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Abstract. An element x of a finite group G is said to be p-regular
if its order is not divisible by p. Brauer gave several proofs of the
fact that the number of isomorphism classes of irreducible repre-
sentations of G over an algebraically closed field of characteristic
p is the same as the number of conjugacy classes in G that consist
of p-regular elements. One such proof is presented here.

Let G be a finite group, and K be any field. Then the group algebra
K[G] is a K-vector space with basis consisting of the elements of G:

K[G] =
{∑

g∈G

agg | ag ∈ K
}

.

Multiplication is defined by linearly extending the product on basis
elements

g · h = gh for g, h ∈ G

to K[G]. The group algebra was introduced by the German mathemati-
cian Ferdinand Georg Frobenius in 1897 to study the representations
of finite groups.

Exercise 1. Let n > 1 be an integer. Let Z/nZ denote the cyclic group
with n elements. Show that K[Z/nZ] is isomorphic to K[t]/(tn − 1).

In this article, the term K[G]-module will be used to refer to a a
vector space M over K, together with an algebra homomorphism R :
K[G] → EndK(M), where EndK(M) denotes the algebra of K-linear
maps from M to itself. In practice, for any a ∈ K[G] and m ∈ M , the
element R(a)(m) of M will be denoted simply by am. For any vector
space M , let GL(M) denote the group of invertible K-linear maps from
M to itself. Recall that a representation of G over the field K consists
of a vector space M over K and a function r : G → GL(M) such
that r(gh) = r(g)r(h) for all g, h ∈ G. Such a vector space becomes a
K[G]-module under the action( ∑

g∈G

agg
)
m =

∑
g∈G

agr(g)m for all m ∈ V.
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The representation r can be recovered from the K[G]-module structure
by restricting to the basis elements of K[G] coming from G. In fact, the
study of K[G]-modules is equivalent to the study of representations of
G over K (in a category-theoretic sense, which will not be formulated
here). This article takes the module-theoretic viewpoint.

Two modules (or representations) are said to be isomorphic if there is
an isomorphism between their underlying vector spaces which preserves
the actions of the algebra (or group). A module defined by R and
M as above is called simple if M is non-trivial and does not admit
a non-trivial proper subspace that is invariant under R(a) for every
a ∈ K[G]. Similarly, a representation defined by r and M as above is
called irreducible if M is non-trivial and does not admit a non-trivial
proper subspace that is invariant under r(g) for every g ∈ G. Simple
K[G]-modules correspond to irreducible representations of G over K.
Irreducible representations may be considered to be the building blocks
of all representations, a point of view which is partially justified by the
Jordan-Hölder theorem.

Frobenius showed that the number of isomorphism classes of irre-
ducible representations of a finite group G over an algebraically closed
field K of characteristic zero (such as the field of complex numbers) is
equal to the number of conjugacy classes in G. In many modern text-
books this is deduced from the fact that the characters of irreducible
representations form a basis of the space of class functions (see e.g.,
[Art94]). This result fails when the characteristic of K divides the or-
der of the group G, as was pointed out by the American mathematician
Leonard Eugene Dickson in the first decade of the twentieth century.
The determination of the number of isomorphism classes of irreducible
representations in this case remained open for a long time and was
finally solved by another German mathematician, Richard Brauer, in
1935.

Even though Brauer was already a leading representation theorist,
he lost his position at the University of Königsberg in Germany in 1933,
after Hitler assumed dictatorial powers and started implementing his
anti-semitic policies. Brauer moved to the United States, and then to
Canada, and went on to become the most influential figure in mod-
ern representation theory. The result of Brauer that is discussed here
is only the first of many discoveries that he made on representations
in positive characteristic by analysing the ring-theoretic properties of
group algebras. The most striking of these is known as the theory of
blocks, which has been applied with great success to the study of the
structure and the classification of finite simple groups. The reader who
is interested in Brauer’s life and work is referred to Curtis’s remarkable
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book [Cur99], from where the proof of Brauer’s theorem given here
(originally due to Brauer himself) has been adapted. The standard
reference for results on non-semisimple algebras and modular represen-
tations is [CR62]. A picture of developments in the general theory of
modular representations up to 1980 is found in [Fei82]. Many newer
developments can be found in [Ben91a] and [Ben91b].

Brauer’s theorem is easy to state: an element of G is called p-regular
if its order is not divisible by p. A p-regular conjugacy class is a con-
jugacy class consisting of p-regular elements.

Theorem (Brauer). When K is algebraically closed of characteristic
p > 0, the number of isomorphism classes of simple K[G]-modules is
equal to the number of p-regular conjugacy classes in G.

This theorem follows from Propositions 7 and 9 below. The reader
who is already familiar with the basic theory of associative algebras
may proceed directly to these statements and their proofs.

In what follows K will always be an algebraically closed field and all
K-algebras and all their modules will be assumed to be finite dimen-
sional vector spaces over K. Every algebra A will be assumed to have
a multiplicative unit 1 ∈ A. For every module M it will be assumed
that 1 acts on M as the identity (such a module is called unital). For
two A-module M and N , HomA(M, N) will denote the A-module ho-
momorphisms from M to N , namely those linear maps φ : M → N
for which φ(am) = aφ(m) for all a ∈ A and m ∈ M . EndA(M) will
denote the space HomA(M, M) of endomorphisms of M . A submod-
ule of M will be a subspace M ′ of M such that am′ ∈ M ′ for every
a ∈ A and m′ ∈ M ′. Note that the image and kernel of and A-module
homomorphism is a submodule.

Definition. M is said to be a simple A-module if it is non-trivial and
it contains no non-trivial proper submodules.

Theorem (Schur’s lemma). (1) If M is a simple A-module, then
EndA(M) ∼= K.

(2) If both M and N are non-isomorphic simple A-modules, then
HomA(M, N) = 0.

Proof. Suppose M is simple and φ ∈ EndA(M). Then, since K is
algebraically closed, φ has an eigenvalue λ ∈ K. φ − λI is singular
and lies in EndA(M). Its kernel is a non-trivial A-submodule. By the
simplicity of M , this kernel must be all of M . Therefore φ = λI. The
proof of the second assertion is an easy exercise for the reader. �



4 AMRITANSHU PRASAD

Suppose M is a simple A-module. Pick m ∈ M such that m 6= 0.
The map φm : A → M given by

φm(a) = am for all a ∈ A

is an A-module homomorphism (here A is viewed as a left A-module).
Since the image of φm is a non-trivial submodule of M , it must be all
of M . Therefore, φm is surjective. Its kernel is a left ideal in A.

Conclusion. Every simple A-module is isomorphic to a quotient of A
by a left ideal.

Definition. A left ideal N of A is said to be nilpotent if there exists
a positive integer k such that Nk = 0 (here Nk is the vector space
spanned by products of k elements in N).

Exercise 2. Suppose that K is an algebraically closed field of charac-
teristic p, and that n = pm for some positive integer m. Show that
(tm − 1) generates a nilpotent ideal in K[t]/(tn − 1).

Proposition 1. Every nilpotent left ideal of A is contained in the ker-
nel of φm.

Proof. Suppose that N is a left ideal of A not contained in ker φm. Then
Nm is a non-trivial submodule of M , hence Nm = M . In particular,
there exists n ∈ N such that nm = m. It follows that nkm = m for
every positive integer k. Therefore, every power of n is non-zero. N
can not, therefore, be nilpotent. �

It is not always the case that a finite dimensional A-module is a
direct sum of simple modules.

Exercise 3. Take K to be any field of characteristic two. Take A to
be K[Z/2Z]. Show that A has a unique non-trivial proper submodule,
which is spanned by 0+1 (here 0 and 1 are the basis vectors). Conclude
that A can not be written as a direct sum of simple A-modules.

Definition. An A-module M is said to be semisimple if it can be
written as a direct sum of simple modules. A is called a semisimple
algebra if, as an A-module, A is semisimple. A is called a simple algebra
if it has no proper two-sided ideals.

Exercise 4. Suppose that K is a algebraically closed and that the char-
acteristic of K does not divide n. Show that the equation tn − 1 = 0
has n distinct roots.

Exercise 5. Assume that K is as in Exercise 4. Show that K[Z/nZ] is
semisimple (Hint: use Exercises 1 and 4).
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Example. Maschke’s theorem (see, e.g., [Art94, p. 316]) states that
K[G] is semisimple when the characteristic of K does not divide the
order of G.

Exercise 6. (see [Lan99, p. 656]) Show that the algebra Mn(K) of n×n
matrices is simple (for example, by showing that the two-sided ideal
generated by any non-zero matrix is all of Mn(K)). Show that every
simple module is isomorphic to Kn (which can be thought of as the
space of column vectors on which Mn(K) acts on the left by multipli-
cation).

Proposition 2. Every semisimple algebra is a direct sum of simple
algebras.

Proof. Let A1 be a minimal two-sided ideal of A. Let A′ be a comple-
ment of A1 (as a left A-module), so that A = A1 ⊕ A′. Suppose that
the decomposition of 1 under the above direct sum decomposition is
1 = ε1 + ε′. The decomposition of a ∈ A is given by a = aε1 + aε′. In
particular, ε1 = ε11 = ε1(ε1 + ε′) = ε2

1 + ε1ε
′. Therefore, ε2

1 = ε1 and
ε1ε

′ = 0. Similarly, ε′ε1 = 0. We can also write A = ε1A ⊕ ε′A, where
the decomposition of a ∈ A is given by a = ε1a + ε′a. If a1 ∈ A1, then
comparing its two decompositions shows that a1 = a1ε1 = ε1a1. More
generally, if a ∈ A, then aε1 = aε2

1 = (aε1)ε1. But aε1 ∈ A1. There-
fore, (aε1)ε1 = ε1(aε1). A similar argument can be used to show that
ε1a = (ε1a)ε1. Therefore aε1 = ε1a. Since ε′ = 1 − ε1, it also follows
that ε′a = aε′ for every a ∈ A. Therefore, A′ = Aε′ = ε′A, so that
A′ is also a two sided ideal. Now repeat this argument replacing A by
A′. Continuing in this manner, one obtains that A = A1 ⊕ · · · ⊕ As

for some s, where the summands are minimal two-sided ideals, hence
simple algebras. �

We now discuss another characterization of semisimple algebras.
Firstly note that

Lemma 3. The sum of two nilpotent left ideals is nilpotent.

Proof. Suppose that N1 and N2 are two nilpotent left ideals. Take k
such that Nk

1 = Nk
2 = 0. Every element of (N1 + N2)

2k is a product
of 2k terms of the form (n1 + n2), where n1 ∈ N1 and n2 ∈ N2. In
each term of the expansion of this product, either elements of N1, or
elements of N2 occur at least k times, so that the term is either in Nk

1

or Nk
2 , and is therefore 0. �

Exercise 7. Show that ( 0 0
1 0 ) and ( 0 1

0 0 ) are nilpotent elements in M2(K),
but their sum is not nilpotent. Why does this example not contradict
Lemma 3?



6 AMRITANSHU PRASAD

Suppose that N is a nilpotent left ideal of A. If N is not maximal,
then there exists a nilpotent ideal N ′ that is not contained in N . By
Lemma 3, N + N ′ is a nilpotent ideal, which strictly larger than N .
From the finite dimensionality of A, it now follows that A has a unique
maximal nilpotent left ideal, which is called the radical of A, denoted
RadA. By Proposition 1, RadA ⊂ ker φm. Now (RadA)A is a two-sided
ideal. It is nilpotent because

[(RadA)A]2 ⊂ (RadA)2A, [(RadA)A]3 ⊂ (RadA)3A, . . . .

It follows that (RadA)A ⊂ RadA, and so RadA is a two-sided ideal.

Exercise 8. If I is a two-sided ideal in A, show that the formulas (a +
I) + (b + I) = a + b + I and (a + I)(b + I) = ab + I give rise to a
well-defined algebra structure on the quotient space A

I
.

This allows one to make sense of the quotient A
RadA

as an algebra.

Proposition 4. A is semisimple if and only if RadA = 0.

Proof. Suppose that A is semisimple. Then A, as a left A-module, can
be written as a sum of simple A-modules:

A = M1 ⊕ · · · ⊕Mk.

Suppose that 1 = e1 + · · · + ek is the decomposition of 1. Then the
identity map of A (which is right multiplication by 1) can be written as
φe1 + · · · + φem . By Proposition 1, RadA ⊂ ∩k

i=1 ker φei
. On the other

hand
∩k

i=1 ker φei
= ker(φe1 + · · ·+ φek

) = 0.

Therefore, RadA = 0.
Conversely, suppose that RadA = 0. Then A has no non-trivial

nilpotent left ideals. Let N be a minimal non-zero left ideal of A (as
an A-module, N is simple). Then N2 is a left ideal contained in N .
Since N2 6= 0, N2 = N . Therefore, there exists a ∈ N such that
Na 6= 0. But Na itself is a left ideal contained in N . Therefore,
Na = N . It follows that B = {b ∈ N | ba 6= 0} is a left ideal properly
contained in N . Therefore B = 0. Moreover, since Na = N , a = ca
for some c ∈ N . Also ca = c2a, so that (c− c2)a = 0. In other words,
c− c2 ∈ B. Therefore c− c2 = 0. Therefore c is a non-zero idempotent
in N . By the minimality of N , Ac = N . Moreover, A = Ac⊕A(1− c).
If A(1 − c) is not simple, then take a minimal left ideal in A(1 − c)
and repeat the above process. Since A is a finite dimensional vector
space, this process will end after a finite number of steps, resulting in
a decomposition of A into a direct sum of simple modules. Therefore
A is semisimple. �
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Corollary 5. A
RadA

is semisimple.

Proof. Since RadA is a maximal nilpotent ideal, A
RadA

has no nilpotent

ideals. By Proposition 4, A
RadA

is semisimple. �

Exercise 9. Suppose that K has characteristic p, and let n = pm for
some positive integer m. Show that K[Z/nZ] is not semisimple (Hint:
use Exercises 1 and 2).

Corollary. Every simple algebra is semisimple.

Proof. Since RadA is a proper two-sided ideal, the simplicity of A im-
plies that RadA = 0. Therefore A is semisimple. �

Theorem (Wedderburn). Every simple algebra is isomorphic to Mn(K)
for some positive integer n.

Proof. Since A is semisimple, A (viewed as a left A-module) can be
decomposed into a direct sum of simple A-modules. Let

(6) A = M⊕m1
1 ⊕ · · · ⊕M⊕mk

k

be such a decomposition where M1, . . . ,Mk are pairwise non-isomorphic.
For each a ∈ A, the map φa : A → A defined by φa(x) = xa is an A-
module homomorphism A → A. Moreover, φa ◦ φb = φba. Conversely,
every A-module homomorphism φ : A → A is of the form φa, where
a = φ(1). Therefore the A-module homomorphisms A → A form an
algebra A∗ whose elements are the same as those of A, but multiplica-
tion is reversed. A two-sided ideal of A is also a two sided ideal of this
A∗. Therefore A∗ is also simple. Schur’s lemma can be used to show
that A∗ = Mm1(K)⊕· · ·⊕Mmk

(K). Mm1(K) is proper two-sided ideal
of A∗. Therefore, by the simplicity A∗ we must have k = 1 in (6) and
A∗ = Mm1(K). �

Proposition 7. Let A be a finite dimensional algebra over an alge-
braically closed field K of characteristic p > 0. Let

S = Span {ab− ba | a, b ∈ A},
T = {r ∈ A | rq ∈ S for some power q of p}.

Then T is a subspace of A, and the number of isomorphism classes of
simple A-modules is dimK(A/T ).

Proof. In the expansion

(a + b)p =
∑

εi∈{a,b}

ε1 · · · εp,



8 AMRITANSHU PRASAD

all the terms except ap and bp can be grouped into sets of p summands
of the form

ε1 · · · εp + ε2 · · · εpε1 + · · ·+ εpε1 · · · εp−1.

All the terms in the above expansion are congruent modulo S, and so
their sum vanishes modulo S. Therefore,

(8) (a + b)p ≡ ap + bp mod S.

It follows T is closed under addition. It is clear that T is closed under
multiplication by scalars in K. Hence T is a subspace of A.

Now take u, v ∈ A, and let w = v(uv)p−1. Then

(uv − vu)p ≡ (uv)p − (vu)p ≡ uw − wu ≡ 0 mod S.

Therefore, the pth power of an element of S is again in S. Hence S ⊂ T .
Suppose now, that A is simple. By Wedderburn’s theorem, A is

isomorphic to Mn(K) for some positive integer n. Claearly, for A =
Mn(K), every matrix in S has trace zero. The converse of this state-
ment is also true: every matrix with trace zero lies in S. To see this
for n = 2, note that(

1 0
0 −1

)
=

[(
0 1
0 0

)
,

(
0 0
1 0

)]
,(

0 1
0 0

)
=

[(
1 0
0 0

)
,

(
0 1
0 0

)]
,(

0 0
1 0

)
=

[(
0 0
0 1

)
,

(
0 0
1 0

)]
.

In the above equations, ab − ba has been denoted [a, b], which is cus-
tomary. Similar identities can be used to obtain the result for arbitrary
n. Since S consists of trace zero matrices, dim(A/S) = 1, and since
S ⊂ T , dim(A/T ) must be 0 or 1. The matrix E11 for which the entry
in the first row and first column is 1 and all other entries are 0 is never
in T . Therefore T is a proper subspace of A. One must therefore have
that dim(A/T ) = 1. On the other hand Mn(K), being simple, has
a unique simple module up to isomorphism. Therefore, Proposition 7
holds when A is simple.

For the general case, note that every nilpotent element of A is in T .
Therefore, RadA ⊂ T . It follows from Proposition 7 that RadA acts
trivially on every simple A-module and that the number of isomorphism
classes of simple modules is the same for A and A

RadA
. A

RadA
is a direct

sum A1⊕· · ·⊕Ar of simple algebras by Corollary 5 and Proposition 2.
A simple module for Ai becomes a simple module for A1 ⊕ · · · ⊕ Ar

when the other summands act trivially. Moreover, every simple module
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is obtained in this way. Therefore, A1 ⊕ · · · ⊕ Ar (and hence A) has r
isomorphism classes of simple modules. On the other hand, define Ti

for Ai just as T was defined for A. Then A/T is a direct sum of the
Ai/Ti’s. Therefore, applying Proposition 7 in the simple case to Ai, we
see that dim A/T = r. �

Proposition 9. Let K be an algebraically closed field of characteristic
p > 0 and let A = K[G]. Then, the number of p-regular conjugacy
classes in G is the same as dim A/T .

Proof. Every x ∈ G can be written as x = st, where s is p-regular
and the order of t is a power of p, for if the order of x is n = n′pe,
where n′ is not divisible by p, then there exist integers a and b such
that ape + bn′ = 1, and one may take s = xape

and t = xbn′
. By (8),

(st− s)p ≡ sptp − sp mod S.

Consequently, if q is the order of t,

(st− s)q ≡ sqtq − sq ≡ 0 mod S.

Therefore, st − s ∈ T , or st ≡ s mod T . Therefore, every element
of G (thought of as an element of K[G]) is congruent modulo T to a
p-regular element. Furthermore, since T contains S, all elements in the
same conjugacy class are equivalent modulo T . Therefore, the number
of p-regular conjugacy classes in G is an upper bound for dim A/T .

Suppose R ⊂ G is a set of representatives of p-regular conjugacy
classes. It remains to show that R is a linearly independent set in
A/T . Suppose that

∑
arr ∈ T for some ar ∈ K, r ∈ R. There exists

a power q of p such that rq = r for every r ∈ R (because p is a unit
in Z/n′Z, where n′ is the order of r), and such that (

∑
arr)

q ∈ S.
Therefore, (∑

arr
)q

≡
∑

aq
rr

q ≡
∑

aq
rr mod S,

and consequently,
∑

aq
rr ∈ S. But S consists of those elements of K[G]

with the property that the sum the coefficients of all the elements in
each conjugacy class of G is zero (prove this). Therefore, aq

r, and hence
ar is zero for every r ∈ R. It follows that R is linearly independent in
A/T . �

Acknowledgements. The author is grateful to S. Ponnusamy and
K. N. Ragahavan for helpful comments on preliminary drafts of this
article. He thanks the students of TIFR for inviting him to give the
lecture on which this article is based.



10 AMRITANSHU PRASAD

References

[Art94] Michael Artin. Algebra. Prentice Hall of India Private Limited, New Delhi,
1994.

[Ben91a] D. J. Benson. Representations and cohomology. I, volume 30 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1991. Basic representation theory of finite groups and asso-
ciative algebras.

[Ben91b] D. J. Benson. Representations and cohomology. II, volume 31 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1991. Cohomology of groups and modules.

[CR62] Charles W. Curtis and Irving Reiner. Representation theory of finite
groups and associative algebras. Pure and Applied Mathematics, Vol. XI.
Interscience Publishers, a division of John Wiley & Sons, New York-
London, 1962.

[Cur99] Charles W. Curtis. Pioneers of representation theory: Frobenius, Burn-
side, Schur, and Brauer, volume 15 of History of Mathematics. American
Mathematical Society, Providence, RI, 1999.

[Fei82] Walter Feit. The representation theory of finite groups, volume 25 of
North-Holland Mathematical Library. North-Holland Publishing Co., Am-
sterdam, 1982.

[Lan99] Serge Lang. Algebra. Addison-Wesley (International Student Edition),
third edition, 1999.

E-mail address: amri@imsc.res.in
URL: http://www.imsc.res.in/~amri

The Institute of Mathematical Sciences, CIT campus, Taramani,
Chennai 600113.

http://www.imsc.res.in/~amri
http://www.imsc.res.in

	References

