TOPOLOGY I

ASSIGNMENT DUE ON 22 AUGUST 2012

- (1) Let M be a monoid. Let \underline{M} denote the category with one object * and $\operatorname{Mor}(*,*) = M$. Let id denote the identity functor $\underline{M} \to \underline{M}$. What are the natural transformations id \to id?
- (2) In the category of sets, given two objects X and Y, find an object Z such that the functors $\underline{\operatorname{Sets}} \to \underline{\operatorname{Sets}}$ given by $U \mapsto \operatorname{Mor}(U,Z)$ and $U \mapsto \operatorname{Mor}(U,X) \times \operatorname{Mor}(U,Y)$ are naturally isomorphic.
- (3) In the category of sets, given two objects X and Y, find an object Z such that the functors $\underline{\operatorname{Sets}} \to \underline{\operatorname{Sets}}$ given by $U \mapsto \operatorname{Mor}(Z,U)$ and $U \mapsto \operatorname{Mor}(X,U) \times \operatorname{Mor}(Y,U)$ are naturally isomorphic.
- (4) Show that the functors $\underline{\operatorname{Sets}} \to \underline{\operatorname{Sets}}$ given by $Z \mapsto \operatorname{Mor}(X, \operatorname{Mor}(Y, Z))$ and $Z \mapsto \operatorname{Mor}(X \times Y, Z)$ are naturally isomorphic.
- (5) ¹ If ⁱ is an operator which carries subsets of X into subsets of X, and \mathcal{T} is the family of all subsets of X such that $A^i = A$, under what conditions will \mathcal{T} be a topology on X and ⁱ be the operator which takes every subset of X to its interior?
- (6) Munkres, Section 20, problems 3, 5, and 11.

¹Kelley, General Topology, p. 56