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Abstract. In this work we first revisit the theory of QST and AAQST and provide methods for con-
structing constraint matrices, which will allow tomography procedure for large quantum registers. An
important feature of the method described here is that it requires only global rotations and short evolution
under the collective internal hamiltonian We also describe nuclear magnetic resonance(NMR) demonstra-
tion of AAQST on two different types of system (i) a two-qubit input register using a one-qubit ancilla in
an isotropic liquid-state system and (ii) a three-qubit input register using a two-qubit ancilla register in a
partially oriented system.
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1 Introduction

Quantum State Tomography: Complete characteri-
zation of the quantum state is often necessary to optimize
the control fields and to understand the effects of envi-
ronmental noise. In experimental quantum information
studies, Quantum State Tomography (QST) is an impor-
tant tool that is routinely used to characterize an instan-
taneous quantum state [1]. QST can be performed by
a series of measurements of noncommuting observables
which together enables one to reconstruct the complete
complex density matrix. In the standard method, the
required number of independent experiments grows ex-
ponentially with the number of input qubits [2,3]. .

Nieuwenhuizen and co-workers have shown that it is
possible to reduce the number of independent experi-
ments in the presence of an ancilla register initialized
to a known state [4]. We refer to this method as Ancilla
Assisted QST (AAQST). This method was experimen-
tally illustrated by Suter and co-workers using a single
input qubit and a single ancilla qubit [5]. Single shot
mapping of density matrix by AAQST method not only
reduces the experimental time, but also alleviates the
need to prepare the target state several times. Often slow
variations in system Hamiltonian may result in system-
atic errors in repeating the state preparation. Further,
environmental noises lead to random errors in multiple
preparations. These errors play important roles in the
quality of the reconstruction of the target state. There-
fore AAQST has the potential to provide a more reliable
way of tomography.

In this work we first revisit the theory of QST and
AAQST and provide methods for explicit construction
of the constraint matrices, which will allow extending
the tomography procedure for large registers. An im-
portant feature of the method described here is that it
requires only global rotations and short evolutions un-
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der the collective internal Hamiltonian. We also describe
NMR demonstrations of AAQST on two different types
of systems: (i) a two-qubit input register using a one-
qubit ancilla in an isotropic liquid-state system and (ii) a
three-qubit input register using a two-qubit ancilla reg-
ister in a partially oriented system.

QST versus AAQST: Consider a general density ma-
trix ρ of an n-qubit system having N2−1 unknowns with
N = 2n. A single measurement of an observable can
only yield a fraction of these unknowns. For example,
in NMR, a single measurement of transverse signal can
yield nN unknowns. In order to quantify the remaining
unknowns, one can measure some other observables, or
alternatively, can apply a known unitary U to the initial
density matrix and then measure the transverse signal.

The minimum number of experiments is KQST =⌈
N2−1
nN

⌋
, where dc represents the smallest integer larger

than the argument. The top array of (Fig. 1) illustrates
the values of K for different sizes of input register. As an-
ticipated, K increases rapidly as O(N/n) with the num-
ber of input qubits.

Suppose the input register of n-qubits is associated
with an ancilla register consisting of n̂ qubits. The di-
mension of the combined system of ñ = n + n̂ qubits
is Ñ = NN̂ , where N̂ = 2n̂. For simplicity we assume
that each qubit interacts sufficiently with all other qubits
so as to obtain a completely resolved spectrum yielding
ñÑ real parameters. Further for simplicity, we assume
that the ancilla register begins with the maximally mixed
state, so that it does not contribute to the spectral inten-
sities. Thus the deviation density matrix of the combined
system is ρ̃ = ρ ⊗ 1N̂/N̂ . We consider applying a non-
local unitary exploiting the input-ancilla interaction, We
now record the spectrum of the combined system corre-

sponding to the observable
ñ∑
j=1

σjx + iσjy. Each spec-

tral line can again be expressed in terms of the unknown
elements of the ancilla matrix. The spectrum of the



combined system yields ñÑ linear equations. The mini-
mum number of independent experiments needed now is

KAAQST =
⌈
N2−1
ñÑ

⌋
. Compared to KQST , the numerator

has not changed since we started with a known state of
the ancilla, but the denominator has increased according
to the size of the composite system. Since we can choose
Ñ � N , AAQST needs fewer than O(N/n) experiments
required in the standard QST (Fig. 1). In particular,
when ñÑ ≥ (N2 − 1), a single optimized unitary suffices
for QST.

2 Experiments

We report experimental demonstrations of AAQST on
two spin-systems of different sizes and environments. The
experimental result of one of the systems is shown in the
following figure. We used three spin-1/2 19F nuclei of
iodotrifluoroethylene dissolved in acetone-D6 as a 3-qubit
system. We have chosen F1 as the ancilla qubit and F2

and F3 as the input qubits. QST was performed for two
different density matrices (i) thermal equilibrium state,
i.e., ρ1 = 1

2

(
σ2
z + σ3

z

)
, and (ii) state after a (π/4)π/4

pulse applied to the thermal equilibrium state, i.e., ρ2 =
1
2

(
σ2
x + σ3

x

)
− 1

2

(
σ2
y + σ3

y

)
+ 1√

2

(
σ2
z + σ3

z

)
.

We also discuss the robustness of the AAQST proce-
dure to random noises. In order to study the robust-
ness, we generated a random vector whose elements are
in the range [−η, η] and added it to the experimentally
obtained spectral intensities. We found that the AAQST
procedure is very robust in both of these cases, and the
average fidelity remained above 0.9 for η < 0.2.

3 Conclusions

We provided methods for explicit construction of to-
mography matrices in large registers. We also discussed
the optimization of tomography experiments based on
minimization of the condition number of the constraint
matrix. Further, we demonstrated the experimental
ancilla-assisted quantum state tomography in two sys-
tems: (i) a system with two input qubits and one ancilla
qubit in an isotropic medium and (ii) a system with three
input qubits and two ancilla qubits in a partially oriented
medium. In both the cases, we successfully reconstructed
the target density matrices with a single quadrature de-
tection of transverse magnetization. Finally, we analysed
the robustness of the tomography procedure against ran-
dom noise. We believe that the methods introduced in
this work are useful for extending the range of quantum
state tomography to larger registers.

4 Figures and Tables
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Figure 1: Minimum number of independent experiments
required for QST (with zero ancilla) and AAQST.
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