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Finite Abelian p-Group

Every abelian group of order pn is of the form:

A =
Z

pλ1Z
⊕ Z

pλ2Z
⊕ · · · ⊕ · · · Z

pλlZ
,

for a unique sequence λ1 ≥ λ2 ≥ · · · ≥ λl of integers such that
λ1 + · · ·+ λl = n.

Λ(n) = Set of all partitions of n

Abelian groups of order pn ↔ Λ(n).
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Subgroups

Suppose

A =
Z

pλ1Z
⊕ Z

pλ2Z
⊕ · · · ⊕ · · · Z

pλlZ
,

and suppose B is a subgroup of A.
If

B =
Z

pµ1Z
⊕ Z

pµ2Z
⊕ · · · ⊕ · · · Z

pµlZ
,

Then:
µ1 ≤ λ1, µ2 ≤ λ2, . . . , µl ≤ λl .

If the above inequalities hold, we write:

µ ⊂ λ

“containment order” on partitions
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Example

Z

p3Z
⊕ Z

pZ

is of type λ = (3, 1).

The possible types for its subgroups are:

(3, 1), (2, 1), (1, 1), (3), (2), (1).
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Example

Consider λ ∈ Λ(n):

λ = (1n) = (1, . . . , 1) n times.

A group of type λ is nothing but the Z/pZ-vector space

(Z/pZ)n.

Its subgroups are of type (1k) for 0 ≤ k ≤ n.
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Counting subgroups

Combinatorial Problem
Given µ ⊂ λ (and p), count the number of subgroups of type µ in
a group of type λ.

We denote this number by (
λ

µ

)
p
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Example

(
(1n)

(1k)

)
p

= no. of k-dimensional subspaces in (Z/pZ)n

=

(
n

k

)
p

the Gaussian binomial coefficient

=
(pn − 1)(pn − p) · · · (pn − pn−k+1)

(pk − 1)(pk − p) · · · (pk − pk−1)

=
∑

λ⊂((n−k)k )

p|λ|

=
∑

D(π)⊂{k}

pinv(π).

Note: D(π) is the descent set of π.



Example

(
(5, 4, 3, 2, 1)

(3, 2, 1)

)
p

= p12 + 3p11 + 6p10 + 7p9 + 6p8 + 3p7 + p6

In general

I
(
λ
µ

)
p

is always a polynomial in p with non-negative integer

coefficients.

I combinatorial interpretations are available (Butler - 1994).

I theory is well developed (related to Hall polynomials etc.)
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Symmetries of abelian groups

The group of symmetries of A is:

Aut(A) = {g : A→ A | g is an isomorphism}

If A is a p-group of type λ, then Gλ(p) = Aut(A) is a group of
order

p
∑

i,j min(λi ,λj )
∞∏
i=1

mi∏
j=1

(1− p−j),

where λ = (1m12m2 · · · ) (exponential notation).
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Orbits

The symmetry group G acts on A.

It therefore acts on structures inside A such as:

I elements of A

I subgroups of A

I tuples of elements of A

Problem
Count the number of G -orbits of structures in A
Or better still, develop a theory of G -orbits of structures in A
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Example: points in a vector space
Take λ = (1n)

A = (Z/pZ)n, G = GLn(Z/pZ).
G acts in tuples (x1, . . . , xk) in A:

g · (x1, . . . , xk) = (gx1, . . . , gxk)

The space of orbits for this action may be thought of as the space
of k-point configurations.

Theorem
The number of G -orbits in Ak is given by

|G\Ak | =

min(n,k)∑
i=0

(
k

i

)
p

.

Note
This is a polynomial in p with non-negative integer coefficients.
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Orbits of points in A

For general λ the problem of classifying G -orbits of points in Ak is
open for k > 2 (and not fully understood for k = 2).

When k = 1, the problem is just that of classifying (or counting)
G -orbits in A.

Example: λ = (mn)

A = (Z/pmZ)n.

h(x1, . . . , xk) = min{s | (x1, . . . , xk) ∈ psAk}

Then (x1, . . . , xk) and (y1, . . . , yk) lie in the same G orbit if and
only if

h(x1, . . . , xk) = h(y1, . . . , yk).
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Degeneration

Suppose A and B are abelian groups.

Definition
Say a ∈ A degenerates to b ∈ B if:

there exists homomorphism φ : A→ B such that φ(a) = b.

Write a→ b.

For cyclic groups:

a = pr ∈ Z/pkZ
b = ps ∈ Z/plZ
Then a→ b if and only if

I r ≤ s

I k − r ≥ l − s
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The Fundamental Poset

Points of P:
(r , k), 0 ≤ k <∞; 0 ≤ r < k

Say that (r , k) ≥ (s, l) if

I r ≤ s

I k − r ≥ l − s
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1 ∈ Z/p2Z

p5 ∈ Z/pkZ
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Ideal of an element

(p2, 0, p, p2, p, 1)
λ = (7, 6, 4, 3, 3, 1)
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Ideals describe orbits

For abelian p-groups A and B, let a ∈ A and b ∈ B.

Let I (a) and I (b) denote the order ideals of a and b in the
fundamental poset.
It is easy to show that:

a→ b if and only if I (a) ⊃ I (b).

As a consequence, if a, b ∈ A are in the same G -orbit, we must
have:

I (a) = I (b)

Theorem (with Kunal Dutta)

Two elements a, b ∈ A lie in the same G -orbit if and only if
I (a) = I (b).
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Ideals describe orbits

For a partition λ, and and ideal I in the fundamental poset define:

[I ]λ =
∑

(v ,k)∈I

mλ(k),

where mλ(k) is the number of times k occurs in λ. It is easy to see
that (for A of type λ)

βI := #{a ∈ A | I (a) ⊂ I} = [I ]λ.

Using Möbius inversion on the lattice of order ideals in P, we get
the cardinality of a G -orbit in A:

αI := #{a ∈ A | I (a) = I} = [I ]λ
∏

(v ,k)∈max I

(1− p−mλ(k)).
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In the example

a = (p2, 0, p, p2, p, 1)

λ = (7, 6, 4, 3, 3, 1)

[I ]λ = 5 + 4 + 3 + 2× 2 + 1

max I = {(2, 7), (1, 4), (0, 1)}

αI = p17(1− p−1)2(1− p−2)



Orbits of pairs

Theorem (with C. P. Anilkumar)

For every partition λ, there exists a monic polynomial nλ(t) with
integer coefficients with degree λ1 such that, for any prime p, if A
is an abelian p-group of type λ, then the number of G -orbits in
A× A is given by

|G\(A× A)| = nλ(p).



(1) t + 2

(2) t2 + 2t + 2
(1, 1) t + 3

(3) t3 + 2t2 + 2t + 2
(2, 1) t2 + 5t + 5

(1, 1, 1) t + 3

(4) t4 + 2t3 + 2t2 + 2t + 2
(3, 1) t3 + 5t2 + 7t + 4
(2, 2) t2 + 3t + 5

(2, 1, 1) t2 + 5t + 6
(1, 1, 1, 1) t + 3

(5) t5 + 2t4 + 2t3 + 2t2 + 2t + 2
(4, 1) t4 + 5t3 + 7t2 + 6t + 4
(3, 2) t3 + 5t2 + 10t + 7

(3, 1, 1) t3 + 5t2 + 8t + 6
(2, 2, 1) t2 + 6t + 8

(2, 1, 1, 1) t2 + 5t + 6
(1, 1, 1, 1, 1) t + 3



Open Conjecture

For every partition λ, nλ(t) has non-negative integer coefficients.

The polynomials nλ(t) were computed for all partitions λ of
positive integers up to 21, and were found to satisfy the conjecture.

To access raw data visit:
http://www.imsc.res.in/~amri/pairs/

http://www.imsc.res.in/~amri/pairs/
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A general qualitative result

Let A be a finite abelian group.

Definition
Say that a tuple a = (a1, . . . , ak) degenerates to b = (b1, . . . , bk)
(denoted a→ b if there exists an endomorphism φ : A→ A such
that

φ(ai ) = bi for i = 1, . . . , k .

Similarly say that a subgroup B1 of A degenerates to a subgroup
B2 of A (denoted B1 → B2) if there exists an endomorphism
φ : A→ A such that

φ(B1) = B2.

Clearly, if two tuples or subgroups lie in the same G -orbit, then
they degenerate to each other.
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A general qualitative result

Theorem (with Wesley Calvert and Kunal Dutta)

If tuples a→ b and b→ a, then a and b lie in the same G -orbit.

Similarly if subgroups B1 → B2 and B2 → B1, then they lie in the
same subgroup.

The proof is based on a proof of Mackey and Kaplansky of Ulm’s
theorem, which provides a classification of countable reduced
torsion abelian groups. The result therefore holds in their more
general setting. Nevertheless, it seems to be non-trivial even for
finite abelian groups.

Consequence

Degeneration descends to a poset structure on the set of G -orbits
of tuples or subgroups.
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