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Abstract. Two schemes for the remote state preparation (RSP) of arbitrary two-qubit state were pre-
sented by Zha et al. [Opt. Commun. 284 (2011) 1472] and Wang et al. [Opt. Commun. 284 (2011)
5853]. In both these schemes, RSP could be realized with probability 1/4, in general but in some special
cases this probability could be improved to 1/2 or even 1. Here, we present a scheme for RSP of arbitrary
two-qubit state with unit success probability based on the protocol of An et al. [Adv. Nat. Sci.: Nanosci.
Nanotechnol. 2 (2011) 035009] for RSP of one qubit.
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Quantum information processing is not possible with-
out quantum entanglement [1]. Quantum teleportation
(QT) [2] and remote state preparation (RSP) [3, 4, 5, 6]
are two important applications of quantum entangle-
ment. QT is used to transmit an unknown state by
a sender to a receiver at distant location. On the
other hand, RSP is used to prepare a known state by
a sender at a remote receiver’s end. Recently, many RSP
schemes have been proposed for arbitrary two-qubit state
[7, 8, 9, 10, 11, 12, 13, 14, 15]. Zha et al. [8] obtained RSP
of two-qubits by using four-qubit cluster state. Wang et
al. [9] obtained the same using joint RSP using six-qubit
cluster state and an extra sender who makes projective
measurements. In both, success is 1/4 only in general but
can be even 1 for some special cases. An et al. [6] used re-
source with an extra qubit and sequential measurements
to obtain RSP of one qubit with success unity. In this
paper we generalize this for RSP of two-qubit state using
four-qubit entangled state and two ancillary qubits with
perfect success for all cases.

Consider an arbitrary two-qubit state, possessed by
Alice, described by

|I〉 = λ0|00〉 + λ1e
iδ1 |01〉 + λ2e

iδ2 |10〉 + λ3e
iδ3 |11〉, (1)

where λ0, λ1, λ2, λ3 are non-negative real coefficients and
0 ≤ δ1, δ1, δ1 < 2π are the phase angles with the normal-
ization condition λ2

0 + λ2
1 + λ2

2 + λ2
3 = 1. Suppose that

given arbitrary two-qubit state is known completely to
Alice, but not to Bob. Initially, Alice takes two ancillary
qubits |00〉12, and she shares four-qubit state with Bob
as quantum channel given by the expression

|E〉3456 =
1
2
(|0000〉 + |0101〉 + |1010〉 + |1111〉)3456, (2)

where particles (3, 4) are in the possession of Alice and
particles (5, 6) belongs to Bob. Now, Alice performs
two controlled-NOT (CNOT) gates on the qubits (1, 3)
and (2, 4), with 3 and 4 are control qubits and 1 and
2 are targets, respectively. As a result, the four-qubit
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entangled state |E〉3456 and the states |00〉12 become a
six-qubit entangled state

|E′〉123456 =
1
2
(|000000〉+|010101〉+|101010〉+|111111〉).

(3)
At this stage, Alice measures the particles (1, 2) and
(3, 4) in different bases. For the particles (1, 2), the
measurement basis is defined as

|ξ0〉12
|ξ1〉12
|ξ2〉12
|ξ3〉12

 =


λ0 λ1 λ2 λ3

λ1 −λ0 λ3 −λ2

λ2 −λ3 −λ0 λ1

λ3 λ2 −λ1 −λ0



|00〉
|01〉
|10〉
|11〉

,

while for the particles (3, 4) measurement basis is
|ζ0〉34
|ζ1〉34
|ζ2〉34
|ζ3〉34

 = 1
2


1 ε1 ε2 ε3
1 −ε1 ε2 −ε3
1 −ε1 −ε2 ε3
1 ε1 −ε2 −ε3



|00〉
|01〉
|10〉
|11〉

,

where εj = e−iδj , j = 1, 2, 3. After the measurements,
Alice transmits four classical bits information about her
measurement outcomes to the receiver Bob. Bob then
reconstructs the original state on his particles 5 and 6
conditioned on the classical information from Alice.

Under these two sets of bases, i.e., if measurements of
the particles (1, 2) in the basis {|ξm〉12} and measure-
ments of the particles (3, 4) in the basis {|ζm〉34}(m =
0, 1, 2, 3) are carried out independently, it can be shown
that Bob gets the original state with success 1/4 only.
However, with the strategy of sequential measurements
[6], where outcome of first measurement decides a uni-
tary transformation to be done by Alice on her two par-
ticles (3, 4). The first measurement is to be done on the
particles (1, 2) in the basis {|ξ0〉12, |ξ1〉12, |ξ2〉12, |ξ3〉12},
whose outcome is specified by m = 0 (1, 2, 3) if |ξ0〉12,
(|ξ1〉12, |ξ2〉12, |ξ3〉12) is found. Then, depending on the
outcome m, Alice performs the unitary phase shift op-
erator,

∏(m), on the particles (3, 4), which are given
by the expressions

∏(0) = Î = |00〉〈00| + |01〉〈01| +
|10〉〈10| + |11〉〈11|,

∏(1) = eiδ1 |00〉〈00| + e−iδ1 |01〉〈01| +
ei(δ3−δ2)|10〉〈10|+ ei(δ2−δ3)|11〉〈11|,

∏(2) = eiδ2 |00〉〈00|+



ei(δ3−δ1)|01〉〈01| + e−iδ2 |10〉〈10| + ei(δ1−δ3)|11〉〈11| and∏(3) = eiδ3 |00〉〈00|+ei(δ2−δ1)|01〉〈01|+ei(δ1−δ2)|10〉〈10|+
e−iδ3 |11〉〈11|. After this, she measures her particles (3,
4) in the basis {|ζ0〉34, |ζ1〉34, |ζ2〉34, |ζ3〉34}. Now, Alice
transmitts four bits of classical information to Bob for
identifying her sixteen possible measurement outcomes
in the following way:

‘0000’, ‘0001’, ‘0010’, ‘0011’,
‘0100’, ‘0101’, ‘0110’, ‘0111’,
‘1000’, ‘1001’, ‘1010’, ‘1011’,
‘1100’, ‘1101’, ‘1110’ or ‘1111’,

if she found
|ξ0〉12|χ00〉34, |ξ0〉12|χ01〉34, |ξ0〉12|χ02〉34, |ξ0〉12|χ03〉34,
|ξ1〉12|χ10〉34, |ξ1〉12|χ11〉34, |ξ1〉12|χ12〉34, |ξ1〉12|χ13〉34,
|ξ2〉12|χ20〉34, |ξ2〉12|χ21〉34, |ξ2〉12|χ22〉34, |ξ2〉12|χ23〉34,
|ξ3〉12|χ30〉34, |ξ3〉12|χ31〉34, |ξ3〉12|χ32〉34 or |ξ3〉12|χ33〉34,
respectively, where |χjk〉34 =

∏(j) |ζk〉34 with j, k =
0, 1, 2, 3. On the basis of Alice’s classical information,
Bob performs suitable unitary operation on his particles
(5, 6) to prepare the required state (1). Results are sum-
marized in the following Table 1.

Table 1: Alice’s first measurement basis (FMB) {|ξm〉12}
on particle (1, 2), whose outcome decides the unitary
phase shift operator (UPSO)

∏(m) on particle (3, 4) fol-
lowed by second measurement basis (SMB) {|ζm〉34}, four
bits of classical information (CI) sent to Bob and Bob’s
unitary transformation (UT) on particle (5, 6).

FMB UPSO SMB CI UT
(1, 2) (3, 4) (3, 4) (5, 6)
|ξ0〉

∏(0) |ζ0〉 0000 Î ⊗ Î

|ζ1〉 0001 Î ⊗ σ̂z

|ζ2〉 0010 σ̂z ⊗ σ̂z

|ζ3〉 0011 σ̂z ⊗ Î

|ξ1〉
∏(1) |ζ0〉 0100 Î ⊗ σ̂xσ̂z

|ζ1〉 0101 Î ⊗ σ̂x

|ζ2〉 0110 σ̂z ⊗ σ̂x

|ζ3〉 0111 σ̂z ⊗ σ̂xσ̂z

|ξ2〉
∏(2) |ζ0〉 1000 σ̂xσ̂z ⊗ σ̂z

|ζ1〉 1001 σ̂xσ̂z ⊗ Î

|ζ2〉 1010 σ̂x ⊗ Î
|ζ3〉 1011 σ̂x ⊗ σ̂z

|ξ3〉
∏(3) |ζ0〉 1111 σ̂xσ̂z ⊗ σ̂x

|ζ1〉 1101 σ̂xσ̂z ⊗ σ̂xσ̂z

|ζ2〉 1110 σ̂x ⊗ σ̂xσ̂z

|ζ3〉 1111 σ̂x ⊗ σ̂x

In conclusion, we prepare an arbitrary two-qubit state
remotely via four-qubit entangled state with unit success
probability with the use of two ancillary qubits and the
sequential measurement techniques. Since after perform-
ing two CNOT gates the combined state of particles 1, 2,
3, 4, 5 and 6 becomes six-qubit entangled state (3), one
can say that our present scheme is RSP of an arbitrary
two-qubit state via six-qubit entangled state with unit
success probability. The advantage of our scheme is that
we achieve perfect success for all cases.
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