TOPOLOGY I

ASSIGNMENT DUE ON 13 AUGUST 2012

- (1) Show that, for any prime number p, **Z** with the metric $d(x, y) = |x y|_p$ is a metric space. Recall that $|a|_p = p^{-v}$, where v is the greatest non-negative integer for which p^v divides a.
- (2) In the metric space of (1), show that $B(x, \epsilon)$ is infinite for all $x \in \mathbb{Z}$ and $\epsilon > 0$.
- (3) The *lower limit topology* on \mathbf{R} (denoted \mathbf{R}_l) is the topology where half-open intervals of the form [a, b) form a basis for the topology.
 - (a) Show that open sets in the usual topology of \mathbf{R}_l are open in the lower limit topology.
 - (b) Show that a function $f : \mathbf{R}_l \to \mathbf{R}$ is continuous if and only if, for each $a \in \mathbf{R}$, $\lim_{x \to a^+} f(x) = f(a)$.
 - (c) Is there a metric on **R** which gives rise to this topology?
- (4) Show that the L^p metrics, $1 \le p \le \infty$ on \mathbb{R}^n all give rise to the same topology.
- (5) If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X, show that $\cap_{\alpha}\mathcal{T}_{\alpha}$ is a topology on X. What about $\cup_{\alpha}\mathcal{T}_{\alpha}$?
- (6) Let $\{T_{\alpha}\}$ be a family of topologies on X. Show that there exists a unique smallest topology containing all the the topologies \mathcal{T}_{α} and a unique largest topology contained in all the topologies \mathcal{T}_{α} .
- (7) Show that the countable collection

 $\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}$

is a basis that generates the standard topology on **R**.

(8) Show that the collection

 $\mathcal{C} = \{ [a, b) \mid a < b, a \text{ and } b \text{ rational} \}$

generates a topology *different* from the lower limit topology on \mathbf{R} .

(9) Show that the countable collection

 $\{(a,b) \times (c,d) \mid a < b \text{ and } c < d, a, b, c, d \text{ rational}\}$

is a basis for the topology of \mathbf{R}^2 .