HOMEWORK II

FUNCTIONAL ANALYSIS

- (1) Describe all the convex subsets of \mathbf{R} .
- (2) Describe all the nowhere dense convex subsets of \mathbf{R}^2 .
- (3) Suppose $f: [0, \infty) \to [0, \infty)$ is continuous on $[0, \infty)$ and twice continuously differentiable on $(0, \infty)$ such that $f'(x) \ge 0$ for all x > 0, and $f''(x) \le 0$ for all x > 0. Show that $f(x + y) \le f(x) + f(y)$ for all $x, y \ge 0$.
- (4) Show that any locally convex topological vector space where the topology is given by a countable sufficient family of seminorms is a metric space.
- (5) Show that the topology of any metrizable locally convex topological vector space is given by a countable sufficient family of seminorms.
- (6) Show that any linear isomorphism of finite dimensional locally convex topological spaces is a homeomorphism.
- (7) Let l^2 denote the vector space consisting of sequences $x = \{x_n\}_{n=1}^{\infty}$ in K such that $\sum_{n=1}^{\infty} |x_n|^2 < \infty$, topologised by the norm $||x||_2 = (\sum_{n=1}^{\infty} |x_n|^2)^{-\frac{1}{2}}$. Show that the subset consisting of all sequences $\{x_n\}$ satisfying the condition

$$\sum_{n=1}^{\infty} n^2 |x_n|^2 < 1$$

is a convex balanced set which is not absorbing.

- (8) Let l^{∞} denote the vector space consisting of bounded sequences $x = \{x_n\}_{n=1}^{\infty}$ in K, topologised by the norm $||x||_{\infty} = \sup_n \{|x_n|\}$. Show that the subspace consisting of sequences that vanish at all but finitely many points is a convex balanced set which is not absorbing.
- (9) Let G be a compact abelian metric topological group (i.e., G is a metric space with an abelian group structure such that the multiplication map G × G → G given by (g,g') → gg' and the inversion map G → G given by g → g⁻¹ are continuous) such that every open subset of G containing the identity element contains a compact, open subgroup. Suppose that for every g ∈ G there exists a positive integer n_g such that g^{n_g} = e (here, e denotes the identity element of G). Show that there exists a positive integer n such that gⁿ = e for every g ∈ G; in other words every compact torsion metric group has bounded order [Hint: For each positive integer m, consider the subgroup of elements such that g^m = 1. Apply Baire's theorem to this countable family of subgroups]. Why does this argument break down when G is not abelian? ¹

Date: due on Monday, January 21, 2008 (before class).

 $^{^1{\}rm I}$ learned this from George Willis. He mentioned that the corresponding problem remains open for groups which are not abelian.