HOMEWORK III

FUNCTIONAL ANALYSIS

(1) If f and g are functions on \mathbb{R}^n such that f * g is defined, show that

$$\operatorname{supp}(f * g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$$

(2) Suppose that $f, g, h \in C_0(\mathbf{R}^n)$. Show that

$$f * g = g * f \text{ and}$$
$$(f * g) * h = f * (g * h).$$

- (3) For each a > 0, let $g_a(x) = \frac{1}{\sqrt{2\pi a}} e^{-\frac{x^2}{2a}}$. Show that $g_a * g_b = g_{a+b}$. (4) Consider the function $f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$. Compute f * f(x).
- (5) Define $g: \mathbf{R} \to \mathbf{R}$ by

$$g(s) = \begin{cases} e^{-\frac{1}{s}} & \text{if } s > 0\\ 0 & \text{if } s \le 0 \end{cases}$$

Check that the nth derivative

$$g^{(n)}(s) = \begin{cases} P_n(1/s)e^{-\frac{1}{s}} & \text{if } s > 0\\ 0 & \text{if } s \le 0. \end{cases}$$

where P_n is a polynomial (special attention should be paid to s = 0; the mean value theorem or L'Hôpital's rule is needed).

- (6) Suppose that X is a vector space with subspaces $\{X_{\alpha}\}$ such that $X = \bigcup_{\alpha} X_{\alpha}$, each X_{α} is a locally convex linear topological space, and the topology on X is the inductive limit of the topologies in the X_{α} 's. Show that a linear functional $T: X \to K$ is continuous if and only if $T_{|X_{\alpha}|}$ is continuous for every α .
- (7) Suppose $f \in L^1_{\text{loc}}(\Omega)$. For $\phi \in C_0(\Omega)$ define

$$T_f \phi = \int_{\Omega} f(x) \overline{\phi(x)} dx.$$

Show that $T_f : \mathcal{D}(\Omega) \to \mathbf{C}$ is continuous.

(8) Recall that a function $\phi: (a, b) \to \mathbf{R}, -\infty \le a < b \le \infty$ is said to be *convex* if

 $\phi(sx + ty) \le s\phi(x) + t\phi(y)$ for all s + t = 1.

- (a) Prove that the supremum of any collection of convex functions on (a, b) is convex, and that the pointwise limit of a sequence of convex functions is convex.
- (b) Show, by example, that the infimum of a collection of convex functions need not be convex.
- (c) If ϕ is convex on (a, b) and ψ is convex and non-decreasing on the range of ϕ then $\psi \circ \phi$ is convex on (a, b).
- (d) Suppose $\phi: (a, b) \to \mathbf{R}$ is continuous and

$$\phi\left(\frac{x+y}{2}\right) \le \frac{\phi(x)+\phi(y)}{2}$$

Show that ϕ is convex. Show that the conclusion does not follow if continuity is omitted from the hypothesis.

Date: due on Monday, January 28, 2008 (before class).