
Strong converse for the classical capacity of
entanglement-breaking and Hadamard channels

Mark M. Wilde1 Andreas Winter2 3 4 ∗ Dong Yang3 5

1Department of Physics and Astronomy, Center for Computation and Technology,
Louisiana State University, Baton Rouge, Louisiana 70803, USA
2ICREA – Institució Catalana de Recerca i Estudis Avançats,
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Abstract. A strong converse theorem for the classical capacity of a quantum channel states
that the probability of correctly decoding a classical message converges to zero in the limit of
many channel uses, if the rate of communication exceeds the classical capacity of the channel.
Along with a corresponding achievability statement for rates below the capacity, such a strong
converse theorem enhances our understanding of the capacity as a very sharp dividing line
between possible and impossible rates of communication. Here, we show that such a strong
converse theorem holds for the classical capacity of all entanglement-breaking channels and
Hadamard channels. Prior results regarding strong converse theorems for particular covariant
channels emerge as a special case of this approach.
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Introduction.—One of the most fundamental
tasks in quantum information theory is the trans-
mission of classical data over many independent
uses of a quantum channel, such that, for a fixed
rate of communication, the error probability of the
transmission decreases to zero in the limit of many
channel uses. The maximum rate at which this is
possible for a given channel is known as the classi-
cal capacity of the channel. Holevo, Schumacher,
and Westmoreland (HSW) characterized the clas-
sical capacity of a quantum channel N in terms of
the following formula:

χ (N ) ≡ max
{pX(x),ρx}

I (X;B)ρ , (1)

where {pX (x) , ρx} is an ensemble of quantum
states, I (X;B)ρ ≡ H (X)ρ + H (B)ρ −H (XB)ρ
is the quantum mutual information, and H (σ) ≡
−Tr{σ log σ} is the von Neumann entropy. In the
above formula, the quantum mutual information
I (X;B) is computed with respect to the following
classical-quantum state:

ρXB ≡
∑
x

pX (x) |x〉〈x|X ⊗NA→B (ρx) , (2)

for some orthonormal basis {|x〉}, and the notation
NA→B indicates that the channel accepts an input
on the system A and outputs to the system B.

For certain quantum channels, the HSW for-
mula is equal to the classical capacity of the chan-
nel. These results follow because the Holevo for-
mula was shown to be additive for these channels,
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in the sense that the following relation holds for
these channels for any positive integer n:

χ
(
N⊗n

)
= nχ (N ) . (3)

However, in general, if one cannot show that the
HSW formula is additive for a given channel, then
our best characterization of the classical capacity
is given by a regularized formula:

C(N ) = χreg (N ) ≡ lim
n→∞

1

n
χ
(
N⊗n

)
. (4)

The work of Hastings suggests that the regular-
ized limit is necessary unless we are able to find
some better characterization of the classical ca-
pacity, other than the above one given by HSW.
Also, an important implication of the Hastings re-
sult, which demonstrates a strong separation be-
tween the classical and quantum theories of in-
formation, is that using entangled quantum code-
words between multiple channel uses can enhance
the classical capacity of certain quantum chan-
nels, whereas it is known that classically correlated
codewords do not.

Given the above results, one worthwhile direc-
tion is to refine our understanding of the classi-
cal capacity of channels for which the HSW for-
mula is additive. Indeed, the achievability part of
the HSW coding theorem states that as long as
the rate of communication is below the classical
capacity of the channel, then there exists a cod-
ing scheme such that the error probability of the
scheme decreases exponentially fast to zero. The



converse part of the capacity theorem makes use
of the well known Holevo bound, and it states that
if the rate of communication exceeds the capacity,
then the error probability of any coding scheme
is bounded away from zero in the limit of many
channel uses.

Such a converse statement as given above might
suggest that there is room for a trade-off between
error probability and communication rate. That
is, such a “weak” converse suggests that it might
be possible for one to increase communication
rates by allowing for an increased error proba-
bility. A strong converse theorem leaves no such
room for a trade-off—it states that if the rate of
communication exceeds the capacity, then the er-
ror probability of any coding scheme converges to
one in the limit of many channel uses. Impor-
tantly, a strong converse theorem establishes the
capacity of a channel as a very sharp dividing line
between which communication rates are possible
or impossible in the limit of many channel uses.

Strong converse theorems hold for all discrete
memoryless classical channels, and the error prob-
ability is known to converge to 0 exponentially,
thanks to the work of Wolfowitz and later Ari-
moto. Much later, Polyanskiy and Verdú general-
ized the Arimoto approach in a very useful way,
by showing how to obtain a bound on the suc-
cess probability in terms of any relative-entropy-
like quantity satisfying several natural properties.

Less is known about strong converses for quan-
tum channels: Winter and Ogawa and Nagaoka
independently developed a strong converse theo-
rem for channels with classical inputs and quan-
tum outputs. For such channels, the HSW formula
in (1) is equal to the classical capacity.

After this initial work, Koenig and Wehner
proved that the strong converse holds for the
classical capacity of particular covariant quantum
channels Their proof is in the spirit of Arimoto—
they considered a Holevo-like quantity derived
from the Rényi relative entropy and then showed
that this quantity is additive for particular covari-
ant channels. This reduction of the strong con-
verse question to the additivity of an information
quantity is similar to the approach of Arimoto, but
the situation becomes more interesting for the case
of quantum channels since entanglement between
channel uses might lead to the quantity being non-
additive.

Summary of results.—We first prove that
a strong converse theorem holds for the classi-
cal capacity of all entanglement-breaking chan-
nels. Such channels can be modeled as the fol-
lowing process:

1. The channel performs a quantum measure-
ment on the incoming state.

2. The channel then prepares a particular
quantum state at the output depending on
the result of the measurement.

The channels are said to be entanglement-
breaking because if one applies a channel in this
class to a share of an entangled state, then the
resulting bipartite state is a separable state, hav-
ing no entanglement. As important subclasses
of the entanglement-breaking channels occur the
classical-quantum channels mentioned above and
quantum measurement channels, in which only the
first step above occurs and the output is classical.

Our second result is the strong converse for
Hadamard channels, which can be defined as
the complementary channels of entanglement-
breaking channels, with respect to the Stinespring
dilation.

The main result can be stated as follows: for
a general entanglement-breaking or Hadamard
channel N , the following bound on the success
probability for any coding scheme of rate R >
χ(N ) and any block length n holds:

psucc ≤ 2−nc(R), (5)

where c(R) > 0 depends on the rate R and the
channel.

Full details of definitions and proofs can be
found in Ref. [1].

Conclusion.—We have proven a strong con-
verse theorem for the classical capacity of all
entanglement-breaking and Hadamard channels,
building on tighter bounds on the success prob-
ability in terms of a “sandwiched” Rényi relative
entropy (cf. [2]). Our approach also allows us to
recover the earlier results of Koenig and Wehner.
This information measure should find other appli-
cations in quantum information theory, given that
many other information measures can be obtained
from a relative entropy.
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