TOPOLOGY I

ASSIGNMENT DUE ON 26 SEPTEMBER 2012

(1) For a collection $\{G_{\alpha}\}$ of abelian groups show that

$$\big(\bigoplus_{\alpha} G_{\alpha}\big) = \prod_{\alpha} \hat{G}_{\alpha}.$$

Here the right hand side is viewed as a topological group with the product topology.

(2) Show that $(\mathbf{Q}/\mathbf{Z})_{\hat{p}}$ is torsion-free. (3) For each $n \in \mathbf{Z}$, define $\chi_n \in (\mathbf{Q}/\mathbf{Z})_{\hat{p}}$ by

$$\chi_n(1/p^i) = n/p^i + \mathbf{Z}.$$

Equip \mathbf{Z} with the topology coming from the p-adic norm. Show that the function $n \mapsto \chi_n$ is continuous with dense image.

(4) Show that $\hat{\mathbf{Q}}$ is torsion-free.

(5) Can you find an algebraic condition on G which ensures that \hat{G} is torsion-free and applies to \mathbf{Q}/\mathbf{Z} and $(\mathbf{Q}/\mathbf{Z})_p$?

(6) Show that \mathbf{R} is not homeomorphic to \mathbf{R}^2 .

(7) Munkres, §24, problems 8, 10, 11.