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Abstract. We consider optical beams with topological singularities which possess Schmidt decomposition
and show that such classical beams share many features of two mode entanglement in quantum optics. We
demonstrate the coherence properties of such beams through the violations of Bell inequality for continuous
variables using the Wigner function. This violation is a consequence of correlations between the (x, px)
and (y, py) spaces which mathematically play the same role as nonlocality in quantum mechanics. The
Bell violation for the LG beams is shown to increase with higher orbital angular momenta l of the vortex
beam. This increase is reminiscent of enhancement of nonlocality for higher spins in quantum mechanics.
The states with large l can be easily produced using spatial light modulators.
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The possibility of encoding large amounts of infor-
mation in light beams with topological singularities has
raised the prospects of their applicability in quantum
information processing tasks such as computation and
cryptography [1]. Vortex beams have interesting coher-
ence properties [2, 3], and such beams with large values of
orbital angular momenta have been experimentally real-
ized [4, 6]. It is recognized that Laguerre-Gaussian (LG)
beams have a Schmidt decomposition [2, 3, 7], and there-
fore one would expect many of the ideas developed within
the context of quantum mechanics to be applicable to LG
beams as well.

In the present work we apply the framework of the
Wigner function formulation of the Bell-CHSH inequality
[8] for the first time in classical optics to study the contin-
uous variable correlations in light beams with topological
singularities. For a two dimensional LG beam which is a
physically realizable classical field distribution containing
optical vortices with topological singularities, we discuss
the framework of obtaining Bell inequalities for contin-
uous variable systems using the Wigner function which
can be expressed as an expectation value of a product
of displaced parity operators [8]. The Bell inequality in
terms of Wigner function (W ) for the LG beam is given
by

B = π2|W (X1, PX1;Y 1, PY 1) +W (X2, PX2;Y 1, PY 1)
+ W (X1, PX1;Y 2, PY 2)−W (X2, PX2;Y 2, PY 2)|
< 2 (1)

The two measurement settings on one side are chosen to
be either {X1, PX1} or {X2, PX2}, and the correspond-
ing settings on the other side are either {Y 1, PY 1} or
{Y 2, PY 2}. Figure 1 shows the variation of |B| with
X and PY for three different values of the orbital an-
gular momentum n for the LG beam, for a particular
choice of measurement settings {X1 = 0, PX1 = 0, X2 =
X,PX2 = 0, Y 1 = 0, PY 1 = 0, Y 2 = 0, PY 2 = PY }. We
observe that the Bell-CHSH inequality is violated for LG
∗priyanka@bose.res.in
†archan@bose.res.in
‡girish.agarwal@okstate.edu

Figure 1: The plot shows the variation of the Bell sum |B| with
respect to X and PY for three different values of orbital angular
momentum. The maximum violation increases with angular mo-
mentum.

beams and also show that the violation of the Bell’s in-
equality increases with higher orbital angular momen-
tum of the beam. The above enhancement of violation is
analogous to the enhancement of nonlocality in quantum
mechanics for larger values of quantum numbers [9].

We further consider the situation where the quadrature
phase components of two correlated and spatially sepa-
rated light fields are measured. The correlations between
the quadrature amplitudes X̂θ and Ŷφ written as

X̂θ = cos[θ]X̂ + sin[θ]P̂X ,
Ŷφ = cos[φ]Ŷ + sin[φ]P̂Y (2)

are captured by the correlation coefficient [10], Cθ,φ de-
fined as

Cθ,φ =
〈X̂θŶφ〉√
〈X̂2

θ 〉〈Ŷ 2
φ 〉
, (3)

where 〈X̂θ〉 = 0 = 〈Ŷφ〉. If |Cθ,φ| = 1 for some values of
θ and φ, the correlation is perfect. The expression of the
maximum correlation function is given by

Cmaxθ,φ =
〈XPY 〉√
〈X2〉〈P 2

Y 〉
= − 〈PXY 〉√

〈P 2
X〉〈Y 2〉

. (4)



In Fig.2, we provide a plot of the maximum correlation
function for several values of n,m. We observe that the
strength of the correlations increases with increase of an-
gular momentum, asymptotically reaching the limit of
perfect correlations as angular momentum becomes very
large. This feature thus further corroborates our earlier
results of increase in Bell violations for larger orbital an-
gular momentum of LG beams.

Figure 2: The plot shows the values of the maximum correlation
function Cmax

θ,φ for various values of n, where m = 0. Similar results

are obtained by choosing n = 0 and varying m. Note that Cθ,φ = 0
for n = m = 0.

To summarize, for classical vortex beams, the magni-
tude of violation of the Bell inequality is shown to in-
crease with the value of orbital angular momentum of
the beam. This feature is further supported by the cor-
responding increase of the quadrature correlation func-
tion. Our predicted values of the correlation function
as function of the beam parameters should be not diffi-
cult to realize experimentally. Production of such vortex
beams have been achieved not only in the optical domain
[6], but recently has also been implemented for electron
beams [4]. Hence, the feasibility of direct measurement of
the two-point correlation function through shear Sagnac
interferometry is a potentially promising avenue [11] for
experimental verification of our predicted Bell violation
and its enhancement for vortex beams with higher an-
gular momentum. The amount of violation of a Bell in-
equality [12, 13] involving discrete variables, has recently
been suggested as a measure to quantify the magnitude
of correlation between degrees of freedom of a classical
beam [14]. Quantum nonlocality is reinterpreted in clas-
sical theory where a violation corresponding to a partic-
ular light beam possessing such correlations [15] signifies
the impossibility of constructing such a beam using other
beams with uncoupled degrees of freedom.
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