REPRESENTATION THEORY

ASSIGNMENT DUE ON AUGUST 292011

Assume throughout that K is an algebraically closed field

(1) Let R be a semisimple K-algebra. Show that an R-module V is simple if and only if $\operatorname{dim}_{K}\left(\operatorname{End}_{R} V\right)=1$. Does this fail when R is not semisimple or when K is not algebraically closed?
(2) Let R be a semisimple K-algebra. An R-module V has a multiplicityfree decomposition (meaning that it is isomorphic to a sum of pairwise non-isomorphic simple modules) if and only if its endomorphism algebra $\operatorname{End}_{R} V$ is commutative.
(3) If R is a finite dimensional semisimple K-algebra and V and W are finite dimensional R-modules such that

$$
\operatorname{dim} \operatorname{End}_{R} V=\operatorname{dim} \operatorname{Hom}_{R}(V, W)=\operatorname{dim} \operatorname{End}_{R} W
$$

then V and W are isomorphic.
(4) Let V_{1}, \ldots, V_{r} be finite dimensional vector spaces over K. In the K-algebra

$$
R=\bigoplus_{i=1}^{r} \operatorname{End}_{K} V_{i}
$$

let ϵ_{i} denote the identity endomorphism $\operatorname{id}_{V_{i}}$ of V_{i}.
(a) Show that the centre of R (the set of all $z \in R$ such that $z r=r z$ for all $r \in R$) is spanned by $\epsilon_{1}, \ldots, \epsilon_{r}$.
(b) Show that the only primitive central idempotents in R are the elements $\epsilon_{1}, \ldots, \epsilon_{r}$.
(5) Let G be a finite group and K be any field. Show that the centre of $K[G]$ consists of the K-valued functions on G which are constant on conjugacy classes (class functions).
(6) Suppose that K is a field and G is a finite group such that the characteristic of K does not divide $|G|$. Let V_{1}, \ldots, V_{r} denote a set of representatives for the isomorphism classes of simple representations of G. Show that
(a) r is the number of conjugacy classes in G.
(b) $\left(\operatorname{dim} V_{1}\right)^{2}+\cdots+\left(\operatorname{dim} V_{r}\right)^{2}=n$.
(7) If V and W are K-vector spaces with bases $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ show that if we take $V \otimes W$ to be the K-vector space with basis $v_{i} \otimes w_{j}$ $(i=1, \ldots, n, j=1, \ldots m)$ and define B by $B\left(v_{i}, w_{j}\right)=v_{i} \otimes w_{j}$, then B and $V \otimes W$ satisfy the coordinate-free defintion of tensor product.
(8) For $S \in \operatorname{End}_{K} V, T \in \operatorname{End}_{K} W$, show that trace $(S \otimes T)=\operatorname{trace}(S) \operatorname{trace}(T)$.
(9) Suppose (ρ, V) is a representation of G and (σ, W) is a representation of H. Then $\rho \boxtimes \sigma:(g, h) \mapsto \rho(g) \otimes \sigma(h)$ is a representation of $G \times H$ on $V \otimes W$. Show that (without using characters and their properties) if ρ and σ are simple then so is $\rho \boxtimes \sigma$. Moreover, if ρ^{\prime} and σ^{\prime} are simple representations
of G and H respectively, such that ρ^{\prime} is not isomorphic to ρ and σ^{\prime} is not isomorphic to σ, then $\rho \boxtimes \sigma$ is not isomorphic to $\rho^{\prime} \boxtimes \sigma^{\prime}$.
(10) If $V^{\prime}=\operatorname{Hom}_{K}(V, K)$ is the dual vector space of V then for any vector space W the linear map $V^{\prime} \otimes W \rightarrow \operatorname{Hom}_{K}(V, W)$ induced by the bilinear map $V^{\prime} \times W \rightarrow \operatorname{Hom}_{K}(V, W)$ defined by

$$
(\xi, w) \mapsto(v \mapsto \xi(v) w)
$$

is an isomorphism of vector spaces.
(11) Let $\beta: V^{\prime} \otimes V \rightarrow \operatorname{End}_{K} V$ be the linear map of the previous exercise (in the case where $W=V)$. Let τ be the linear map $V^{\prime} \otimes V \rightarrow K$ induced by the bilinear map $(\xi, v) \mapsto \xi(v)$ (from $V^{\prime} \times V$ to K). Recall that the trace map trace : $\operatorname{End}_{k} V \rightarrow K$ is defined as the sum of diagonal entries of the matrix corresponding to a linear map with respect to any basis. Show that trace $\circ \beta=\tau$.
(12) Let (ρ, V) be an irreducible representation of G. Define $\Phi: V^{\prime} \otimes V \rightarrow K[G]$ by

$$
\Phi(\xi, v)=\sum_{x \in G} \xi(\rho(x) v) 1_{x}
$$

Then Φ is an injective intertwiner of representations of $G \times G$, where $(g, h) \in$ $G \times G$ acts on $\xi \otimes v \in V^{\prime} \otimes V$ by $\left(\rho^{\prime}(g) \xi\right) \otimes(\rho(g) v)$ and on $T \in \operatorname{End}_{K} V$ by $\rho(g)^{-1} \circ T \circ \rho(h)$.
(13) Assume that the characteristic of the lagebraically closed field K does not divide $|G|$. Using the explicit Wedderburn decomposition, i.e., the fact that the primitive central idempotents in $K[G]$ are given by

$$
\epsilon_{i}(g)=\frac{\operatorname{dim} V_{i}}{|G|} \operatorname{trace}\left(\rho_{i}(g) ; V_{i}\right)
$$

where $\left(\rho_{1}, V_{1}\right), \ldots,\left(\rho_{r}, V_{r}\right)$ are a set of representatives for the simple representations of G over K, prove the basic properties of the irreducible characters of G, namely, if $\chi_{i}(g):=\operatorname{trace}\left(\rho_{i}(g), V_{i}\right)$, then
(a) $\chi_{i}, \ldots, \chi_{r}$ form a basis for the centre of $K[G]$ (the class functions).
(b) $|G|^{-1} \sum_{g \in G} \chi_{i}(g) \chi_{j}\left(g^{-1}\right)=\delta_{i j}$ for all i, j (orthogonality relations).

