TOPOLOGY I

ASSIGNMENT DUE ON 29 AUGUST 2012

- (1) Clearly, the projection maps $p_{\alpha}: \prod_{\alpha} X_{\alpha} \to X_{\alpha}$ take open sets to open sets. Do they also take closed sets to closed sets?
- (2) The product topology on $(\mathbf{Z}/2\mathbf{Z})^{\mathbf{N}}$ has a countable base.
- (3) The product topology has a countable base if and only if the topology of each coordinate space has a countable base and all but a countable number of coordinate spaces are indiscrete ¹.
- (4) Munkres, §16, problem 9.
- (5) Munkres, §19, problem 7 (only for product topology).
- (6) Show that an uncountable product space $\prod_{\alpha} X_{\alpha}$ is not metrizable (unless all except a countable number of factors are singleton)².

¹Kelley, p. 103

²Schaum's outline series, General Topology, Chap. 12