC (Grant Nos. 11074184, 11204197), the SRFDPHE (Grant No. 20103201120002) and the PAPD are gratefully acknowledged.

Figure 2: Surfaces of constant discord with $Q(\rho) = 0.03, s = 0.3$, (a) r = 0.1, (b) r = 0.5; and $Q(\rho) = 0.15, s = 0.3$, (c) r = 0.1, (d) r = 0.5.

References

- R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. *Rev. Mod. Phys.*, 81: 865, 2009.
- [2] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White. Experimental quantum computing without entanglement. *Phys. Rev. Lett.*, 101: 200501, 2008.
- [3] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters. Quantum nonlocality without entanglement. *Phys. Rev. A*, 59: 1070, 1999.
- [4] H. Ollivier and W. H. Zruek. Quantum discord: A measure of quantumness of correlations. *Phys. Rev. Lett.*, 88: 017901, 2001.
- [5] L. Henderson and V. Vedral. Classical, quantum and total correlations. J. Phys. A, 34: 6899-6905, 2001.
- [6] M. D. Lang and C. M. Caves. Quantum discord and the geometry of Bell-diagonal states. *Phys. Rev. Lett.*, 105: 150501, 2010.
- [7] B. Li, Z. Wang, and S. Fei. Quantum discord and geometry for a class of two-qubit states. *Phys. Rev.* A, 83: 022321, 2011.
- [8] S. Luo. Quantum discord for two-qubit systems. *Phys. Rev. A*, 77: 042303, 2008.
- [9] M. Ali, A. R. P. Rau, and G. Alber. Quantum discord for two-qubit X states. *Phys. Rev. A*, 81: 042105, 2010.