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Abstract. We study evolution of bipartite entangled quasi-Bell states in a qubit-oscillator system in the
strong coupling regime and also in the presence of a static bias. Using the adiabatic approximation the
reduced density matrices for the qubit and the oscillator degrees of freedom are obtained in closed forms
involving Jacobi theta functions. The entropy of the system quantifying the evolution of entanglement is
computed. Using the Husimi Q distribution, the Wehrl entropy of the system is also studied.
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1 Introduction

The coupled qubit-oscillator system is well-described
by the Jaynes-Cummings model [1] in the context of the
rotating wave approximation that holds for a small de-
tuning and a tiny qubit-oscillator coupling compared to
the qubit and oscillator frequency. Recently, however, a
variety of experimental situations pertaining to stronger
coupling domain, where the rotating wave approximation
is no longer valid, have been investigated [2].

On the other hand, for the coupled qubit-oscillator sys-
tem the nonclassical quasi-Bell states are of much inter-
est. When the amplitude of the coherent states are large
enough they are often called Schrödinger cat states as
they introduce entanglement between a microscopic and
a classical object. Moreover, it has been observed [3]
that in the large coupling regime a state of the generic
quasi-Bell type becomes the approximate ground state
of the combined system. In the case of cavity electrody-
namics, the static bias of a superconducting qubit, may
be easily varied, say, by operating a magnetic flux on
a Josephson junction [4]. In this work the evolution of
quasi-Bell states in the strong coupling regime and also
in the presence of a static bias is studied via the adiabatic
approximation [5, 3].

2 The reduced density matrices

We study a coupled boson-qubit system with the
Hamiltonian that reads in natural units (~ = 1) as fol-
lows:

H = −∆

2
σx −

ε

2
σz + ωa† a+ λσz (a† + a), (1)

where the harmonic oscillator has a frequency ω, the
qubit is characterized by an energy splitting ∆ and an
external static bias ε, and the qubit-oscillator coupling
strength is denoted by λ. In the regime of large detuning
and strong coupling, the adiabatic approximation that
relies on the separation of the time scales characterized
by the high oscillator frequency and the (renormalized)
low qubit frequency could be used. The fast-moving os-
cillator then adiabatically adjusts to the slow changes of
the state of the qubit.
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The quasi-Bell initial state of the coupled system is
chosen as

|ψ(0)〉(±) =
1√
2

(|1, α〉 ± | − 1,−α〉) , (2)

where |α〉 is the coherent state. Corresponding to this
state the evolution of the reduced density matrices of
both the qubit and oscillator may be readily constructed.
The explicit structure of the qubit reduced density matrix
assumes the form

ρ
(±)
Q (t) ≡ TrO ρ

(±)(t) =

 1

2
∓ ζ ±ξ(±)

±(ξ(±))∗
1

2
± ζ

 , (3)

where the components read

ζ = ε̃ exp
(
−%2

α̂

) ∞∑
n=0

(−1)n
%2n
α̂

n!
δn

sin2 χnt

χ2
n

, (4)

ξ(±) =
1

2
exp(−%2

α̂)

∞∑
n,m=0

(α̂)n (−α̂∗)m√
n!m!

C(±)
n C(∓)

m ×

× exp
(
− i(n−m)ωt

)
〈m−|n+〉, (5)

and the parameters are given by

C(±)
n = A(∓)

n exp(iχnt) + B(±)
n exp(−iχnt),

A(±)
n =

χn + ε̃± (−1)nδn
2χn

, B(±)
n =

χn − ε̃± (−1)nδn
2χn

,

δn = −∆̃

2
Ln(x), ∆̃ = ∆ exp

(
−x2
)
, x = ( 2λ

ω )2, ε̃ = ε
2 ,

χn =
√
δ2
n + ε̃2, α̂ = α+ λ/ω, and %α̂ = |α̂|.

Similarly the oscillator reduced density matrix can be
constructed as

ρ
(±)
O (t) =

1

2
exp(−%2

α̂)

∞∑
n,m=0

(α̂)n (α̂∗)m√
n!m!

(
C(±)
n C(±)

m

∗
|n+〉〈m+|

+(−1)n+mC(∓)
n

∗
C(∓)
m |n−〉〈m−|

)
exp(i(m− n)ωt).(6)

It can be observed that the reduced density matrix of the
qubit with its two dimensional Hilbert space and that of
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Figure 1: The series(red) and theta function(green
dashed) evolution of the diagonal element of ρQ for the
values of λ = 0.15ω,∆ = 0.15ω, ε = 0.01ω and α = 1.5.

the oscillator endowed with the infinite dimensional Fock
space satisfy the equality

Trρ
(±)
Q (t)2 = Trρ

(±)
O (t)2. (7)

In an attempt to analytically evaluate the qubit den-
sity matrix in closed form we approximate the Poisson
distribution with the corresponding Gaussian limit. The
reduced density matrix for the qubit is expanded till the
fourth power of coupling constant and is written in closed
forms comprising of linear combinations of Jacobi theta
functions. The analytical results based on the theta func-
tion evaluations are found to be in good agreement with
their series counterparts for values α ≈ 1−2 and λ . 0.2ω
(Fig.[1]). The entropy of the system quantifying the en-
tanglement can be computed via the qubit reduced den-
sity matrix and also can be written in terms of theta
functions.

3 The Q-function of the oscillator density
matrix

The reduced density matrix of the oscillator is em-
ployed for obtaining the Husimi Q distribution:

Q(±)(β) =
1

2π
exp(−%2

α̂)

∞∑
n,m=0

 exp(−%2
β̂
)
(α̂β̂∗)n(α̂∗β̂)m

n!m!
×

× C(±)
n C(±)

m

∗
+ exp(−%2

β̌
)
(α̂β̌∗)n (α̂∗β̌)m

n!m!
×

× (−1)n+mC(∓)
n

∗
C(∓)
m

 exp(−i(n−m)ωt), (8)

where we abbreviate: β̂ = β + λ/ω, %β̂ = |β̂| and β̌ =

β − λ/ω, %β̌ = |β̌|. The Q-function at various time is
given in Fig.[2]. It is, in turn, utilized for obtaining the
expectation values of antinormally ordered operators in
closed-form involving Jacobi theta functions. Long time
behavior of the Heisenberg uncertainty for the state is
found.

Our evaluation of the Husimi Q function allows us
to study the complexity of the strongly coupled system.
Complexity is a measure of delocalization of the Husimi
distribution in phase space and it is computed, for in-
stance by the inverse of second moment of the Husimi
distribution [6]. The kinship in time dependence of the
complexity, the Heisenberg uncertainty product and the

(a)

-3 -1 1 3

Re(β)

-3

-1

1

3

Im
(β
)

0

0.07

0.14

(b)

-3 -1 1 3

Re(β)

-3

-1

1

3

Im
(β
)

0

0.04

0.08

(c)

-3 -1 1 3

Re(β)

-3

-1

1

3

Im
(β
)

0

0.04

0.08

(d)

-3 -1 1 3

Re(β)

-3

-1

1

3

Im
(β
)

0

0.08

0.16

Figure 2: The Q(+)(β) function for λ = 0.08ω,∆ =
0.15ω, ε = 0.01ω and α = 2 at various time (Natural
unit) t (a)0 (b)300 (c)500 (d)900.
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Figure 3: The evolution of the Wehrl entropy for the
values of λ = 0.08ω,∆ = 0.15ω, ε = 0.01ω and α = 2.

Wehrl entropy [7] is also verified. More delocalized phase
space distributions corresponds to increase in the Wehrl
entropy (Fig.[3]).
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