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Abstract. Two schemes for the remote state preparation (RSP) of arbitrary two-qubit state were pre-
sented by Zha et al. [Opt. Commun. 284 (2011) 1472] and Wang et al. [Opt. Commun. 284 (2011)
5853]. In both these schemes, RSP could be realized with probability 1/4, in general but in some special
cases this probability could be improved to 1/2 or even 1. Here, we present a scheme for RSP of arbitrary
two-qubit state with unit success probability based on the protocol of An et al. [Adv. Nat. Sci.: Nanosci.

Nanotechnol. 2 (2011) 035009] for RSP of one qubit.
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Quantum information processing is not possible with-
out quantum entanglement [1]. Quantum teleportation
(QT) [2] and remote state preparation (RSP) [3, 4, 5, 6]
are two important applications of quantum entangle-
ment. QT is used to transmit an unknown state by
a sender to a receiver at distant location. On the
other hand, RSP is used to prepare a known state by
a sender at a remote receiver’s end. Recently, many RSP
schemes have been proposed for arbitrary two-qubit state
[7,8,9,10, 11,12, 13, 14, 15]. Zha et al. [8] obtained RSP
of two-qubits by using four-qubit cluster state. Wang et
al. [9] obtained the same using joint RSP using six-qubit
cluster state and an extra sender who makes projective
measurements. In both, success is 1/4 only in general but
can be even 1 for some special cases. An et al. [6] used re-
source with an extra qubit and sequential measurements
to obtain RSP of one qubit with success unity. In this
paper we generalize this for RSP of two-qubit state using
four-qubit entangled state and two ancillary qubits with
perfect success for all cases.

Consider an arbitrary two-qubit state, possessed by
Alice, described by

1) = Xo|00) + A1€1]01) + A2e™2[10) + Aze™2[11), (1)

where A\g, A1, A2, A3 are non-negative real coefficients and
0 < 61,901,071 < 27 are the phase angles with the normal-
ization condition A% + A? + A3 + A3 = 1. Suppose that
given arbitrary two-qubit state is known completely to
Alice, but not to Bob. Initially, Alice takes two ancillary
qubits |00)12, and she shares four-qubit state with Bob
as quantum channel given by the expression

1
[B)sase = 5(10000) +[0101) + [1010) + [1111)sus6, (2)

where particles (3, 4) are in the possession of Alice and
particles (5, 6) belongs to Bob. Now, Alice performs
two controlled-NOT (CNOT) gates on the qubits (1, 3)
and (2, 4), with 3 and 4 are control qubits and 1 and
2 are targets, respectively. As a result, the four-qubit
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entangled state |E)3456 and the states |00)12 become a
six-qubit entangled state

1
|E") 123456 = (1000000} +-]010101) +|101010) +[111111)).
(3)

At this stage, Alice measures the particles (1, 2) and
(3, 4) in different bases. For the particles (1, 2), the
measurement basis is defined as

1€0)12 Ao A1 A2 A3 |00)
€2 | _ [ A =X A3 =X |01)
|€a)12 | A2 —A3 —XAo A1 [10) |’
1€3)12 A3 A2 —A1 =X [11)
while for the particles (3, 4) measurement basis is
|C:()>34 1 €1 €9 €3 ‘00)
|C1>34 1 1 —€1 €2 —€3 ‘01)
|CQ>34 T2 1 —€1 —€9 €3 ‘10> ’
|C3)34 1 e —e -—e 111)

where €; = e 5 j =1,2,3. After the measurements,
Alice transmits four classical bits information about her
measurement outcomes to the receiver Bob. Bob then
reconstructs the original state on his particles 5 and 6
conditioned on the classical information from Alice.
Under these two sets of bases, i.e., if measurements of
the particles (1, 2) in the basis {|{)12} and measure-
ments of the particles (3, 4) in the basis {|(p)34}(m =
0,1,2,3) are carried out independently, it can be shown
that Bob gets the original state with success 1/4 only.
However, with the strategy of sequential measurements
[6], where outcome of first measurement decides a uni-
tary transformation to be done by Alice on her two par-
ticles (3, 4). The first measurement is to be done on the
particles (1, 2) in the basis {|€o)12,]¢1)12, [€2)12, [€3)12},
whose outcome is specified by m = 0 (1, 2, 3) if |¢o)12,
(‘§1>12, ‘§2>127 ‘§3>12) is found. Then, depending on the
outcome m, Alice performs the unitary phase shift op-
erator, H(m), on the particles (3, 4), which are given
by the expressions [[”) = I = |00)(00| + |01)(01] +
110)(10] 4 [11)(11], T[T = €%1]00)(00] + ¢~1]01) (01| +
e/ (05=82)10) (10| + €02 =93)|11)(11], [T = ¢'|00)(00] +



93700 |01)(01] + e~%2[10)(10] + %1% |11)(11] and
1 = €100 (00| + €325 |01) (01| +€i(51=92)|10) (10| +
e~"3|11)(11|. After this, she measures her particles (3,
4) in the basis {|<0>34, |<1>347 |<2>34, |C3>34} NOW7 Alice
transmitts four bits of classical information to Bob for
identifying her sixteen possible measurement outcomes
in the following way:

‘00007, ‘00017, ‘00107, ‘0011,

‘01007, ‘0101°, ‘01107, ‘0111,

10007, ‘1001, “1010°, 1011,

‘1100°, ‘1101°, ‘1110 or “1111°,
if she found
1€0)12]X00)34, [€0) 12]X01) 34, [§0) 12]X02) 345 [§0) 12| X03) 34,
1€1)12]x10)34, [€1)12]X11) 34, [€1)12[X12) 34, [§1) 12| X13) 344
€2)12]X20)34, [€2) 12| X21) 34, [€2) 12| X22) 34, [€2) 12X 23) 34,
|€3)12]X30)34, [€3) 12| X31) 34, [€3) 12] X32)34 OF [€3)12]X33) 34,
respectively, where |xjx)34 = H(]) |Ck)34 with j,k =
0,1,2,3. On the basis of Alice’s classical information,
Bob performs suitable unitary operation on his particles
(5, 6) to prepare the required state (1). Results are sum-
marized in the following Table 1.

Table 1: Alice’s first measurement basis (FMB) {|&,,)12}
on particle (1, 2), whose outcome decides the unitary
phase shift operator (UPSO) [ on particle (3, 4) fol-
lowed by second measurement basis (SMB) {|(, )34}, four
bits of classical information (CI) sent to Bob and Bob’s
unitary transformation (UT) on particle (5, 6).

FMB UPSO SMB  CI UT
(L,2) (3,4 (3,4 (5, 6)
&) 17 1) 0000 el
&) 0001 I®6,
|C2) 0010 G, ®06,
ICs) 0011 6.1
&) T 1) 0100 [®6.6.
Gty 0101 I®6,
IGb) 0110 6.®6,
IGs)  Olll 6, ® .6
€2) H(z) [&)) 1000 020, Q02
&) 1001 6,601
IC2) 1010 G, @1
ICs) 1011 6, ®6.
&) TI9 le) 111 6,696,
IC1) 1101 6,6, ® 646
IGo) 1110 6, ® 6,6,
IGs) 1111 6, ®6,

In conclusion, we prepare an arbitrary two-qubit state
remotely via four-qubit entangled state with unit success
probability with the use of two ancillary qubits and the
sequential measurement techniques. Since after perform-
ing two CNOT gates the combined state of particles 1, 2,
3, 4, 5 and 6 becomes six-qubit entangled state (3), one
can say that our present scheme is RSP of an arbitrary
two-qubit state via six-qubit entangled state with unit
success probability. The advantage of our scheme is that
we achieve perfect success for all cases.

References

[1] M. A. Nielsen and I. L. Chuang. Quantum Computa-
tion and Quantum Information. Cambridge Univer-
sity Press, 2000.

[2] C. H. Bennett et al. Teleporting an unknown quan-
tum state via dual classical and Ein-stein-Posolsky-
Rosen channels. Phys. Rev. Lett., 70(13):1895-1899,
1993.

[3] H. K Lo. Classical-communication cost in distributed
quantum-information processing: A generalization of
quantum-communication complexity. Phys. Rev. A,
62(1):012313(1-7), 2000.

[4] A. K. Pati. Minimum classical bit for remote prepa-
ration and measurement of a qubit. Phys. Rev. A,
63(1):014302(1-3), 2000.

[5] C. H. Bennett et al. Remote State Preparation. Phys.
Rev. Lett., 87(7):077902(1-4), 2001.

[6] N. B. An, T. B. Cao, V. D. Nung and J. Kim. Re-
mote state preparation with unit success probability.
Adv. Nat. Sci.: Nanosci. Nanotechnol., 2:035009(1—
4), 2011.

[7] J. M. Liu, X. L. Feng and C. H. Oh. Remote prepa-
ration of arbitrary two- and three-qubit states. Eur.
Phys. Lett., 87:30006(1-6), 2009.

[8] X. W. Zha and H. Y. Song. Remote preparation of
a two-particle state using a four-qubit cluster state.
Opt. Commun., 284:1472-1474, 2011.

[9] D. Wang, X. W. Zha and Q. Lan. Joint remote
state preparation of arbitrary two-qubit state with
six-qubit state. Opt. Commun., 284:5853-5855, 2011.

[10] N. B. An. Joint remote preparation of a general
two-qubit state. J. Phys. B: At. Mol. Opt. Phys.,
42:125501(1-10), 2009.

[11] N. B. An. Joint remote state preparation via W and
W-type states. Opt. Commun., 283:4113-4117, 2010.

[12] H. H. Liu et al. Joint remote state preparation of
arbitrary two- and three-particle states. Int. J. Theor.
Phys., 50:3023-3032, 2011.

[13] X. Q. Xiao, J. M. Liu and G. H. Zeng. Joint remote
state preparation of arbitrary two- and three-qubit
states. J. Phys. B: At. Mol. Opt. Phys., 44:075501(1—
9), 2011.

[14] Z. Y. Wang. Controlled Remote Preparation of a
Two-Qubit State via an Asymmetric Quantum Chan-
nel. Commun. Theor. Phys., 55(2):244-250, 2011.

[15] Z. Y. Wang. Classical communication cost and
probabilistic remote two-qubit state preparation via
POVM andW-type states. Quant. Inform. Process.,
11:1585-1602, 2012.



