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Abstract. We generalize entropic uncertainty relations in the presence of quantum memory
[Nature Physics 6 (659), 2010], and [Physical Review Letters 106 (110506), 2011] in two as-
pects. First, we consider measurements with a continuum of outcomes, and, second, we allow
for infinite-dimensional quantum memory. To achieve this, we introduce conditional differen-
tial entropies for classical-quantum states on von Neumann algebras, and show approximation
properties for these entropies. As an illustration, we evaluate the uncertainty relations for
position-momentum measurements, which has applications in continuous variable quantum
cryptography and quantum information theory.
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1 Introduction

Uncertainty relations play a fundamental role
in quantum mechanics and quantum information
theory. For the latter purpose entropies are com-
monly used to quantify the statistical uncertain-
ties of the measurement outcomes. For finite-
dimensional observables Maassen and Uffink [6]
proved the sharp inequality

H(X) +H(Y ) ≥ log
1

c
, (1)

where H(X) and H(Y ) are the Shannon entropies
of the outcome distributions of non-degenerate
measurements X and Y and c = maxi,j | supxiyj |2
with |xi〉 and |yj〉 the eigenvectors of X and Y , re-
spectively. The inequality was further generalized
to observables described by positive operator val-
ued measures, and to different entropies.

It was recently realized that uncertainty should
not be treated as absolute, but with respect to the
knowledge of an observer [1]. In particular, if the
observer has a quantum memory at hand, one ob-
tains a subtle interplay between the observed un-
certainty, and the entanglement between the mea-
sured system and the quantum memory. This can
be quantified by an entropic uncertainty relation
stated by conditional entropies [1]. Because of the
monogamy property of entanglement, the tripar-
tite scenario allows a particularly elegant formu-
lation: it holds for any tripartite quantum state
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ρABC and measurements as above that

H(X|B) +H(Y |C) ≥ log
1

c
, (2)

where H(X|B) (H(Y |C)) is the conditional von
Neumann entropy of the measurement outcome X
(Y ) conditioned on B (C).1 Note that the con-
stant c is the same as in inequality (1) and the
tripartite formulation can be seen as a further gen-
eralization of the one shown by Massen and Uffink.

The entropic uncertainty relations with quan-
tum side information have various applications in
quantum information theory. Most prominently,
the tripartite version in (2) can be used as a
straightforward tool to prove security against ar-
bitrary (coherent) attacks of certain quantum key
distribution protocol [1, 8]. For that purpose,
the uncertainty relation has been extended to the
smooth min- and max-entropies [8], which quan-
tify the extractable key length in the one-shot sce-
nario.

The above mentioned results including quan-
tum memory are restricted to quantum systems
with finitely many degrees of freedom. A first
generalization of the tripartite uncertainty rela-
tion to infinite-dimensional quantum systems has
been derived for the smooth min- and max-entropy
by some of the authors in [2]. While the quan-
tum side-information could be arbitrary, only mea-
surements withe a finite-number of outcomes were
considered. Based on this uncertainty relation,
the first quantitative security analysis of a con-
tinuous variable quantum key distribution proto-

1More precisely, H(X|B) is the von Neu-
mann entropy of the post-measurement state
ρXB =

∑
i (|xi〉〈xi|A ⊗ 1B) ρAB (|xi〉〈xi|A ⊗ 1B).



col against arbitrary attacks has been presented
in [4].

The extension of (2) to infinite number or
continuous outcomes was recently also addressed
in [5], which also apply to continuous position-
momentum measurements. Yet, they only con-
sider a restricted definition of the conditional von
Neumann entropy.

2 Results.

In this work, we present tripartite entropic un-
certainty relations with quantum side-information
for infinite-dimensional quantum systems without
restrictions on the observables and the quantum
side information. The uncertainty relations are de-
rived for the von Neumann entropy as well as the
min- and max-entropy. For that purpose, we intro-
duce differential conditional von Neumann entropy
h(X|B) and differential conditional min- and max-
entropy, hmin(X|B) and hmax(X|B), for classical
systemsX described by a measure space and quan-
tum side-information B modeled by an observable
algebra.

Intuitively, continuous classical systems may be
thought of as being approximated by discrete sys-
tems in the limit of infinite precision. Hence,
we expect that operational quantities have sim-
ilar behavior. We make this precise by proving
that the differential conditional entropies h(X|B),
hmin(X|B) and hmax(X|B can be approximated
by their discretized counterparts. In particular, if
X is a classical system with outcome range being
the real line, and Xδ its restriction to a partition
of R into intervals of length δ, then

h(X|B) = lim
δ→0

(
H(Xδ|B) + log δ

)
(3)

if the differential entropy h(X|B) is finite. A sim-
ilar result is derived for the differential min- and
max-entropies hmin(X|B) and hmax(X|B).

The tripartite uncertainty relation for measure-
ments with a continuous outcome range are then
derived by means of these approximation results
from the discrete outcome case. The relations hold
in the general case where the measurements are
general positive operator valued measures. The in-
equality reads exactly like in equation (2) except
that the conditional entropies are exchanged by
their differential versions and the overlap is com-
puted by a limit along finer and finer partitions of
the continuous outcome range.

We analyzed the uncertainty relations for po-
sition and momentum observables in the case of
finite and infinite precision measurements. In the
case of finite precision modeled by a binning of
the outcome range into intervals of length δ, the
overlap only depends on δ and can be explicitly
determined [7]. The behavior for small δ is given

by c(δ) ≈ δ2\(2π). We then show that the ob-
tained uncertainty relation in terms of the min-
and max-entropy is sharp even without quantum
memory. In particular, a pure state which has
only support on one interval of the measurement
for which the max-entropy is evaluated achieves
equality. The sharpness question is more subtle
in the case of the von Neumann entropy. There
we can only show that in the case of trivial side
information equality cannot be achieved for small
δ.

In the case of infinite precision measurements,
and thus, continuous outcomes the constant can
be obtained by taking the limit for δ → 0. The
resulting inequality reads as

h(Q|B)ω + h(P |C)ω ≥ log 2π,

which generalizes previous results without quan-
tum memory (see e.g. [3]). The uncertainty rela-
tion is again sharp without quantum memory for
the min- and max-entropy. In the case of the von
Neumann entropy the inequality is saturated for
the EPR state with infinite squeezing.
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