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Abstract. This paper discusses and shows improvements of Quantum algorithms’ efficiency for primality
testing algorithm. In the domain of existing classical primality testing algorithm, we point out where
massive computation power of quantum Turing machines can be directed for a significant increase in
computational speed.
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1 Introduction & Motivation

In terms of efficiency quantum algorithms outperform
best known classical algorithms in several scenarios. Per-
formance of quantum algorithms has been studied in
many domains of both computer science and mathemat-
ics. In recent years, researchers have started to solve the
mysteries of prime numbers using the computation power
of quantum Turing machine [9]. This paper is another
approach in that direction.

Prime numbers always baffled mathematicians around
the globe. In modern times, they play a key role in clas-
sical cryptography. Public key cryptography (RSA) is a
highly useful technique in classical cryptography, and it
requires large prime numbers [2]. However it is extremely
difficult to say if a large number is prime or not. The pro-
cess of finding out whether a given number is prime or
not is known as primality testing (PT). There are sev-

eral randomized polynomial time algorithm techniques
available for PT viz. Miller-Rabin Test, Solovay-Strassen
Test [2], [4] etc.

Until 2002, existence of a deterministic polynomial
time algorithm for primality testing was not confirmed.
In that year, Agarwal et al. came up with an affirma-
tive answer to that [1]. This algorithm is known as AKS
primality testing algorithm after its inventors’ names.

AKS algorithm is based on Fermat’s little theorem [2].
The main step of AKS algorithm [1] is following,

Theorem 1 Given an integer n > 1, let r be an integer
such that or(n) > log2 n. Suppose n satisfies Equation 1,
n has a prime factor ≤ r or n is a prime number.

(x+ a)n ≡ xn + a (mod xr − 1, n) for a = 1, ..., b
√
φ(r) log nc. (1)

Running time of AKS algorithm is O(r1.5 log3 n),
where r is a parameter of the algorithm. Agarwal et al.
showed that the value of r is of O(log5 n) [1]. Therefore
running time of that algorithm is O(log10.5 n). Many im-
provements were proposed on the value of r later on [3],
[5]. In every improvement of AKS algorithm, there is a
loop for testing some condition λ which is satisfied for
each 1 ≤ a ≤ g(r), where g is a real valued function.

This paper, assuming the availability of the oracle U
for performing the conditioning operation λ, points out
those iterations and used amplitude amplification algo-
rithm. Use of amplitude amplification algorithm reduces
the number of times the oracle operator needs to be called
or the condition checking operator for the operation λ
quadratic times.
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This article uses original AKS algorithm as an exam-
ple and shows how we get quadratic improvements from
classical AKS algorithm.

2 Quantum Algorithm for Primality
Testing

As described in section 1, proposed algorithm is based
on classical AKS algorithm. Here, we have used quantum
amplitude amplification technique as a subroutine for the
main computational step of AKS algorithm. Structure
of AKS algorithm allows us to apply quantum ampli-
tude amplification algorithm directly. The main compu-
tational task of AKS algorithm is stated in Theorem 1,
where the parameter or(n) is the smallest number j for
which,

nj ≡ 1 (mod r) (2)



φ(r) is the Euler’s totient function of r [2].

To compute equation 1 using quantum amplitude
amplification algorithm, we call a subroutine named
QPrime, which is an equal superposition state of all a’s

such that a ∈ {0, b
√
φ(r) log(n)c}. Then it is assumed

that there exists an oracle operator UP , which has the
following characteristics:

UP |a〉 = −|a〉 if(X + a)n 6≡ Xn + a (mod Xr − 1, n) & a 6= 0 (3)

= |a〉 otherwise (4)

QPrime will return 0, iff @ a ∈ {1, b
√
ϕ(r) log(n)c}

such that (X+a)n 6≡ Xn +a (mod Xr− 1, n). This sub-
routine uses quantum amplitude amplification technique
for checking the existence of such a(s). Using generalized
version of quantum amplitude amplification, we solve this
problem [7], [8].
QPrime subroutine is a typical amplitude amplifi-

cation algorithm setting, and our goal here is to test
whether the function P corresponding UP is a constant
or not. This results in quadratic speed up compared to
the classical sequential searching. So, in a quantum set-
ting it will take O(d(φ(r))

1
4 (log n)

1
2 e) evaluations of UP

instead of O(b
√
φ(r) log nc), which is a quadratic speed

up.
One can use BBHT [7] algorithm instead of QPrime

to find the existence of such a(s).

3 Conclusion

Quantum reversible circuit realisation of the operation
(X+a)n ≡ Xn +a (mod Xr−1, n) with optimal number
of elementary gates may also reduce actual time com-
plexity of original AKS algorithm.

Our future work includes studying the realization of
UP operator for AKS algorithm and also circuit realiza-
tion of the corresponding oracle operators for implement-
ing the condition operation λ.

References

[1] Agarwal Manindra and Kayal Neeraj and Saxena Nitin,
PRIMES is in P, 2004 doi=10.4007/annals.2004.160.781

[2] Stinson Douglas, InCryptography: Theory and Practice,Second
Edition, 2006, year = 2006, isbn = 1584882069, edition = 3rd,
publisher = CRC/C&H

[3] Tsz-wo Sze, A Potentially Fast Primality Test, 2007

[4] Goldwasser Shafi and Kilian Joe, Primality Testing using El-
liptic Curves InJ. ACM, 46(4):450-472,1999

[5] Lenstra, W. Hendrik Jr. and Pomerance Carl, Primality
Testing with Gaussian Periods Available at http://www.math.

dartmouth.edu/~carlp/PDF/complexity12.pdf 2005.

[6] Brassard, Gilles and Høyer, Peter and Mosca, Michele and
Tapp, Alain, Quantum amplitude amplification and estima-
tion, In Quantum computation and information (Washington,
DC, 2000), volume 305, pages 53–74, Amer. Math. Soc., 2002.

[7] Boyer, Michel and Brassard, Gilles and Høyer, Peter and
Tapp, Alain, Tight Bounds on Quantum Serching, InFortsch.
Phys. 46:493-506,1998 Available at http://arxiv.org/abs/

quant-ph/9605034v1

[8] Chakraborty, Kaushik and Maitra, Subhamoy Quantum al-
gorithm to check Resiliency of a Boolean function, InIACR
Cryptology ePrint Archive,2013, volume 2013, pages 232.

[9] Latorre I. Jose and Sierra, German, Available at http://arxiv.
org/abs/1302.6245v2


