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Abstract. We present a quantum algorithm for simulating sparse Hamiltonian evolution with complexity
polynomial in the logarithm of the inverse error. This is an exponential improvement over existing methods
for Hamiltonian simulation. In addition, its scaling with respect to time is close to linear, and its scaling
with respect to the time derivative of the Hamiltonian is logarithmic. These scalings improve upon most
existing methods. Our method is to use a compressed Lie-Trotter formula, based on recent ideas for efficient
discrete-time simulations of continuous-time quantum query algorithms.
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1 Introduction

The simulation of physical quantum systems is important
to understand novel physical phenomena, and is a major
potential application of quantum computers. This is the
original reason why Feynman proposed the concept of a
quantum computer in 1982 [1]. In 1996, Lloyd [2], showed
how to simulate evolution under Hamiltonians that are
expressible as a sum of simple interaction Hamiltonians
with scaling polynomial with respect to the number of
qubits and the evolution time.

Aharonov and Ta-Shma [3] formulated a more ab-
stract form of Hamiltonian simulation, dubbed the sparse
Hamiltonian problem, where a generic sparse Hamilto-
nian is specified by an oracle for the values and positions
of its nonzero matrix entries, and the goal is to simulate
the evolution of a given state under this Hamiltonian.
In addition to serving as a generic formulation for the
problem of simulating Hamiltonian evolution, the sparse
Hamiltonian problem occurs as a subproblem in some
quantum algorithms [4, 5, 6]. Beginning with [3], a series
of simulations were discovered [7, 8, 9, 10, 11, 12, 13] with
improvements in efficiency in various parameters.

A drawback to these simulation algorithms is that their
complexity is greater than polynomial in log(1/ε), where
ε is the allowable error. Another drawback is that most
techniques scale worse than Õ(t), where t is the time pa-
rameter. One technique provides scaling strictly linear
in the time, at the expense of worse scaling in the er-
ror [9, 13]. A third drawback is that, for time-dependent
Hamiltonians, the complexity depends strongly on the
time-derivatives of the Hamiltonian [10, 11]. One tech-
nique avoids that dependence, at the expense of worse
scaling in both the error and the time [14].

2 Summary of Results

We show how to solve the sparse Hamiltonian problem
with exponentially improved error scaling. The result
also matches the best previous methods for scaling with
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the time [9, 13] and time-derivatives of the Hamiltonian
[14] up to log factors. For simplicity, we adopt a normal-
isation convention that ‖H‖ ≤ 1. This entails no loss of
generality because, if ‖H‖ = λ, then the problem can be
rescaled, with λ absorbed into the time parameter.

Theorem 1 Let H be a Hamiltonian with ‖H‖ ≤ 1 (with
no loss of generality) and sparseness d. Then evolution
under H for time t can be simulated to precision ε with

O

(
(log∗n)d 2 t log(t/ε)

log log(t/ε)

)
(1)

oracle calls and O
(
d 2 t log3(d t/ε) poly(n)

)
elementary

(1- and 2-qubit) gates, provided that ε ≥ exp(−d 2t).

The scaling with respect to ε is exponentially better
than other known methods (that are polynomial in 1/ε).

Moreover, the scaling with respect to t is Õ(t), and better
than that from Lie product formulas (which are order

t1+Ω(1/
√

log t)). This algorithm can be adapted to the
case of time-dependent Hamiltonians, attaining the same
query complexity, and gate complexity

O
(
d 2t log3(d t(1 + ‖H ′‖)/ε) poly(n)

)
. (2)

Here H ′ is the time derivative of H, and the norm is
the maximum of the spectral norm over the time period.
That is, the complexity is logarithmic in the derivative of
the Hamiltonian, whereas previous methods (except [14])
were polynomial in the derivatives of the Hamiltonian.

3 Method

Our method uses the techniques in [15, 16] for relating
the continuous-time query model with the discrete-time
query model. That work was for a combination of a self-
inverse oracle Hamiltonian and a driving Hamiltonian.
Ref. [15] showed how to combine these Hamiltonians via
a Lie-Trotter formula, then compress them by using ancil-
las and controlled operations to apply the evolution under
the self-inverse Hamiltonian, then keeping only low Ham-
ming weight components of the control qubits. This pro-
vided a simulation that is efficient in terms of the number



of oracle calls. Then [16] showed how to compress opera-
tions on the control qubits to enable a simulation that is
efficient in terms of the number of additional operations.

We build on that work to provide a method for simula-
tion of general sparse Hamiltonians via three main ideas:

1. The sparse Hamiltonian is not self-inverse in gen-
eral, so it is decomposed into a sum of self-inverse
Hamiltonians with an appropriate weighting.

2. The methods in [15, 16] are generalised to apply to
sums of many self-inverse Hamiltonians (as opposed
to a single self-inverse query Hamiltonian).

3. The error scaling from [15, 16] is tightened to ensure
that no terms are more than polynomial in log(1/ε).

For the first idea, we first use a decomposition into 1-
sparse Hamiltonians [8, 12]. Next, we further decompose

each 1-sparse Hamiltonian H̃ into a sum of Hamiltonians
whose nonzero entries all have the same absolute value.
Since ‖H‖ ≤ 1, for each H̃, ‖H̃‖max ≤ 1. Consider the

real part of the off-diagonal entries of H̃ first, which is
in [−1,+1]. Round this value to nearest value of the
form k/m, for k ∈ {−m, . . . ,+m}. It is then possible to

approximate each H̃ as 1
m

∑+m
k=−mHk, where each Hk is

1-sparse with eigenvalues in {−1, 0,+1}. An illustrative
example for m = 2 is

1

2


0 1 0 0
1 0 0 0
0 0 0 2
0 0 2 0

 =
1

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+
1

2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

.

These Hamiltonians can have have zero eigenvalues, but
they can be eliminated along such lines as
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 =
1

2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

+
1

2


−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

.

Similar procedures exist for the imaginary part of the off-
diagonal entries (with 2×2 σy instead of σx blocks) as
well as for the diagonal entries (which are 1×1 blocks).

For the second idea, the central difference is that the
control operations now control which of the self-inverse
HamiltoniansHk are performed by the position of the one
in the control qubits, as shown in Fig. 1. That is, the first
controlled operation has k controlled by the position of
the first one, and so forth. In contrast, Refs. [15, 16] used
the positions of the ones to control how long the driving
Hamiltonian was to be simulated for.
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