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Finite Abelian p-Group

Every abelian group of order p” is of the form:

y4 y4 y4

for a unique sequence A\; > Ax > --- > \; of integers such that
A+ + XN =n

A(n) = Set of all partitions of n

Abelian groups of order p" <> A(n).
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Subgroups

Suppose
A y4 y4 V4
and suppose B is a subgroup of A.
If
B Z Z Z
= p,LL1Z @pugz @@p#,z7
Then:

p1 < A2 < Aoy AL

If the above inequalities hold, we write:
wCA

“containment order” on partitions
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P2 " pz
is of type A = (3,1). The possible types for its subgroups are:

(3:1), (2,1), (1,1), (3), (2), (1)
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Example

Consider A € A(n):
A=(1")=(1,...,1) n times.
A group of type A is nothing but the Z/pZ-vector space
(2/p2)"

Its subgroups are of type (1¥) for 0 < k < n.



Counting subgroups

Combinatorial Problem
Given p C A (and p), count the number of subgroups of type p in
a group of type A.



Counting subgroups

Combinatorial Problem
Given p C A (and p), count the number of subgroups of type p in

a group of type A.
We denote this number by
()
K/ p



Example

1n
(( )> = no. of k-dimensional subspaces in (Z/pZ)"
p

= (Z) the Gaussian binomial coefficient
P

— (pn - 1)(pn — p) c. . (Pn _ pn_k+1)
(k= D)(pk —p)--- (k= P 1)

= >

AC((n—k)k)

= Z pinv(w).

D(w)C{k}

Note: D() is the descent set of .
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Example

<(5, 4,3,21)

= p'? +3p't +6p™ + 7p° + 6p% +3p" + p°
(3.21) /,

In general

> (2) is always a polynomial in p with non-negative integer
p
coefficients.
» combinatorial interpretations are available (Butler - 1994).

» theory is well developed (related to Hall polynomials etc.)
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Symmetries of abelian groups

The group of symmetries of A is:
Aut(A)={g:A— A| g is an isomorphism}

If Ais a p-group of type A, then Gy(p) = Aut(A) is a group of

order
oo mj

pZ;,j min(A;,A7) H H(l _ p—j)7

i=1j=1

where A = (1™2™2...) (exponential notation).
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Orbits

The symmetry group G acts on A.
It therefore acts on structures inside A such as:

> elements of A
> subgroups of A

> tuples of elements of A

Problem
Count the number of G-orbits of structures in A
Or better still, develop a theory of G-orbits of structures in A
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Example: points in a vector space

Take A\ = (17)
A= (Z/pZ)", G = GL,(Z/pZ).
G acts in tuples (x,...,xx) in A:

g (xt,. ., x) = (&1, -, &%)
The space of orbits for this action may be thought of as the space
of k-point configurations.

Theorem
The number of G-orbits in AX is given by

min(n,k)

o E (),

i=0

Note
This is a polynomial in p with non-negative integer coefficients.
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Orbits of points in A

For general \ the problem of classifying G-orbits of points in AX is
open for k > 2 (and not fully understood for k = 2).

When k = 1, the problem is just that of classifying (or counting)
G-orbits in A.

Example: A = (m")
A= (Z/pZ)".

h(x1, ..., xK) = min{s | (x1,...,x) € p°A¥}

Then (xi,...,xk) and (y1,...,yx) lie in the same G orbit if and
only if
h(Xl, ce 7Xk) = h(yl, oo ,yk).
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Degeneration

Suppose A and B are abelian groups.

Definition
Say a € A degenerates to b € B if:

there exists homomorphism ¢ : A — B such that ¢(a) = b.

Write a — b.

For cyclic groups:
a=p €Z/pZ
b=p°cZ/p'Z
Then a — b if and only if
» r<s
» k—r>/—s
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The Fundamental Poset

Points of P:
(r,k), 0 <k <o0;0<r<k
Say that (r, k) > (s, /) if
» r<s
>» k—r>/[—s
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Ideals describe orbits

For abelian p-groups A and B, let a € A and b € B.

Let /(a) and /(b) denote the order ideals of a and b in the
fundamental poset.

It is easy to show that:

a — b if and only if /(a) D I(b).

As a consequence, if a, b € A are in the same G-orbit, we must
have:

Theorem (with Kunal Dutta)
Two elements a, b € A lie in the same G-orbit if and only if

1(a) = I(b).
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Ideals describe orbits

For a partition A, and and ideal / in the fundamental poset define:

Mx= > ma(k),

(v,k)el

where my (k) is the number of times k occurs in A. It is easy to see
that (for A of type \)

By o= #{a €A ‘ I(a) - I} = [I],\

Using Mobius inversion on the lattice of order ideals in P, we get
the cardinality of a G-orbit in A:

a=#{acAll@=0=0 [[ @-pm™®).

(v,k)emax/






Orbits of pairs

Theorem (with C. P. Anilkumar)

For every partition \, there exists a monic polynomial ny(t) with
integer coefficients with degree A1 such that, for any prime p, if A
is an abelian p-group of type \, then the number of G-orbits in

A x A is given by

|G\(A x A)| = nx(p).



t+2

2 4 2t + 2
t+3

3+ 224+ 2t+2
t2+5t+5
t+3

t* 213 4+ 212 + 2t + 2
3451247t +4
t2+3t+5
t>+5t+6
t+3

t> 42t + 213 4262 + 2t + 2
t* +5t3+ 72+ 6t +4
t34+5t2 4+ 10t +7
t3+5t2+8t+6
t>2 +6t+38
t2+5t+6
t+3
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For every partition A, ny(t) has non-negative integer coefficients.
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Open Conjecture

For every partition A, ny(t) has non-negative integer coefficients.

The polynomials ny(t) were computed for all partitions A of
positive integers up to 21, and were found to satisfy the conjecture.

To access raw data visit:
http://www.imsc.res.in/~amri/pairs/
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A general qualitative result

Let A be a finite abelian group.

Definition
Say that a tuple a = (a1, ..., ax) degenerates to b = (by, ..., by)
(denoted a — b if there exists an endomorphism ¢ : A — A such
that

qﬁ(a,-): b,‘ fori = l,...,k.

Similarly say that a subgroup B; of A degenerates to a subgroup
B of A (denoted By — By) if there exists an endomorphism
¢ : A — A such that

¢(B1) = Ba.

Clearly, if two tuples or subgroups lie in the same G-orbit, then
they degenerate to each other.
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A general qualitative result

Theorem (with Wesley Calvert and Kunal Dutta)

If tuples a — b and b — a, then a and b lie in the same G-orbit.
Similarly if subgroups By — By and By — Bj, then they lie in the
same subgroup.

The proof is based on a proof of Mackey and Kaplansky of Ulm's
theorem, which provides a classification of countable reduced
torsion abelian groups. The result therefore holds in their more
general setting. Nevertheless, it seems to be non-trivial even for
finite abelian groups.

Consequence

Degeneration descends to a poset structure on the set of G-orbits
of tuples or subgroups.
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