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Abstract

The main aim of this thesis is to develop space efficient structures for some of the
most fundamental problems in the area of data structures. In particular, we focus
on the design of data structures that use almost optimal space while supporting the
operations efficiently. The concrete problems we consider are: the representations
of suffir trees, suffix arrays, static dictionaries supporting rank, cardinal trees, a
list of numbers supporting partial sum queries, dynamic bit vectors and dynamic
arrays. We look at these problems in the extended RAM model which supports all
arithmetic and bitwise boolean operations on words in constant time. We assume an
appropriate word size arising naturally from the problem instance. We also consider
the problem of static dictionary in the bitprobe model.

We give the first space efficient suffix tree representation that answers all indexing
queries in optimal time. For a text of length n over an alphabet X, this structure
takes nlgn+O(n) bits of space and and supports searching for a a pattern of length
m in O(mlg|X|) time. The main idea here is to use the succinct representation of
binary trees to represent the tree structure of a suffix tree. For binary texts we
also develop two index structures with better space complexity, but supporting a
restricted set of indexing queries.

Extending the ideas of Grossi and Vitter, we give a compressed suffix array im-
plementation that takes o(nlgn) bits of space and supports lookup (finding the i
element in the suffix array, for any given 4) in constant time. Using this representa-
tion, we give the first indexing structure with o(nlgn) bits of space that supports
all indexing queries in optimal time.

We consider the static dictionary problem that also supports the rank operation
for the elements present. This has applications in representing higher degree cardinal
trees, which in turn have several applications including representing suffix trees with
large alphabets directly without converting them into binary trees. We give a rank-
dictionary for a subset of size n from a universe of size m that uses n [lgm] +
O(lglgm) bits of space and supports the membership and rank (for the elements
present) operations in constant time. We then show a way of representing a set of
dictionaries to support rank queries on individual dictionaries. Using the ideas of
Benoit et al., we show that this immediately gives a structure to represent a cardinal

tree using almost optimal space that supports all the navigational operations in
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constant time.
For the static dictionary problem in the bitprobe model, we develop a scheme to

2/3 bits of space

store two-element subsets of the universe U = {1,...,m} using 3m
which can be used to answer membership queries using two adaptive bit probes. We
show that this bound is tight for a restricted class of schemes. We then generalize
this two-probe two-element scheme to a scheme to store n-element sets with o(m)
bits of space that answers queries using lglgn+2 adaptive probes. All these schemes
are constructive.

We also look at some dynamic data structure problems where the operations
are allowed to change the input data. We mainly focus on two classical inter-
related problems: partial sums and dynamic arrays. For the partial sums problem
on a sequence of n elements we give a space optimal structure that supports par-
tial sum queries in O(log, n) time and updates in O(b) time, for any parameter
b > lgn/lglgn. For the searchable partial sums problem, which also supports se-
lect queries, we give an optimal space structure that supports all the operations in
O(lgn/lglgn) worst-case time. As a special case of partial sums, we consider the
dynamic bit vector problem where we give a structure that uses o(n) bits of extra
space for a given bit vector of length n, and supports rank and select operations in
O(log, n) time and flip in O(b) amortized time.

For the dynamic array problem, we first give a structure that uses o(n) extra
words of space and supports updates in O(n°) worst case time and accesses in O(1)
worst-case time, for any fixed positive constant ¢ < 1. Using this structure, we
obtain a dynamic array structure that supports both query and update operations

in optimal O(lgn/lglgn) amortized time using o(n) bits of extra space.
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Chapter 1

Introduction

1.1 Motivation and Background

The aim of this thesis is to develop succinct structures for some of the most
fundamental problems in data structures. A data structure is called succinct if it
uses an amount of space that is optimal to within lower order additive terms and
still supports the required operations in asymptotically optimal time. Recently,
there has been a surge of interest in the study of succinct data structures [BCD*99,
BM99, Cla96, GV00, Jac89b, MR97, MRSO1].

Although the cost of memory is decreasing and the processor speeds are increas-
ing day by day, the amount of textual data to be processed (such as dictionaries,
encyclopedias, newspaper archives, web and genetic databases) is also increasing at
a much higher rate. So, one is still interested in compact representations of data
that support efficient retrieval. These representations have useful applications in
portable devices (like mobile phones and smart cards) where the amount of mem-
ory is limited. Furthermore, it is an interesting and challenging problem from a
theoretical view-point to develop data structures that use information-theoretically
optimal space and support operations in asymptotically optimal time.

This thesis deals with succinct representations for the following data structures:

e suffix trees and suffix arrays used for text indexing

e static dictionaries supporting membership and rank
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e trees of higher degree

static dictionaries in the bitprobe model

a list of numbers to support partial sum and update operations

a bit vector supporting rank, select and flip operations and

e dynamic arrays.

Suffix Trees

String matching is one of the most fundamental problems in text processing. A
suffix tree [Wei73] for a given string is a compact representation of all the suffixes
of the text which enables efficient pattern searches. Suffix trees have been used to
solve the string matching problem efficiently. They have also been applied to other
fundamental string problems such as finding the longest repeated substring [Wei73],
finding all squares or repetitions in a string [AP85], approximate string matching
[LV89], text compression [RPE81], compressing assembly code [FWM84], inverted
indices [Car75], and analyzing genetic sequences [CHM*86].

Classical representations of suffix trees have the drawback that the space re-
quired by the index is much higher than the space required to store the text itself,
which makes it prohibitive in some applications. The problem of space efficient rep-
resentation of index structures has been widely studied [Kar95, KU96, CM96, FG96,
Irv95, Mak00, GV00, FM00, Sad00]. We give the first nlgn + O(n)-bit suffix tree
structure, for a given text of length n, that supports indexing queries efficiently. We

also give two improved index structures for binary texts, but with less functionality.

Suffix Arrays

A suffix array is an array storing the positions of all the suffixes in the given
text in their lexicographic order. Given a text of length n, its suffix array can be
stored using n [lgn] bits by explicitly storing all its entries in an array. This can
be used to retrieve the i entry in constant time. But the disadvantage of this
structure is that this uses more space than necessary, which could be prohibitive in
some applications. One such application is the representation of a suffix tree; the
storage requirement of a suffix tree includes, as one of the components, the position

indices at the leaves, which is nothing but a suffix array.
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Grossi and Vitter [GV00] have given an O(n)-bit representation of a suffix array,
for a given binary text of length n, that supports indexing into the array in O(lg®n)
time, for any fixed positive constant ¢ < 1. Using this, they have obtained an
index structure that takes O(n) bits of space and supports index queries, except
finding all the occurrences, in optimal time, for binary texts. We give a suffix array
representation that takes O(nlg‘n) bits and supports indexing into the array in
constant time. Using this we obtain the first index structure for a binary text that

takes o(nlgn) bits of space and supports all indexing queries in optimal time.

Static Dictionaries

Given a subset S of size n from a universe U of size m, a static dictionary for S
is a representation of it that supports queries of the form ‘Is x in S7’, for any z € U.
This is a fundamental data-structure problem that has been widely studied in various
models. Fredman et al. [FKS84| have given the first linear space (O(n) words) data
structure for this problem in the extended RAM model. Since then various structures
have been proposed reducing the space further [SS90, FNSS92, BM99, Pag0la]. We
give a representation that uses n [lgm| + O(lglgm) bits of space and supports the
membership and rank (for the elements present) operations in constant time. We
also give a space efficient representation for a set of dictionaries to support rank

queries on individual dictionaries.

Cardinal Trees

Trees form an important structure in many computing applications. However,
their explicit representation using pointer based methods has a space requirement
that is much higher than the optimum. Recent work [Jac89b, Cla96, MR97, Ben98,
BDMR99, MRS01] has focused on space efficient representations of trees that sup-
port navigational operations efficiently.

We consider the problem of representing cardinal trees. A k-ary cardinal tree is
a generalization of a binary tree. It is a rooted ordered tree in which the children of
any node are uniquely labeled from the set {1,...,k}. Benoit et al. [ BDMR99] have
given a representation that, for a k-ary tree on n nodes, uses 2n+n [lgk| +o(n) bits
and supports ‘parent’, ‘5** child’, ‘degree’ and ‘subtree size’ operations at any given
node in constant time, and finding a child labeled 7 in O(lglgk) time. Using our

multiple dictionary representation, we obtain a k-ary cardinal tree representation
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takes 2n + n [lgk] + o(n) + O(lglg k) bits of space that supports all navigational

operations in constant time.

Static Dictionaries in the Bitprobe Model

Minsky and Papert [MP69] have proposed the bitprobe model and studied the
static membership problem in that model. Recently, Buhrman et al. [BMRV00] have
studied this problem further and have given several upper and lower bounds for
randomized and deterministic schemes. For the deterministic case, they have shown
that the simple bit vector scheme and the static dictionary structure of Fredman
et al. [FKS84] are optimal. They have also shown the existence of a deterministic
scheme with o(m) bits of space that answers membership queries using constant
number of probes, where m is the size of the universe.

We first give an explicit two-probe adaptive scheme with O(m?/?) bits of space,
improving the existential scheme given in [BMRV00] that takes O(m?®*) bits. We
show that our bound is optimal for a restricted class of schemes. From a general-
ization of this scheme, we obtain an adaptive scheme with o(m) bits of space that

answers queries using O(lglgn) probes, where n is the size of the set.

Partial Sums

Given a sequence of n elements each in the range {0,...,2% — 1} where k is
O(lgn), the partial sums problem is to maintain the sequence under the operations
of incrementing and decrementing the elements and finding the partial sum up to a
given index. Fredman and Saks [FS89] have shown a lower bound of Q(lgn/lglgn)
time for these operations. Dietz [Die89] has given a structure that supports all the
operations in O(lgn/lglgn) time using O(nlgn) bits. We modify Dietz’s structure
to obtain a data structure that uses kn+o(kn) bits of space. This structure supports,
apart form partial sum and update operations, the operation of finding the index
of an element with a given partial sum, all in O(lgn/lglgn) time. We also show
trade-offs between the query and update times.

As a special case, we consider a dynamic bit vector supporting rank, select
and flip operations. A bit vector supporting rank and select is a fundamental
building block for several succinct static data structures. They have been used,
for example, in the succinct representations of binary trees [Jac89b, Ben98, MRI7],

static dictionaries [BM99], and compressed representations of suffix arrays [GV00].
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Hence the dynamic bit vector problem is likely to have potential applications in

making these static data structures dynamic.

Dynamic Arrays

An array is perhaps the most primitive data structure. Almost all high-level
programming languages and assembly languages support an array data type. An
array is a static data type; it does not allow for element insertions and deletions,
but only allows element replacements and accesses based on rank (position). There
are, nevertheless, several applications where one would like to maintain a sequence
of elements under insertions and deletions and still be able to access them based on
their rank. This is in fact the motivation for the inclusion of a dynamic array data
type in the Java language.

Standard implementations of a dynamic array either use the most obvious scheme
of storing the elements in an array or use a balanced search tree to maintain the
sequence of elements. The first implementation supports accesses in constant time
and updates (inserts and deletes) in O(n) time, where n is the number of elements
in the current sequence. The second implementation supports both accesses and
updates in O(Ign) time using O(n) words of extra space.

The tiered vector data structure of Goodrich and Kloss [GI99] uses O(n'™c)
words of extra space and supports updates in O(n¢) amortized time while supporting
accesses in constant worst-case time, for any fixed positive constant € < 1. We first
give a structure that achieves the same space and time bounds with no amortization.
Using this structure, we obtain a dynamic array structure that supports both query
and update operations in optimal O(lgn/lglgn) amortized time using o(n) bits of

extra space.

1.2 Owur Contributions

e A suffix tree representation for a text of length n over an alphabet 3 that can
be stored using nlgn + O(n) bits such that given a pattern of length m, the
number of occurrences of the pattern in the string can be found in O(m lg|X|)
time. Finding all the occurrences of the pattern takes an additional O(occ)
time, where occ is the number of occurrences. Using this representation as a

substructure, we give the following data structures for the indexing problem



Chapter 1: Introduction

for binary texts (i.e., |X| = 2):

— An indexing structure that uses §1gn 4 O(n) bits of space and supports

finding an occurrence of the pattern, if it exists, in O(m) time.

— An indexing structure that requires o(nlgn) bits of space and answers

whether the given pattern occurs in the text in O(m) time.

e A compressed suffix array representation for a given binary text of length

1 ") bits of space and answers lookup

n that can be stored using O(nt(lgn)
queries in O(t) time, for any parameter 1 < ¢ < lglgn. Using this structure
and the ideas of Grossi and Vitter [GV00], we give an indexing data structure
for a binary text of length n that uses O(nlg®n) bits of space and answers
indexing queries in O(m/lgn) time, for any fixed positive ¢ < 1. Finding all
the occurrences of the pattern requires an additional O(occ) time, where occ

is the number of occurrences of the pattern in the text.

e A static dictionary data structure to represent a subset of size n from a universe
of size m using n [lgm] + O(lglgm) bits of space that supports membership
and rank (for the elements present in the set) operations in constant time. We
then use the ideas of universe reduction and sharing primes to get a structure
that stores a set of dictionaries with total cardinality n over a universe of
size m, using n [lgm| + O(lglgm) bits of space which supports rank (and
membership) queries on individual dictionaries in constant time. Using this
structure and the ideas of Benoit et al. [BDMR99], we give an n-node k-ary
cardinal tree representation that uses 2n + n [lgk] + o(n) + O(lglg k) bits of
space and supports ‘parent’, ‘4** child’, ‘child labeled j’, ‘degree’ and ‘subtree

size’ operations at any given node in constant time.

e Explicit constructions for static dictionaries in the bitprobe model when the
set size and the number of probes are small compared to the universe size.
We give a 2-probe adaptive scheme for sets of size at most 2 that takes 3m?/3
bits of space, where m is the size of the universe, and also show that this
scheme is optimal for a restricted class of storage schemes. We then gen-
eralize this to an adaptive scheme for storing sets of size at most n that
takes m*/(k+1) (lg(k +1)+ %lgn -+ knl/k) bits of space and answers member-
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ship queries using [lg(k + 1)] + [lg|n'/*]] + 1 bit probes, for any parameter
1<k<lgn—1.

e Dynamic data structures for some fundamental problems in data structures,

namely maintaining partial sums, dynamic bit vector and dynamic array.

— For the partial sums problem, we give a succinct structure that supports
sum in O(log, n) time and update in O(b) time, for any parameter b >
lgn/lglgn. For the searchable partial sums problem, we give an optimal
space structure that supports all the operations in O(lgn/lglgn) worst

case time.

— For the dynamic bit vector problem, we give a structure that uses o(n)
bits of extra space and supports rank and select operations in O(log, n)

time and flip in O(b) amortized time, for any parameter b > lgn/lglgn.

— For the dynamic array problem, we give two structures: one using O(n'¢)
extra words of space that supports updates in O(n¢) worst case time and
queries in O(1) worst-case time, for any fixed positive constant ¢ < 1,
and another that supports both query and update operations in optimal

O(lgn/lglgn) amortized time using o(n) bits of extra space.

1.3 Model of Computation

We work with an extended word RAM model throughout the thesis, except in
Chapter 4 where we work with a bitprobe model. The word RAM [Hag98] has 20(®)
registers each of which stores a w-bit word. All operations on words that are usually
available on modern computers, namely memory access, flow control, comparisons,
basic arithmetic operations (including multiplication and division), bitwise shift and
Boolean operations can be performed in constant time. In this model, space is
measured in terms of the number of words or bits used by a structure and time in
terms of the number of unit-cost operations performed.

In the bitprobe model, the space is counted in terms of the number of bits used
by the data structure and time in terms of the number of bits probed from the data
structure. Time for any other computation is not counted.

The word-size of a RAM is typically assumed to be large enough to hold an

input word and so we assume an appropriate word size naturally arising from the
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problem instance. In particular, for the problems of suffix array and suffix tree
representations with text length n, the dynamic partial sums problem on n numbers
and for the dynamic bit vector problem for an n-bit vector, we assume a word size
of lgn bits. For the static dictionary problem with universe size m, we assume a
word size of lgm bits and for the representation of k-ary cardinal trees on n nodes,
we assume a word size of maz{lgn,lgk} bits. For the dynamic array problem, we
assume a word size of 1gn bits where n is the maximum limit on the length the array

is allowed to grow.

1.4 Notations

For a real number z, [z| denotes the smallest integer greater than or equal to z
and |z| denotes the largest integer less than or equal to x.

For integers = and a, we define div(z,a) = |z/a| and mod(z, a) = x—a-div(z, a).
We also use the notations (x mod a) and (z div a) to denote mod(x, a) and div(x, a)
respectively.

We use the notation [m] to denote the set {0,1,...,m — 1}, for any integer
m > 1.

The notation lgz denotes the logarithm of x to the base 2, Inz denotes the

natural logarithm of x, and e denotes the base of the natural logarithm.

1.5 Overview of the Thesis

In Chapter 2 we look at some space efficient representations of suffix trees, other
indexing structures and compressed suffix arrays. Chapter 3 deals with static dic-
tionary data structures and their applications to cardinal tree representation. In
Chapter 4 we consider the static dictionary problem in the bitprobe model and give
some upper and lower bounds. Chapter 5 describes some dynamic data structures
for the partial sums, dynamic bit vector and dynamic array problems. We conclude

with a summary and discussion of open problems in Chapter 6.



Chapter 2

Succinct Data Structures for

Indexing

2.1 Introduction

In this chapter, we look at some data structures used for the exact string match-
ing problem. Given a text string 7" and a pattern string P over a finite alphabet
Y, the (exact) string matching problem is to find the occurrences of the pattern P
in the text 7. When the text 7" is given in advance and is allowed to be prepro-
cessed, it is known as the indexed (or off-line or static) string matching problem. A
data structure designed for this problem is called an index for the given text. The
string matching problem has been well studied and various data structures have
been proposed to solve this efficiently.

Given a text T and a pattern P, we consider four types of queries: existential,
search, counting and enumerative. An existential query returns a boolean value that
says if P is contained in 7'. A search query returns a position of occurrence of P in
T if it exists. A counting query returns the number of occurrences of P in T and an
enumerative query outputs the list of positions where P occurs in 7. Throughout
this chapter, we assume that the given text 7" is a string of length n and that the
given pattern P is a string of length m both over an alphabet Y, if not mentioned
explicitly. By a binary string or a bit vector, we mean a string over the alphabet
{0,1}. Also, we use occ to refer to the number of occurrences of the given pattern
in the text.
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2.1.1 Background

A suffiz tree is the most commonly used text index structure for the string
matching problem, which was first described by Weiner [Wei73]. A suffix tree
represents all the suffixes of a given string in a space efficient manner such that
string matching queries can be answered efficiently. A suffix tree, in its standard
form [McC76, Wei73], takes O(nlgn) bits of space and supports search (and hence
existential) queries in O(mlg|X¥|) time and enumerative queries in O(mlg |Z| + occ)
time. It can also be used to support counting queries in O(m1g|X|) time using some
extra space. One can also represent a suffix tree using O(n|X|lgn) bits of space
where search and counting queries can be supported in O(m) time. The search al-
gorithm uses the fact that a pattern P occurs in a text T if and only if P is a prefix
of some suffix of T (see Section 2.2.1 for details).

Standard representations of suffix trees for a text of length n take about 5n
words or pointers, where each word/pointer is a lgn bit string, and the original text
is retained. Reducing the space requirement (by a constant factor) has been a main
theme in the developments on the indexing structures. We briefly describe some of
them here.

Suffiz arrays [GBYS92, MM93| are widely used for indexing large texts. A suffix
array stores the array containing pointers to all the suffixes in the lexicographic
order along with some auxiliary information to aid in searching. This fairly standard
representation of a suffix array, along with the auxiliary structure, takes about 2n
words of space. Search and counting queries can be supported using a suffix array
in O(m + 1gn) time and enumerative queries in O(m + lgn + occ) time.

Colussi and De Col [CC96] have proposed the augmented suffiz array as a space
efficient alternative to the suffix tree structure. It consists of a suffix array for every
block of lgn suffixes and a sparse suffix tree for every (lgn)™ suffix (beginning
of each block), in the lexicographic order of the suffixes. This structure requires
nlgn + O(n) bits of space and can be used to support search and counting queries
in O(mlg|X| + lglgn) time. Enumerative queries take an additional O(occ) time.

Some other well known index structures include: the suffiz cactus proposed
by Karkkiinen [Kar95], the sparse suffiz tree proposed by Kérkkdinen and Ukko-
nen [KU96], efficient suffix trees for the secondary storage developed by Clark and
Munro [CM96], the string B-tree developed by Ferragina and Grossi [FG96] and the
suffiz binary search tree designed by Irving [Irv95].
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All these index structures either require at least 2n words of space or require w(m,)
time to answer search queries, in the worst case. So, in [Mut97], Muthukrishnan
asked whether there exists a data structure that uses only n + o(n) words and
answers search queries in O(m) time. We propose some index structures answering
his question. The model used is the extended RAM model with word size O(lgn)
bits (where n is the length of the given text).

2.1.2 Overview

The next section first reviews the suffix tree data structure and the succinct
binary tree representation and describes algorithms to support the additional oper-
ations. It then explains how the succinct binary tree representation can be used to
obtain our first space efficient suffix tree structure taking n + o(n) words of space.
In Section 2.3, we give two space efficient index structures for binary texts. In
particular, Section 2.3.1 gives a structure which takes % lgn 4+ O(n) bits of space
and answers search queries in O(m) time. Section 2.3.2 describes a structure to
answer the existential queries in O(m) time, which takes o(nlgn) bits of space. In
Section 2.4, we describe our compressed suffix array representation and explain how
this can be used to obtain an indexing structure with o(nlgn) bits of space which

can be used to support enumerative queries in O(m/lgn + occ) time.

2.2 Space Efficient Suffix Trees

In this section, we first outline the suffix tree data structure and explain how they

can be represented space efficiently using succinct representation of binary trees.

2.2.1 Suffix Trees

Suffix trees [McC76] are the most fundamental data structures used for indexing
which admit efficient online string searches. They have also been applied to other
fundamental string problems such as finding the longest repeated substring, ap-
proximate string matching, text compression, compressing assembly code, inverted

indices, and analyzing genetic sequences.

Definition 2.2.1 Given a set of n strings {S1,Sa,...,S,} over a finite alphabet

Y, a trie for the set is an edge-labeled rooted directed tree with verter set V =
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{w|w is a prefiz of S;,1 < i < n} and edge set E = {w > walw,wa € V,a € L}.

If the sum of the lengths of all the n strings in the set is s, then the trie for
the set of strings could, in the worst case, have O(s) nodes with at most n external
nodes (leaves). To reduce the number of (internal) nodes, one can compress a trie
by attaching a node with a single child to its parent and concatenating the edge
labels of the two edges. For several applications, we would also like to have each
string in the set to be represented by a leaf. This leads us to the following definition

of a compressed trie [Gus97]:

Definition 2.2.2 Given a set of n strings {S1,S2,...,S.}, a compressed trie for
the set is a rooted ordered tree with n leaves numbered 1 to n. FEach internal node
other than the root, has at least two children and each edge is labeled with a nonempty
substring of some string in the set. No two edges out of a node can have edge-labels
beginning with the same character. For the leaf i, the concatenation of the edge-labels

on the path from the root to leaf i exactly spell-out the string S;.

Definition 2.2.3 A suffiz tree for a text string T is a compressed trie for all the
suffizes of T.

This definition of a suffix tree does not guarantee that a suffix tree exists for any
given string 7' (i.e., a compact trie may not exist for a given set of strings). The
problem is that if one suffix of 7" matches a prefix of another suffix of 7" then the
path for the first suffix would not end at a leaf and hence no suffix tree obeying
the above definition is possible. To avoid this problem, we assume that the last
character of T" appears nowhere else in 7'. To achieve this in practice, we can add a
character to the end of 7" that is not in the alphabet that the string is taken from.
In this chapter, we assume (unless explicitly stated) that the given text string is
appended by a special character $ at the end.

Since we have n leaf nodes and at most n — 1 internal nodes (as each internal
node has at least two children), the tree has at most 2n — 1 nodes and hence at
most 2n — 2 edges. Since the sum of the lengths of all the edge labels in a suffix
tree could be ©(n?), the tree size (space required to store a representation) could
also be of the same order. One can reduce the size of the tree to O(n) words
[McC76, Mor68, Wei73] by storing the edge labels efficiently. As each edge label

is a substring of the text, one can represent the label using a pointer into the text
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Figure 2.2.1: Suffix tree for the string “mississippi$”

where the substring corresponding to the edge label starts, and the length of the
edge label, called the skip value. Thus, each edge label can be stored using two
words, and with this new representation of edge labels, the tree can be stored using
O(n) words.

For the purpose of pattern matching, it is enough to store the starting character
of an edge label and the skip value, as explained below. We associate this skip value
with the node pointed to by the edge and store it with that node. Also, we do not
need to store the skip value associated with a leaf. Thus, with each internal node
(except the root), we store the skip value associated with it and with each external
node (leaf), we store a pointer to the starting position of the suffix represented by
that leaf. See Figure 2.2.1.

Given a pattern p and the suffix tree for a string x over an alphabet X, to search
for an occurrence of p in x, we start at the root of the tree and follow the path
labeled by the search string. At any node, we take the branch (edge) that matches
the current character of the pattern and skip those many characters in the pattern
as specified by the skip value at that node (this could be 0 at some nodes). Finding
the branch that matches the current character of the pattern can be performed in
O(lg|X|) time, by storing the first characters of the edge labels in sorted order, at

each node.
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The search is continued until either the pattern is exhausted (at a node or in
an edge), or the current character of the pattern has no match at the current node.
In the latter case, there is no occurrence of the pattern in the text. In the former
case, let v be the node at which the search has ended (this could even be a leaf).
If the pattern is exhausted in an edge, i.e., the skip value at a node is more than
the length of the pattern left, then take v to be the node pointed to by that edge.
Now, the position value stored in any leaf of the subtree rooted at v gives a possible
starting point of the pattern in the text. (This only gives a possible starting position
in the text since we might have skipped characters in the middle while matching
the pattern in the suffix tree). Also, the pattern occurs in the text if and only if
it occurs at all the positions in the text, stored at the leaves in the subtree rooted
at v. We start at a position given by any of the leaves in the subtree rooted at v
and confirm if the pattern exists in the text starting from that position. Clearly,
the above procedure takes O(mlg|X|) time to find an occurrence of the pattern in
the text, if it exists. Counting queries can be answered in the same amount of time
by storing, with each internal node, the number of leaves in the subtree rooted at
that node. Enumerative queries can be answered with an additional O(occ) time
by traversing the leaves of the subtree rooted at v (the node where the search has

ended successfully).

2.2.2 Storage Requirement of Suffix Trees

The storage requirement for a suffix tree comprises of the space to store the
following quantities [CM96]:

1. the tree (trie) structure,
2. the first characters of the edge-labels,
3. the skip values at the internal nodes,

4. the number of leaves in the subtree rooted at each internal node (to support

counting queries) and
5. the position indices at the leaves (suffix array).

Thus, a straightforward representation of each of these items requires approx-

imately 5nlgn bits of space for a given text of length n. In the next section, we
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Figure 2.2.2: Suffix tree of for the string “mississippi$” using the binary encoding
of the characters: i- 000, m - 001, p - 010, s - 011, $ - 100

show how each of these components can be stored succinctly. In particular, we give
a suffix tree structure that takes nlgn + O(n) bits of space.

We first observe that, even if the given text is on a binary alphabet, its suffix
tree will be a ternary tree (due to the extra $ character at the end). So first we
will consider a binary alphabet by converting each symbol of the alphabet > and
the symbol $ into binary using an encoding that assigns a binary string of length
[1g(|X| + 1)] bits to each character, preserving the lexicographic order. Thus, given
a text string z$ of length n, we encode all the suffixes of it in binary and construct a
compressed trie for them, which will be a binary tree. (This is the same as the PAT
tree of Gonnet et al. [GBYS92].) This trie representing all the suffixes of the text in
binary, is a special case of a binary tree in which all the internal nodes have exactly
two children (since all nodes with a single child have been compressed). Since there
are n suffixes, there will be n — 1 internal nodes and n external nodes in the trie.

Thus we can represent it as a 2n — 1 node binary tree. See Figure 2.2.2.
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2.2.3 Swuccinct Binary Tree Representation

The starting point for our representation is the 2n + o(n) bit encoding of an
n node static binary tree [MR97]. This structure supports finding the left child,
right child or the parent of a node and reporting the size of the subtree rooted at
a given node, all in constant time. We will, however, require a few more primitive
navigational operations to support our suffix tree operations.

First, we review the succinct representation of binary trees and describe algo-

rithms to support additional operations.

root

eXoln
0
f A

Figure 2.2.3: The rooted ordered corresponding to the binary tree of Figure 2.2.2.
The parenthesis representation corresponding to this ordered tree is given below:

CCCCeecO) OO0 cCO)O)ccO)O)c0)) ) 0))
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A general rooted ordered tree on n nodes can be represented by a balanced string
of 2n parentheses as follows: Perform a preorder traversal of the tree starting at the
root; write an open parenthesis when a node is first encountered, going down the
tree and a closing parenthesis while going up after traversing the subtree.

One cannot use this procedure directly to represent a binary tree, as it is not
possible to distinguish a node with a left child but no right child from one with a
right child but no left child. So, Munro and Raman [MR97] use the well known
isomorphism between the class of binary trees and the class of rooted ordered trees
to convert the given binary tree into a general rooted ordered tree and then represent
the rooted ordered tree using the above parenthesis representation. Note that, this
conversion preserves the left to right ordering of the leaves. See Figure 2.2.3. In the
ordered tree there is a root which does not correspond to any node in the binary
tree. Beyond this, the left child of a node in the binary tree corresponds to the
leftmost child of the corresponding node in the ordered tree, and the right child in
the binary tree corresponds to the next sibling to the right in the ordered tree. A
node is identified, by convention, by its corresponding left parenthesis. Munro and
Raman [MR97] show that using o(n) additional bits, the standard operations of left
child, right child and parent of a given node can be supported in constant time.
They also show that the size of the subtree rooted at a given node can be found in
constant time.

To use this tree representation to represent a suffix tree, we need to support
several additional operations in constant time. Let x be any node in the given
binary tree. (We identify a node in the binary tree by its preorder number.) We

define the following operations:

e leafrank(x): return the number of leaves to the left of node x in the preorder

numbering of the nodes
e leafselect(j): return the 5 leaf in the left to right ordering of the leaves
e leafsize(x): return the number of leaves in the subtree rooted at node x
e leftmost(z): return the leftmost leaf in the subtree rooted at node z and
e rightmost(z): return the rightmost leaf in the subtree rooted at node x.

Beginning with Jacobson [Jac89a], much of the work on navigating succinct rep-
resentations of trees [Ben98, BDMR99, Mun96, MR97] has relied on the operations
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rank and select defined on binary strings. Given a binary string (bit vector) of

length n and an index 4, 1 < ¢ < n, these operations are defined as:

e rank;(i): the number of 1’s up to and including the position 7 and

th1
7

e selecty(i): the position of the i if it exists.

One can analogously define the operations rankg(i) and selecty(i) for the 0’s in
the bit string. We refer to all these operations as the rank and select operations
on the bit string. The rank and select operations on a given bit vector of length
n can be supported in constant time using auxiliary structures of size o(n) bits
[Jac89b, Cla96, Mun96]. We call these auxiliary structures, the rank and select
directories for the given bit vector.

Given a binary string of length n and a binary pattern p of fixed length m, one

can generalize the rank and select operations as follows:

o rank,(¢): the number of (possibly overlapping) occurrences of the pattern p

up to and including the position ¢ in the given binary string and

e select,(i): the position of the i occurrence of p in the given binary string.

The following theorem shows that these operations can also be supported in
constant time using o(n) bits of extra space, when the length of p is at most elgn

for some fixed positive constant € < 1.

Theorem 2.2.1 Given a binary string of length n, and a binary pattern p of length
m < elgn, for any fized positive constant ¢ < 1, the operations rank,(i) and
select, (i) can be supported in constant time using o(n) bits, in addition to the space

required for the given binary string.

Proof. The algorithm to support the rank; operation [Cla96, Jac89a, Mun96| uses
the following basic idea: Divide the given bit string into blocks of size [lg 7ﬂ2 each
and store the number of 1’s up to the first element of every block in an array, using
|n/ [lgn]] bits of space. Within a block of size [lgn]?, keep a recursive structure by
dividing the blocks into sub-blocks of size [(lgn)/c| for some integer constant ¢ > 2
and store the rank information for the first element of each sub-block with respect

to the beginning of the block. These sub-block sizes are small enough so that we
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can keep a precomputed table of answers for all possible distinct sub-blocks of the
required size, using o(n) bits. The precomputed table stores the number of ones up
to a given position for each sub-block of length [(lgn)/c] and for each position in
the sub-block. These entries are stored in the lexicographic order so that given a bit
vector corresponding to a sub-block and a position in the sub-block, one can index
into this table for the corresponding entry in constant time.

This structure can easily be adapted to keep the rank, information for every
block and for every sub-block with respect to its block. The precomputed table,
in this case, stores an entry for every possible triple consisting of a block b of size
[(Ign)/c], a bit string x of size m — 1, and a position ¢ in the block. The table entry
stores the number of occurrences of the pattern p in the prefix of length |z| + ¢ of
the string xb. This also takes care of occurrences of the pattern in a span of two
consecutive blocks. This table requires O(2m2(8™)/¢2l8le™ |g1g n) bits. By choosing c
to be [ﬁ] + 1, the size of the table becomes o(n) bits. Again the entries are stored
in the lexicographic order to enable constant time access.

We now, briefly describe the structure for computing select; [Cla96], which uses
three levels of auxiliary directories. The first level auxiliary directory records the
position of every ([lgn] [lglgn])® one bit. This requires at most {@J bits
of space. Let r be the size of a range between two consecutive values in the first
level auxiliary directory. If r > ([lgn] [lglgn])? then we will explicitly store the
positions of all the one bits in that range, which requires [lgn]” [Iglgn] bits of space
]J bits, in the second level auxiliary directory. Otherwise,

flglrgn
we subdivide the range and record the position, relative to the start of the range,

which is at most {

of each ([lgr] [Iglgn])™ one bit in the second level auxiliary directory, which takes

| s
lglgn]
Let 7’ be the size of a subrange between two consecutive values in the second

at most

level auxiliary directory. If ' > [lgr'] [lgr] [lglgn]’, then store positions of all the
one bits in the subrange, with respect to the beginning of the subrange, explicitly,

which requires at most { J bits. Otherwise, one can show that 7' < 16 [Iglgn]*.

,r,l
[glgn]
Computing select on a range of | = O((Iglgn)?) bits is performed using table lookup.
For each possible bit string of length [ and each value ¢ in the range 1...[/ we record
the position of the i* one in the bit string, in a precomputed table. The storage

used for the auxiliary directories and the lookup tables is “g?’l—gﬂ +0(2'1g1) which is

o(n) bits, since | = O((Iglgn)?*) = o(lgn). Note that we know where the appropriate
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directory bits at each level are located and how to interpret them based on the value
of 7 and the preceding directory levels. This gives a structure for supporting select;
in constant time.

Now, to support select, on a given bit string, we again store the three levels of
auxiliary directories for the pattern p, as in the case of select;. The table structure
now records, for each possible bit string of length I = O((Iglgn)?) and each value
i in the range 1...[, the position of the i occurrence of the pattern p, if it exists,
in the bit string. One can easily verify that this structure takes o(n) bits of space.
This gives a structure to support the select, operation on the given binary string in
constant time for any pattern p of length at most elgn, where ¢ < 1 is any fixed
constant. [

Now, we give a succinct representation of a static binary tree which supports

several navigational operations in constant time, using the above theorem.

Theorem 2.2.2 A static binary tree on n nodes can be represented using 2n + o(n)
bits such that given a node x, in addition to finding its parent, left child, right
child and the size of the subtree rooted at node x, we can also support leafrank(x),
leafselect(j), leafsize(x), leftmost(z) and rightmost(x) operations in constant time,

for 1 < 5 <1 wherel is the number of leaves in the tree.

Proof. The fact that parent, left child, right child and the subtree size are supported
in constant time is already known [MR97]. To support the other operations, we first
convert the binary tree into an equivalent rooted ordered tree, as before.

Any leaf in the binary tree is a leaf in the corresponding rooted ordered tree,
but not vice versa. In fact, any leaf in the rooted ordered tree is a leaf in the binary
tree only if it is the last child of its parent. In other words, leaves in the binary tree
correspond to the rightmost leaves in the rooted ordered tree. Also the left to right
ordering of the leaves of the subtree rooted at any node is preserved between the
binary tree and its corresponding rooted ordered tree. See figures 2.2.2 and 2.2.3.

In the parenthesis notation, a rightmost leaf corresponds to an open-close pair
followed by a closing parenthesis, ‘())’. Thus to compute leafrank(xz) we need to
find rank,(z), where p is the pattern ()), in the parenthesis sequence corresponding
to the tree (recall that a node z is denoted by its corresponding left parenthesis
in the parenthesis representation). Similarly leafselect(j) is nothing but select, ()

where p is the pattern ()). Also leafsize(x) is the difference between rank,(z) and
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rank,(c(z)) where c(x) denotes the position of the closing parenthesis corresponding
to the parent of z. Hence from Theorem 2.2.1, these operations can be supported
in constant time.

The leftmost leaf of the subtree rooted at a node in the binary tree is the leaf
whose leafrank is one more than the leafrank of the given node. Thus it can be found
in constant time using the expression: leftmost(x) = select,(rank,(x) + 1), where p
is the pattern ()). The rightmost leaf of a subtree rooted at the node in the binary
tree is the rightmost leaf of its parent in the general tree. Now, the rightmost leaf of
a node in the general tree is the leaf preceding the closing parenthesis of the given
node. Thus, rightmost(z) = select,(rank,(close(parent(x)) — 1)), where close gives
the position of the corresponding closing parenthesis of a given opening parenthesis,

which takes constant time for evaluation using the rank and select operations. g

2.2.4 Putting things together for the Suffix Tree Represen-

tation

Given a string z$ of length n, we encode all its suffixes in binary using an
encoding that assigns a bit string of length &£ = [lg(|X| 4+ 1)] for each character in
the alphabet and the character $ as explained in Section 2.2.2. We then construct a
compressed trie for them, which will be a binary tree on 2n — 1 nodes. We represent
this 2n — 1 node binary trie with 4n + o(n) bits using the representation given in
Section 2.2.3. (We could in fact represent the tree using only 2n + o(n) bits by
storing only the internal nodes of the tree. Since all the internal nodes have two
children, we can associate the external positions of this tree with the leaves of the
original tree, in order. But listing the external nodes explicitly has some advantages
for later modifications.) This will take care of the storage for the first component
of suffix tree representation (Section 2.2.2).

We follow the convention that the edge pointing to the left child always has label
starting with a 0 and the one to the right child has label starting with a 1. This
eliminates the need for storing the first character of the edge label explicitly. Since
the leafsize operation gives, in constant time, the number of leaves rooted at a given
internal node, we need not store the fourth component. Next, we show that the
third component of the representation, the skip values, need not be stored explicitly

and that they can be obtained online whenever needed. So only the fifth component
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taking n [lgn] bits accounts for the higher order term and we get an nlgn + O(n)
bit suffix tree structure.

Now we explain how we can find the skip value at a node without storing it
explicitly. Given an internal node v in the suffix tree, let L, denote the longest
common prefix of all the suffixes, in binary, associated with the leaves in the subtree
rooted at v. This is nothing but the concatenation of the edge labels (encoded in
binary) in the path from root to the node v. Let I(v) be the length of L,. Note that
I[(v) can be computed using the expression, I(v) = lcp(leftmost(v), rightmost(v)),
where lep(z,y) returns the length of the longest common prefix of the strings = and
y. We first observe that the skip value associated with an internal node v is nothing
but [(v) — l(parent(v)) — 1. Thus, to find the skip value at an internal node v, we
first go to the leftmost and rightmost leaves in the subtree rooted at v and start
comparing the text starting at these positions until there is a disagreement. We
don’t have to compare the suffixes from the starting position. We already know
that L, is a common prefix of these strings. So we can start matching them from
position [(v) + 1. The number of bits matched is the skip value at that node.
Finding the leftmost or rightmost leaf of the subtree rooted at a node, in the tree
representation takes constant time using the leftmost(x) and rightmost(x) operations
of Theorem 2.2.2.

To search for a pattern, we start at the root as before and start matching the
pattern with a path in the suffix tree. Navigating in the suffix tree is possible using
the tree representation. Note that, from an internal node it is always possible to
continue the search as each internal node has both left and right children whose edge
labels start with the characters 0 and 1 respectively. At internal nodes, we don’t
skip any bits in the pattern, but actually match portion of the compressed string
with the pattern. The search algorithm stops when either the pattern is matched
with string L, corresponding to a node v or the pattern does not match the portion
of a skipped string.

If the pattern does not match the prefix of a skipped string, then there is no
occurrence of the pattern in the given text string. Otherwise, if the end of the pattern
is encountered, then all the suffixes in the subtree rooted at the node (which could
be a leaf) at which the search has ended match the pattern. Once we confirm that
the pattern exists in the text, the number of leaves in the subtree rooted at the node

where the search ended, gives the number of occurrences of the pattern in the text.
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This can be found in constant time using the leafsize operation of Theorem 2.2.2.
Also, we can output all the occurrences of the pattern in time linear in the number
of occurrences (after confirming that the pattern exists in the text) as follows: Let v
be the node at which the search has ended. Find i = leafrank(leftmost(v)). The i*"
element in the suffix array gives the leftmost starting point of an occurrence of the
pattern in the text. Output all the values in the suffix array from i to i+ leafsize(v).

The time to find a skip value, k or the skip (bit) string is O(k). The sum of
the skip values computed during the search for a pattern is at most the length of
the pattern (i.e., at most mlg|X|). So, the total time spent in figuring out skip
values is only O(mlg|X|). Looking carefully at the calls to rank and select which
are implicit in this approach, one can see that we have at most increased the search
cost by a constant factor by getting rid of the storage required for the skip values.
This increase is due to the repeated leftmost and rightmost calls.

Thus we have

Theorem 2.2.3 A suffiz tree for a text can be represented using nlgn + O(n) bits
in which one can answer search and counting queries in O(mlgk) time where k is

the size of the alphabet. Enumerative queries require an additional O(occ) time.

The above representation can be built in O(n) time as once we build the suffix
tree which takes O(n) time [Wei73], the succinct tree representation can be built in
O(n) time.

Instead of converting the suffixes to binary we could also directly represent the
k-ary suffix tree using a succinct representation of a k-ary cardinal tree. We will

explore this in Chapter 3, to get another implementation of a suffix tree.

2.3 Succinct Index Structures for Binary Texts

In this section, we consider the case when the given text is over a binary alphabet.
Note that for the binary alphabet case, one can support search and count queries
efficiently, by simply performing a binary search on the suffix array (i.e., the array
of pointers to the suffixes, stored in the lexicographic order). Using the power of
the word RAM to read and compare O(lgn) bits in constant time, one can compare
the pattern (of length m) with any suffix of the text in O(m/lgn) time. Since there

are n suffixes in the suffix array, a binary search on the suffix array requires O(lgn)
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comparisons of the pattern with the suffixes. Thus, this gives us a simple structure
that takes n [lgn] bits of space and supports search and count queries in O(m) time.
This section shows that we can do even better by presenting two indexing structures

that take less than nlgn bits of space.

2.3.1 A Structure using 7Ign + O(n) Bits

Here, we give an index structure that takes at most % lgn + O(n) bits of space
for a given binary string of length n and supports search queries in O(m) time. But
this structure does not support counting and enumerative queries efficiently.

The main idea is to store only the suffixes starting with either a 0 bit or a 1 bit,
whichever bit appears less number of times in the given bit string and store some
extra information to aid searching for patterns starting with the other bit.

Without loss of generality, suppose there are more number of 0’s than 1’s in the
given bit string T[1...n]. The structure consists of a sparse suffix tree for all the
suffixes starting with 1. (Here, first we take all the suffixes with the end-markers,
convert them into binary and then construct the suffix tree so that the resulting
suffix tree is a binary tree with at most n/2 leaves.) We order the subtrees of a node
such that the left subtree contains a leaf which has at least as many consecutive
zeroes preceding its starting position as any other leaf in that subtree. In other
words, the leftmost leaf of any node has the maximum number of consecutive zeroes
preceding it, among all the leaves of the subtree rooted at that node.

Since the order of the subtrees is not the same at each node, we store one bit
for each internal node indicating whether or not its subtrees are interchanged with
respect to the original ordering (to indicate whether the label of the edge pointing to
the left child starts with a 0 or a 1). This requires O(n) bits of space. We keep these
bits in a separate bit vector and index into this bit vector using the internal node
numbering obtained from the tree representation. The space occupied by the sparse
suffix tree (using the representation given in Section 2.2.4) is at most 7 I1gn + O(n)
bits as there are at most n/2 suffixes starting with 1, since there are more zeroes
than ones.

Now given a pattern, if it starts with a 1, we can use the sparse suffix tree directly
to find its occurrences. Otherwise, let the pattern be 0'z for some integer | > 1,
where the first bit of x is a 1. Search for x in the sparse suffix tree. If the search

fails then the given pattern does not exist in the text. Otherwise, let v be the node
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at which the search has ended (i.e., the node corresponding to the string z in the
sparse suffix tree) and let ¢ be the position pointed to by the leftmost leaf of v. If
T[i —1...i— 1] is identical to 0’, then the given pattern occurs at position 7 — [ in
the text. Otherwise, there is no occurrence of the pattern in the given text 7. The

total time taken by the search procedure is O(m). Thus we have,

Theorem 2.3.1 Given a binary text of length n, there exists an index structure that

uses % 1gn 4+ O(n) bits of space and supports search queries in O(m) time.

But this structure can not be used to report all the occurrences efficiently, in
general. If the given pattern starts with a 1 bit, then all the leaves in the subtree
rooted at the node at which the search for the pattern has ended (successfully) will
give the positions of all the occurrences of the pattern in the text. Thus in this case,
enumerative queries can be answered with an additional O(occ) time. But if the
given pattern is of the form 01z for some [ > 1, then we first search for the pattern
1z in the sparse suffix tree. If the search ends successfully at node v, then one can
list all the occurrences of the pattern in the text by visiting each of the leaves in
the subtree rooted at v and listing a leaf labeled ¢ if T'[¢ — [...7 — 1] is identical to
0'. One can speed up this process by skipping all the nodes to the right of a leaf 4
in the subtree rooted at a node for which 7 is the leftmost leaf. But this, in general,

will not improve the asymptotic complexity of the process.

2.3.2 A Structure using o(nlgn) Bits

In this section we develop a structure that takes O(nlgn/lglgn) bits of space
for a given binary text of length n and answers existential queries in O(m) time.
The structure does not support search and counting queries efficiently, in general,
though in some cases it is possible to support these queries in constant time.

The structure consists of a sparse suffix tree and two tables. The first table stores,
for all binary strings of length at most b (to be fixed later), whether it appears as a
substring in the given text string. This precomputed table is used to find whether
patterns of length at most b are present. A sparse suffix tree is constructed for
every b'* suffix of the given text string, i.e., suffixes starting at positions ib + 1,
0 <i < n/b—1. If the length of the text is not a multiple of b, we consider the text

with the required number of 0’s inserted in the beginning to make it a multiple of
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b. We interpret the given binary text of length n as a string of length n/b over a
2°_ary alphabet and construct a suffix tree for this string.

This suffix tree is stored using a simple cardinal tree representation given in
[Ben98, BDMR99]. (A cardinal tree of degree k is a rooted tree in which each
node has k positions for an edge to a child. See Chapter 3 for more details.) In
this representation, a cardinal tree of degree k£ with n nodes can be stored using
nk + o(n) bits and the tree navigational operations (like finding the parent or the
i" child of a node) can be supported in constant time. In our case, the degree is 2°
and the number of nodes is O(n/b). Thus the space required to store this suffix tree
is O(2°n/b) bits.

The second table is indexed by a node v in the sparse suffix tree and two strings
p and s of length at most b. The table stores a 1 if there exists a leaf in the subtree
rooted at node v which points to a suffix such that L,s is a prefix of it and the
substring p precedes that suffix in the given text, and stores a 0 otherwise; here L,
is the string obtained by concatenating the edge labels in the path from root to the
node v, as defined in Section 2.2.4.

The space occupied by the first table is 2° bits. The space occupied by the
sparse suffix tree is O(nlgn/b) bits for the leaf pointers and O(2°n/b) bits for the
tree representation. The space required to store the second table is O(%22b) bits.
Thus, choosing b to be %lg lgn makes the overall space occupancy of the structure
to be O(nlgn/lglgn) bits.

To search for a given binary pattern p of length m, if its length is at most b then
we can know the answer from the first table. Otherwise, we will repeat the following
search procedure b times, varying ¢ from 0 to b — 1.

Let p; be the prefix of p of length 7 bits and s; be the suffix of p of length
(m —i— |™=%|b) bits. Match the substring of p of length (| %~]) characters (where

b b
each character is of length b bits) starting at bit position 4, in the suffix tree. If

there is no match in the suffix tree then skip the current iteration. Otherwise, let v
be the node at which the match has ended. If the search ends in an edge, take v to
be the node pointed to by the edge. If the length of L, (defined in Section 2.2.4) is

m—1
b

suffix s;. If it is 1, then output yes and halt; otherwise skip the current iteration. If

equal to (| ™=|b) bits, then find table entry corresponding to node v, prefix p; and

L, has length more than (| ™ *|b) bits (this happens when v is a compressed node),

then find the (|~*] + 1)* character, say z, in L, (a character here is an element
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of a 2° sized alphabet and hence corresponds to a b bit string) and check if s; is a
prefix of z (note that s is a binary string of length at most b). If not skip the current
iteration. Otherwise find table entry corresponding to node v, prefix p; and suffix A
(the empty string). If it is 1, then output yes and halt; otherwise skip the current
iteration. Finally, if we have not answered yes in any of the b iterations, then we
answer n0.

Each iteration of the above search procedure takes O(m/b) time and thus the
total time for searching for a pattern in this structure is O(m), where m is the length

of the pattern. Thus we have

Theorem 2.3.2 Given a binary text of length n, there exists an index structure that

uses O(nlgn/lglgn) bits of space and supports ezistential queries in O(m) time.

The first table, which stores whether a pattern of length at most b occurs in the
text, can also be used to store a pointer to an occurrence and also the number of
occurrences of the pattern using o(n) bits of space. Thus, when the pattern length
is at most elgn for some fixed positive constant € < 1, it is possible to support the
search and counting queries in constant time.

We have presented two index structures for binary texts, one which supports
search queries and another which supports existential queries, in O(m) time. Note
that for binary texts, the lower bound on query time is Q(m/lgn) in the word RAM
model with word size O(lgn), as we need Q(m/lgn) time to read the pattern.

Also, till recently, the Q(nlgn) bits of space to store the pointers to the starting
positions of the suffixes, was considered unavoidable for any data structure based
on searching the set of all suffixes [K&r99] (that answers search queries in O(m)
time). But Grossi and Vitter [GV00] have given an indexing structure that takes
O(n) bits of space for a binary string of length n which answers search and counting
queries in o(m) time. However, for supporting enumerative queries, this structure
requires O(m/1gn + occ 1g°n) time, for any fixed positive constant € < 1. Their
main contribution is an O(n) bit representation of a compressed suffiz array for a
given binary text.

In the next section, we give a structure that improves the structures given in
the last two sections, both in terms of time and space, using the ideas of Grossi and
Vitter [GV00]. We obtain the first o(nlgn) bit structure that supports enumerative

queries in O(m/1gn + occ) time.
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2.4 Compressed Suffix Arrays

In this section, we look at some space efficient implementations of another well
known indexing structure called suffiz array. We also describe how this can be used

to obtain a space efficient suffix tree representation.

2.4.1 Definitions and Background

Definition 2.4.1 A suffix array for a text string T of length n is an array of integers
in the range 1 to n, specifying the lexicographic order of the n suffizes of string T.

Gonnet et al. [GBYS92] propose this lexicographically ordered array of suffixes
of a string as a useful data structure for solving string processing problems. Using
this array one can search for a pattern of length m in O(mlgn) time using a simple
binary search on the suffixes of the text, where n is the length of the text. Manber
and Myers [MM93] augment this structure with longest common prefix information
of some specific suffixes in the array, and they named it the ‘suffix array’. This
fairly standard representation of suffix array (along with the augmented structure)
takes about 2n words of space [CC96]. Given the suffix array for a text string of
length n, searching for a pattern of length m is done using a binary search and can
be performed in O(m + lgn) time in the worst case (in the case of a binary text,
one can actually support search in O(m) time, as explained in Section 2.3).

In this section, by a suffix array we mean just the list of pointers to the suffixes in
their lexicographic order, without the augmented array of longest common prefixes.
We adopt the convention [GV00] that the given text 7" is a binary string of length
n — 1 over the alphabet {a,b}, and is terminated in the n'® position by a special
symbol ‘#’, and that the symbols are ordered as a < # < b. This ordering was
chosen to have the one-one correspondence between the text and its suffix array. (If
we choose any of the other two orderings, for example, then the strings a®~'# and
b *# will have the same suffix array.) Let SA be the suffix array of T'; that is SA[7]
is the position in T of the 5" suffix in the lexicographic order of the suffixes.

Given a text of length n, its suffix array can be stored using n [lgn]| bits by
explicitly storing all its entries in an array. This can be used to retrieve the i entry
in constant time. But the disadvantage of this structure is that this uses more space

than necessary (as explained below).
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Given a suffix array of a binary text, one can recover the original text from it.
Thus, there is a one-to-one correspondence between the binary strings and their
suffix arrays. Since the number of binary strings of length n is 2", information
theory gives an n — 1 bit space lower bound for representing a suffix array (by the
previous assumption that the last character is fixed).

Given a binary text, we define its compressed suffix array as a data structure that

represents the suffix array for the text to support the following operation efficiently:

lookup(i): return SA[i], i.e., the position in T of the " suffix in the lexicographic

order.

Grossi and Vitter [GV00] have given two implementations of compressed suf-
fix arrays, one that takes O(n) bits of space and O(n) preprocessing time so that
each call to lookup takes O(lg®n) time, for any fixed constant 0 < ¢ < 1, and
another that takes O(nlglgn) bits and O(n) preprocessing time, so that calls to
lookup take O(lglgn) time. One can easily generalize their implementations to one
that takes O(nt) bits of space and supports lookup queries in O(t(1gn)"") time
for any parameter 1 < ¢t < Iglgn. We give another implementation that takes
O(nt(Ign)Y@ 1)) bits of space and supports lookup queries in O(t) time for any
parameter 1 < t < lglgn — 1. In particular this gives a compressed suffix array
representation taking o(nlgn) bits that supports lookup in constant time.

Given a suffix array SA, define the functions, ¥y, for £ > 0, as follows:

g if SA[j] = SA[i] + k
Uy (i) =
0if SAli|+k>n
This is a simple generalization of the function ¥ defined by Grossi and Vit-
ter [GV00], which ‘corresponds’ to the function ¥;.

We denote a sequence $18983...5, by {s;: 1 <i<n}.

2.4.2 Our Representation

Now, we outline a method for representing a suffix array. Assume that the length
of the text 1" is a multiple of [, where [ is some parameter to be fixed later; otherwise
append T with # symbols so that its length becomes a multiple of I. (This does not

effect the asymptotic analysis of the structure as explained later).
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1. Store those values in the suffix array SA which are multiples of [ in another

array SA; in the same order as they appear in SA, after dividing them by /.

2. Store a bit vector B of n bits, such that B[i] = 1 if SA[i] is a multiple of [ (i.e.,
if SA[i]/l is stored in SA;) and B[i] = 0 otherwise. Also store a rank directory
for this bit vector (described in Section 2.2.3).

3. For each i, 1 < i < n store the value [ — (SA[:] mod 1), that is the difference

of SA[i] from the next multiple of [, in an array d.

4. For each k, 1 < k <[ — 1 store the compressed representation of the subse-
quence {VU(7) : d[i] = k}, as described later in Section 2.4.3.

See Figure 2.4.4(a) for an example.

Now, given i, we can recover SA[i] from the compressed representation as follows:

First, note that if the length of the text differs from the next multiple of [ by
a value r, then we would have appended r # symbols to the given text. All the
suffixes starting with these symbols will occur in the middle of the suffix array,
before any suffix starting with 1 and after every suffix starting with 0. Suppose
there are ngy zeroes in the given text. Then, then i suffix in the given text will be
the " suffix in the appended text also, if i < ny. Otherwise, if i > ng, then the it*
suffix in the given text will be the (i + r)™ suffix in the appended text. Thus, we
can appropriately translate the operation by storing the values of r and ng, using
O(lgn) bits.

Let k£ = d[i]. Find U(7) from the representation of Wy in Section 2.4.3 (note that
Uy(i) = i, from the definition). Find the rank r of Wy (i) using the rank directory
for B. It is easy to see that SA[i| = x SA;[r] — k.

The array SA; can be stored using 7[lg(7)] bits of space. The bit vector B
and its rank directory occupy n + o(n) bits of space. The array d requires n [1g!]
bits. So the space requirement for the above compressed suffix array representation
is 2[1g(%)] +n [1gl] +n+ o(n) bits plus the space required to store the compressed
representations of {U (i) : d[i]| = k}, for 1 <k <[—1.

2.4.3 Representing ¥V, Compactly

The following lemmas are used in representing the ¥, function compactly.
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SA:

12 3 45 6 7 891011 1213 141 16 17 1819 202228242537 283003 R

:a b babbabbabdbdabdb aaababadbbabbdbdbatld

1516 31 1317 1928107 4 1 2124 321430121827 9 6 3 2023 291126 8 5

: 01 00001001001 1001O0O0O0O0O010©O0O0ODO0OTI1IO

101331 021033%500229021321013122903

12345678
SA;:47168352

(a)

Wy:214 232871013 17

Lo = {2,14,23,28}; Ly = {7,10,13,17}

Wy : 17 214 23 28 7 10 13

Lo=®; Ly ={17}; Ly = {2,14,23,28}; Ls={7,10,13}

W3:2231013 1714287

Ly=®; Ly = ®; Ly={2,23}; L3 ={10,13};
Ly=®; Ls ={17}; Le¢ = {14,28}; L7 = {7}

(b)

Figure 2.4.4: Compressed suffix array representation
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Lemma 2.4.1 Given a subset S of size n from the universeU = {1,...,m}, n <m,
it can be represented using nlg(m/n) + O(n) bits such that given i, 1 < i < n, the
it smallest element in S can be found in constant time.

Proof. Represent the top [lgn] bits of all the elements in the increasing order
using a bit vector of length 3n. This is done as follows: Consider the sequence
obtained by taking the top [lgn| bits of all the elements in the increasing order.
This will be a nondecreasing sequence of n elements from the set [2n]. This sequence
is then represented as a bit vector B by storing a 0 followed by j 1s, for 1 < i < 2n,
where j is the multiplicity of number 7 in the sequence. Also store the rank and select
directories (of Section 2.2.3) for B using o(n) bits. Store the remaining [lgm]|—[lgn|
bits of each element in an array A in the increasing order of the elements.

To find the i smallest element using this representation, we first find its top
[lgn] bits from the bit vector B using its rank and select directories. More specif-
ically, we compute rankq(select;(i)) in the bit vector B, which gives the top [lgn|
bits of the i"* element. We then, find the remaining [lgm] — [lgn] bits from the 5%

element of the array A. .

Corollary 2.4.2 Let L = Ly-Ly-...-Ly 1 be the sequence obtained by concatenating
the lists Lo, Ly, ..., Lr_1, where each L; is a sorted sequence of n; numbers in the
range [1,...,m] and let Zf;ol n; = n. Then the sequence L can be represented using

nlg(mk/n) + O(n) bits such that given i, the i element in L can be retrieved in

constant time.

Proof. Store the set S = {j*m+=x|z € L;} using the representation of Lemma 2.4.1,
which uses nlg(mk/n) + O(n) bits of space. Then the i*" element in the sequence L
is the same as the i** smallest element in the set S, which can be found in constant

time using the representation. 1

Lemma 2.4.3 The sequence {¥ (i) : 1 < i < n} is the concatenation of 2% sorted

lists Lk, LY ... L¥

sx_q» where Lf = {U(7) : the value in binary of the k symbols

appearing before the position SA[W(7)] in the text is equal to j}.

Proof. First we will show that each of the lists Lf is sorted. To show this, it is
enough to show that: if the suffixes starting at the positions SA[¥y(7)] and SA[¥(5)]
in the text have the same k symbols preceding them, then i < j = Wi(i) < ¥y (5).
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Suppose not, i.e., for ¢ < j let SA[W,(:)] and SA[W,(j)] have the same k symbols
preceding them and W (i) > Wr(j). Since SA[W.(i)] = SA[i] + k (unless SA[i] +
k > n), it follows that the positions SA[i] + k and SA[j] + k have the same k
symbols preceding them in the text and the suffix starting at position SA[i] + &
is lexicographically larger than the suffix starting at position SA[j] + k. But this
implies that the suffix starting at position SA[i] is lexicographically larger than the
suffix starting at position SA[j] (as they have the same first &£ symbols), which is a
contradiction since SA is a suffix array and 7 < j.

Now, to show that the sequence {¥ (i) : 1 < i < n} is the concatenation of the
lists LE, L%, ... ,Lg,tl (i.e., each element in L¥ appears before any element in Lf in
the Uy sequence, for i < j), it is enough to show the following: If W (i;) € Lfl and
Uy(iz) € LE,,
starting at position SA[i;] in the text is lexicographically smaller than the suffix

for ji; # jo, then iy < is = j1 < jo. Now i; < iy implies that the suffix

starting at position SA[i;]. Hence, the value of the k£ symbols appearing before
the suffix starting at position SA[Wy(i1)] is less than the value of the & symbols
appearing before the suffix starting at position SA[W(i2)] (since they are not equal
as W, (i;) and Wy (iy) belong to different lists), which implies j; < jo. .

Remark 2.4.4 The same proof goes through even if we take only a subsequence
of U,. Suppose we take all the multiples of a number p in SA in the order they
appear and store them in an array SA; after dividing each element by p. Then
the sequence, {¥y(i) : 1 < i < n/p}, defined on the array SA; can be partitioned
into 2F7 sorted lists, since the sequence {Uy(i) : 1 < i < n/p} for the array SA;
‘corresponds’ to the subsequence {Wy,(7) : SA[7] is a multiple of p,1 < i < n} of the
sequence {Wy,(7) : 1 < i < n} for the array SA.

Now we show how to represent the subsequences of ¥, compactly. There are
exactly n/l values, where each value is in the range [1,...,n], to be stored in each
Uy, (in item 4 of the representation of suffix array in Section 2.4.2), namely the
sequence {¥(7) : d[i] = k}, assuming n is a multiple of [. As observed above, each
U, can be partitioned into 2* sorted lists, Lk, L% ... ,L’;k_l. See Figure 2.4.4(b) for
an example.

So the subsequence of W, that is to be stored, in item 4 of the representation of

a suffix array in Section 2.4.2, can be stored as follows:
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e Store a bit vector Vj such that Vi[i] = 1 if d[i{] = k& and 0 otherwise, for
1 < ¢ < n. Store the rank directory for this bit vector.

e Store the concatenation of the lists L§, L¥, ..., L’;Ll (which is precisely the

sequence {Wy (i) : d[i] = k}) using the representation of Corollary 2.4.2.

Given i, we can find Wy (7), if d[i] = k, as follows: Find r = rank,(:) in the
bit vector V} using its rank directory. Now find the r* element in the sequence
LELY ... L, | using its representation, which gives the value of Wy (3).

The space required to store the bit vector V} and its rank directory is n + o(n)
bits. Representation of the lists L§, L¥,... L% (using Corollary 2.4.2) requires
21g(2n/(n/1)) = %(k + 1gl) bits. Thus the space required to store compressed
representations of Wy, for 1 < k£ <1 —1is O(nl) bits.

Thus, using this compressed representation of ¥, in the suffix array representa-

tion, we get

Theorem 2.4.5 There is an implementation of a compressed suffiz array that takes
T1g(7)]+O(nl) bits of space and supports lookup queries in constant time, for any
parameter 1 <1 <lgn.

Choosing | = +/Ign, we get

Corollary 2.4.6 There is an implementation of a compressed suffix array that takes

O(n+/1gn) bits of space and supports lookup queries in constant time.

We generalize this approach in the following section.

2.4.4 A Recursive Structure

The array SA; in the above representation can again be compressed using the
same technique used to compress SA in the previous section. We store all the
multiples of [ in SA; in another array SAs and construct the ¥,'s for 1 < k <1 —1.
But in this case, each ¥}, splits into 2% sorted lists. Since there are n/l? different
entries in each Wy, the space required to store the representations of all the ¥,’s is
again O(nl) bits. We will continue this up to ¢ levels, each level occupying O(nl)
bits of space. Thus the space required to store the compressed representations in

all the ¢ levels is O(tnl) bits. At the end of ¢ levels, we will store the remaining
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‘suffix array’ SA;,; explicitly. Since there are n/I' entries left after ¢ levels, this
requires 7 1g(n/1") bits. Hence the overall space required by this recursive structure
is % 1g(n/1") +O(tnl) bits. Clearly, this representation can be used to support lookup
queries in O(t) time, as we need to spend a constant time at each of the ¢ levels.

Choosing | = (Ign)"/®*) | we get

Theorem 2.4.7 There is an tmplementation of a compressed suffiz array that takes
O(tn(lgn)t+) bits of space and answers lookup queries in O(t) time, for any

parameter 1 <t <lglgn — 1.

In particular for ¢ = 1glgn — 1 we get a compressed suffix array representation
that takes O(nlglgn) bits which can be used to answer lookup queries in O(lglgn)
time. This scheme is the same as one of the schemes presented in [GV00].

By choosing t = (1/¢) — 1 in the above theorem, we get

Corollary 2.4.8 There is an implementation of a compressed suffix array that takes
O(nlg®n) bits of space and answers lookup queries in O(1) time, for any fized pos-

1tive constant € < 1.

2.4.5 Application to Suffix Tree Representation

By replacing the suffix array with the representation of Corollary 2.4.8, in the
suffix tree structure of Theorem 2.2.3, we get an O(nlg®n) bit suffix tree represen-
tation for a binary text of length n that supports search queries in O(m) time and
enumerative queries in O(m + occ) time.

Using their O(n) bit compressed suffix array representation, Grossi and Vit-
ter [GV00] have given an index structure that takes O(n) bits of space and supports
search and counting queries in O(m/lgn + 1g°n) time and enumerative queries in
O(m/1gn+ occlg® n) time, for any fixed positive constant € < 1. This structure uses
the suffix tree structure of Theorem 2.2.3 with some modifications (with the suffix
array replaced by their compressed suffix array representation). We first briefly
describe these modifications.

The main idea is to use a perfect hash function A to skip O(lgn) nodes in the trie
in constant time, by storing shortcut links. The nodes of the trie are enumerated in
preorder starting from the root. Then they build hash tables in which the pair (j, b)

is stored at position h(i,z) where node j is a descendent of node i, string z is of
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length at most lgn and b is a non-negative integer. These parameters must satisfy

the following conditions:

e j is the node identified by starting out form node 7 and traversing downward

the trie according to the bits in x.

e ) is the unique integer such that the string corresponding to the path from 7 to
j has prefix z and length ||+ b; this condition does not hold for any ancestor

of j.

In order to reduce the number of shortcut links, they set up two hash tables T}
and T5. The first hash table T} stores entries T1[h(7, z)] = (j, b) such that all strings
x are of length lgn. Initially, all possible shortcut links from the root are created.
Then, the shortcut links from each of the descendents are recursively created. The
second table T5 is created analogously with strings of length y/Ign. The number of
shortcut links in each of these tables is upper bounded by the number of nodes in
the trie.

To search for a pattern in this trie augmented with the shortcut links, they
take the first lgn bits in the pattern and branch from the root using 7;. If the
hash lookup in 7} succeeds and gives pair (j,b), then they try to match the next
b bits in the pattern in O(1 + b/1lgn) time and then recursively search in node j
with the remaining pattern. If the hash lookup fails because there are fewer than
lgn bits left in the pattern, they switch to T, and take only the next y/Ign bits in
the pattern to branch further. Finally, when the branching fails again, they match
the remaining at most /Ign bits in the standard way, one bit at a time. Thus, a
search query requires O(m/lgn++/Ign) time using this structure. In any case they
require O(lg°n) time to index into the suffix array (using their compressed suffix
array implementation). Thus, this structure requires O(m/lgn + occlg®n) time to
support enumerative queries.

We now describe our modifications to the structure of Grossi and Vitter, to get
a structure that supports enumerative queries in optimal time.

We replace their compressed suffix array representation by the representation
of Corollary 2.4.8 so that we can index into the suffix array in constant time. To
improve the search time, we store another precomputed table 75 which stores for
each possible trie of v/Ign nodes and for each possible pattern of length at most
V/Ign, the node at which a search for the pattern would end in the trie. This table
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requires 2°(V8™) which is o(n) bits. Using this augmented structure, we can support
search queries in O(m/lgn) time and enumerative queries in O(m/lgn+ occ) time.

Thus we have,

Theorem 2.4.9 There exists an indexing structure for a binary text of length n,
that uses O(nlg®n) bits of space, for any fized positive constant € < 1, and supports

enumerative queries in O(m/1lgn + occ) time.



Chapter 3

Static Dictionaries Supporting
Rank

3.1 Introduction and Motivation

A static dictionary is a data type for storing a subset S of size n from a fi-
nite universe U of size m so that membership queries can be answered efficiently.
This problem has been widely studied and various structures have been proposed
to support membership in constant time [FKS84, FNSS92, BM99, Pag01la] in the
extended RAM model. More specifically, Fredman et al. [FKS84] have given a
structure that takes nlgm + O(lglgm + n+/Ign) bits of space and answers mem-
bership queries in constant time. The space complexity of this structure was re-
duced to nlgm + O(lglgm + n) bits by Schmidit and Siegel [SS90]. Brodnik and
Munro [BM99] have given a structure that takes B 4+ O(B/lglglgm) bits of space
and supports membership queries in constant time, where B = [lg (’:ﬂ is the infor-
mation theoretic lower bound on the space required to store any set of size n from
a universe of size m. Pagh [Pag0la] has further improved the space complexity to
B + o(n) + O(1glgm) bits. Our focus here is to also support the rank operation
which asks for the number of elements in the set less than or equal to the given
element.

Note that the general problem of supporting the rank for every element in the

universe is equivalent to the well studied static predecessor problem, if the space

38
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allowed is O(n) words. Ajtai [Ajt88] has shown that if the word length is suffi-
ciently small (i.e., O(lgn) bits) and only n®® words of memory are used to rep-
resent any set of n elements, then worst-case constant time for predecessor queries
is not possible. Some improved lower bounds have been obtained for this problem
[Mil94, MNSW98| until Beame and Fich [BF99] essentially closed the problem by

o(1)

giving a structure that uses n words of space and performs predecessor queries

in © (min {lglgm/ lglglgm, \/m}) time, and by providing a matching
lower bound. Our focus here is to support rank queries for only the elements that
are present in the given set, in constant time.

We define the dictionary with rank problem, which is to represent a subset S of
a finite universe U so that following operation can be supported in O(1) worst-case

time:
rank(x): Given z € U, return —1 if z ¢ S and |[{y € S|y < z}| otherwise.

Our motivation for studying the rank operation comes from the problem of suc-
cinct representation of a cardinal tree, which is a generalization of a binary tree (see
Section 3.4 for a formal definition). The cardinal tree representation of Benoit et
al. [ BDMR99] uses 2n + n [lgk] + o(n) bits of space for a k-ary cardinal tree. This
structure supports all the navigational operations in constant time except finding
the child of a node with a given label, which takes O(lglgk) time. This represen-
tation implicitly gives a static dictionary structure that supports membership and
rank queries in O(lglgm) time, where m is the size of the universe. We first observe
that, to support all the operations in constant time using the same amount of space,
a dictionary with rank structure taking nlgm + o(n) bits for a set of size n over a
universe of size m, suffices.

Note that using a dictionary with rank, one can determine the membership of
an element in constant time by checking whether or not its rank is —1. Thus, a
dictionary with rank is a generalization of a static dictionary, which only supports
(yes/no) membership queries on S. The most space efficient static dictionary is
due to Pagh [Pag0la] which requires [1g (™)] + o(n) + O(lglgm) = nlg(me/n) —
O(n?/m) + o(n) + O(lglgm) bits of space. However, this approach, as well as
previous ones, is based on minimal perfect hashing [FKS84, Meh82, SS90], and
does not maintain the ordering of the elements of S. Pagh [Pag0la] has also given
another structure that answers membership and rank queries (for every element in

the universe) in constant time using B + O(mlglgm/lgm) bits of space.
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In the next section we give a space efficient static dictionary structure that
answers membership and rank queries in constant time. We first give a structure
that builds up on the enhancement of Pagh [Pag0la] of the FKS dictionary [FKS84]
in Section 3.2.2. Then we use a space saving technique to remove the O(n) term in
the space complexity to get a structure that takes nlgm + O(lglgm) bits of space
and supports rank queries in constant time in Section 3.2.3. Section 3.3 gives the
details of representing a set of dictionaries (over a common universe) to support rank
queries on individual dictionaries. In Section 3.4, we outline the k-ary cardinal tree
representation of Benoit et al. [BDMR99] and explain how the multiple dictionary
structure can be used to improve the running time from O(lglg k) to O(1) for finding
the child labeled 1, if exists, for any .

In what follows, if f is a function defined from a finite set X to a finite totally
ordered set Y, by ||f||, we mean max{f(z)|z € X}.

3.2 Dictionary with Rank

In this section, we first describe some known static dictionary structures and
then use them to obtain a dictionary with rank which takes nlgm + O(lglgm) bits

of space.

3.2.1 A Static Dictionary using nlgm + O(n + lglgm) bits

Fredman et al. [FKS84] have given a static dictionary structure that takes
nlgm + O(Iglgm + ny/Ign) bits of space and supports membership in O(1) time.
Schmidt and Seigel [SS90] have improved this space complexity to nlgm+O(lglgm+
n) bits. We refer to this structure as the FKS dictionary in the later sections.

We use the following lemma due to Fredman et al. [FKS84] in reducing the

universe size.

Lemma 3.2.1 ([FKS84|) Given a set S of size n from the universe |m)|, there
exists a prime p < n*lgm, such that the function h(z) = x mod p maps the set S

injectively into the set [p].

The original FKS construction to store a set S, as described by Schmidt and
Siegel [SS90], has four basic steps:
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1. A function hgp(x) is found that maps S into [n?] without collisions. It suffices
to choose hy ,(z) = (kz mod p) mod n? with suitable k < p < n?lgm, where
p is a prime. Here, the values £ and p depend on the set S.

2. Next, a function h,,(z) is found that maps hy,(S) into [n] so that the sum
of the squares of the collision sizes is not too large. Again, it suffices to
choose hy,(z) = (kz mod r) mod n, where r is any prime greater than n? and
k€ {1,...,r =1} so that D ., [he 1 (5) N hkyp(S)? < 3n. We will choose r

to be the smallest prime greater than n?.

3. For each non-empty bucket ¢, a secondary hash function h; is found that is
one-one on the collision set. We choose h;(z) = (k;z mod r) mod ¢;2, where
k; € {1,...,r—1} and ¢; is the size of the collision set hashing to bucket 7. The
element z € S, is stored in location C;+h;(hy - (hi p())), where C; = Z;;B cj?.
This locates all n items within a table A*[1,...,3n] of size 3n. The remaining

2n locations of A* are set 0.

4. Finally the entries in non-zero locations of table A* is stored (without any

vacant locations) in an array A[l,...,n] in the same order.

The composite hash function requires the following parameters:

k, p, k and r for the functions hy, and h,,

e a table K|0,...,n — 1] storing the parameters k; for secondary hash functions
h;
e a table C[l,...,n| listing the locations (values) C; and

e a compression table D[1,...,3n|, where D[j] gives the index, within A, of the
item (if any) that hashes to the value j in A*.

A straightforward representation of each of these parameters requires O(nlgn +
lglgm) bits of space. Schmidt and Siegel [SS90] have shown a way of storing this
composite hash function using O(n+1glgm) bits of space. We briefly describe their
representation below.

First, they observed that up to [lgn| + 1 secondary hash functions are sufficient

(instead of having one secondary hash function for every bucket) to hash the elements
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of the set. Moreover, these hash functions, stored in an array B[1,..., |lgn| + 1]
can be chosen in such a way that B[1] is a perfect hash function for at least half the
buckets, B[2] is a perfect hash function for at least half of the remaining buckets
and so on. (Existence of such a set of hash functions can be easily shown from
the results of FKS [FKS84].) The array B takes O((lgn)?) bits. Now, for each
secondary bucket i, we need to store the index j of the hash function B[j] that
hashes the bucket i (to represent table K). We store this as follows: for 1 < i < mn,
if the i*" bucket is nonempty, then store a 0 followed by j 1s if B[j] hashes bucket i,
and a 0 otherwise. Since index j appears at most n/27 times, for 1 < j < |lgn] +1
in the above representation, the total length of this bit-string is O(n). We store the
rank and select directories using o(n) bits (described in Section 2.2.3) for this bit
vector. Using this and the array of multipliers (i.e., the secondary hash functions),
given an i, we can find the multiplier (hash function) associated with the bucket 4
in constant time.

The parameters k& and p require O(lgn + lglgm) bits each and x and r take
O(lgn) bits each. The table C, which contains the values Cj, is encoded as follows.
First the values ¢ are stored in a table Ty in unary notation (in the order of increasing
i, separated by 0’s), which is of length at most 4n. We also store the rank and select
directories for this bit vector using o(n) bits. Now, given an i, C; is nothing but
the rank of the i 0 (i.e., C; = rank;(selecto(i)) ), which can be found in constant
time. For the compression table D, we store a bit-string of length 3n where the i
bit is a 0 if A*[i] is empty and 1 otherwise. We store the rank directory for this bit
vector using o(n) bits. When an element is hashed to a location in D, the rank of
the bit in that location in the bit vector representation of D gives the location of
the element in the array A.

This gives us the following:

Theorem 3.2.2 ([FKS84, SS90]) There is a static dictionary structure that takes
nlgm + O(n + 1glgm) bits of space and answers membership queries in constant

time.
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3.2.2 A Dictionary with Rank taking nlgm + O(n + lglgm)
bits

Pagh [Pag0la] has observed that each bucket j of the hash table may be resolved
with respect to the part of the universe hashing to bucket j. Thus we can save space
by compressing the hash table part (i.e., table A above) of the data structure,
storing in each location not the element itself, but only a quotient information
that distinguishes it from the part of U that hashes to this location. The quotient
function, slightly modified from that of Pagh’s, is as follows:

arp(x) = ((z div p). [p/n®| + (k.z mod p) div n®).[r/n] + (k.z mod r) div n

where z = (k.z mod p) mod n? and the parameters k, p, x and 7 are as defined in
the description of the FKS hash function. It is easy to see that g ,(z) for z € U
is O(m/n) (as (k.z mod r) div n < r/n, (k.x mod p) div n? < p/n? and z div p <
m/p).

Thus the total space required to store all the quotient values along with the hash
function is nlg(m/n) + O(n + lglgm) bits.

To search for a given element x, we first apply the composite hash function
to determine the location to which the element z hashes to in the hash table and
check whether the quotient value g ,(x) appears in that location. If it appears in
that location, then we answer that the element is present in the set. Otherwise, we
answer that the element is not present.

This gives us the following:

Theorem 3.2.3 ([Pag01a]) There is a static dictionary representation that takes

nlg(m/n) + O(n + lglgm) bits and answers membership queries in constant time.

A common extension to the dictionary problem is that every element of the set
S is associated with a satellite data from a set V. A membership query ‘Is z € S7’
should then return the satellite data associated with z, if x € S.

Now, with each element we can also store the satellite information associated
with that element, in the hash table, using an extra n [lg|V'|] bits of space. Thus

we have

Lemma 3.2.4 A static dictionary for a subset S of size n from the universe [m],

where each element is associated with a satellite data from a set V', can be stored
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using nlg(m|V|/n) + O(n +1glgm) bits of space to answer membership queries in

constant time.

By storing the rank information of an element as its satellite data in the above

dictionary, we get

Corollary 3.2.5 There is a dictionary with rank for a subset of size n from the

universe [m] that uses nlgm + O(n + 1glgm) bits of space.

3.2.3 Reducing the Space further

We now describe a method to remove the O(n) term in the space bound of
the above corollary. The main trick is to explicitly store only some partial rank
information as a satellite information (except for a sparse number of elements for
whom the full rank information is implicitly stored). This results in a saving of a

linear number of bits proving the following lemma.

Theorem 3.2.6 There is a dictionary with rank that stores a set S of size n from

the universe [m] using at most nlgm + O(lglgm) bits of space.

Proof. If n < ¢ for some constant ¢, to be fixed later, then list the elements of S
explicitly, which takes n [lgm] bits of space. Using this representation, rank queries
can be supported in constant time. Thus, assume that n > c.

Let 9 < ... < 7,1 be the elements of set S. Let 4 < r < n be an integer
parameter (which will be fixed later) and let n' =n — |n/r] — 1.

We write down r using [lgn| bits and explicitly write down the keys of B =
{z0, Zr, Tor, . . ., T(n—nr—1)r } in sorted order using (n —n') [lgm] bits. Next, we store
the set S = S\ B (of size n') using the dictionary of Lemma 3.2.4, with key
x; storing the satellite information ¢ mod r (i.e., the difference of its rank from
the rank of its predecessor in B). The space occupied by this structure will be
n'lg(mr/n') + a(n' + 1glgm) bits, for some constant a.

Thus the total space used is nlgm—+alglgm+n'(lgr—lgn’)+n—n'+an’+1gn
bits. This can be made less than n1g m+0(Iglgm) bits by choosing r to be |n/24T |
when 7 is more than some constant. Choose ¢ to be this constant. Thus, the space
used in either case is nlgm + O(1glgm) bits.

To answer rank(z) queries, we do a binary search to find the predecessor y € B

of z. If x € B, then the rank of x in S is r times the rank of x in B. Otherwise, we
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locate x in the dictionary for S’. If z is found in S’, the value of the satellite data
associated with x gives the difference of the rank of x from the rank of y (in S5).
Adding this to the rank of the y gives rank of z in S. Given an element z € [m)],
one can find the predecessor of z in B and also its rank in B, in constant (O(a))
time by performing a binary search on B, as |B| = |n/r| 4+ 1 which is O(2%). Thus,
rank queries can be supported in O(1) time using this structure. 1

Mehlhorn [Meh82] has shown that (g lgm) bits are needed to represent minimal
perfect hash functions from [m] to [n]. Thus there is little hope of removing the
O(lglgm) term in the space bound altogether using the above approach (specifically,
when n is o(lglgm)). So, we use a different approach when a group of small sets

are to be stored, as explained in the next section.

3.3 Multiple Rank-Dictionaries

In this section we look at the problem of representing a set of subsets from the
same universe. More formally, we look at the problem of representing multiple rank-
dictionaries: Given the sets S, Ss,...,Ss where each S; is a subset of the universe
[m], support the operations rank;(x) which returns the rank of the element z in the

subset S; in constant time.

Theorem 3.3.1 Let S, ..., S, all contained in [m] be given sets with Y _;_, |S;| = n.
Then this collection of sets can be represented using n [lgm|+o(n)+O(lglgm) bits,
supporting rank;(x) operation in constant time. Here rank;(x) returns the rank of
the element x in the set S;. We also assume that we have access to a constant time

. . . i—1 . .
oracle which, given i, returns the value Z;Zl |S;| given i.

Proof. If we use the static dictionary representation of Theorem 3.2.6 to represent
each set, then the space used by the all the dictionaries put together will be n [lg m|+
O(slglgm) bits. More specifically, we represent the set S; using the representation
of Theorem 3.2.6 and pad it to n[lgm] + c[lglgm] bits, for some constant c.
Now, we concatenate the representations of the sets S; for 1 < i < s (in that
order). The the total space used by this representation is n [lgm]| + cs[lglgm|
bits. Also the representation of the set S; starts at the position (Z;;ll |S;]) [lgm] +
(1—1)c[lglgm]+1, which can be computed in constant time using the given oracle.
But the total space used by this representation could be nlgm + Q(n) bits in the

worst case.
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Note that the O(lglgm) term for each set comes from the hash function part of
the dictionary representation. One can get rid of this term when n is Q(lglgm), as
explained in Section 3.2.3. But when n is o(lglgm) it is not possible to get rid of
this term altogether (using hashing techniques), if we store each set using a separate
dictionary. Hence, we use the idea of combining the sets into groups and storing a
single hash function for all small sets in a group. The details are as follows:

We group the first Ign sets into the first group, the next lgn sets into the second
group and so on. Thus given 7, the group number to which the set S; belongs, can
be determined in constant time. We call a set S; dense if |S;| > v/Ign and sparse
otherwise.

Let S = U:_|S;. Suppose n? < m. (The case when n? > m is much simpler and
the details for this case are outlined at the end of this proof.) We first find a hash
function f given by f(z) = (kz mod p) mod n?, for some prime p < n?lgm and
k < p, which maps S injectively into the set [n?]. Existence of such p and k is shown
by Fredman et al. [FKS84]. The values p and & can be stored using O(lgn +lglgm)
bits of space.

Now, to distinguish z from all the elements of the universe that map to f(z)

(under f), it is enough to store the following quotient information:
q(z) = (z div p) [p/?ﬂ + ((kx mod p) div n?).

Note that, each g(z) can be stored using at most lgm/n? + 3 bits.
Let S; be a dense set, i.e., n; = |S;| > 1/lgn. Then we store the set f(S;)
using the representation described in the proof of Theorem 3.2.6, with the following

modifications:

e The set B stores every 7' element in the sorted order of the set S; (instead of

f(53).

e With each element z € S;' = S;\ B, we now store its partial rank with respect
to the set S; (instead of f(S;)), as the satellite data, in the dictionary for S;'.

Note that the hash function in Theorem 3.2.6, in this case requires O(n; +
lglg ||f||) bits of space which is O(n;) bits as ||f|| = n? and n; > /Ign. We also
store the quotient values ¢(z) for each x € S; in the sorted order of the elements of
S;.
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Let n;/ = |S;/|. The set B is stored using (n; — n;/ + 1) [lgm] bits and the
partial rank information for each element in the set S;’ takes n;’ lgr bits. The space
occupied by the dictionary for the set S; will be n;'lg(n?/n;') + an; bits, for some
constant a. Finally, the quotient values require at most n;'(lg(m/n?) + 3) bits of
space. Thus, the total space used is n;lgm + n;'(Igr + a + 3 —1gn,’). By choosing
r = |n;/2%"*|, one can make the space complexity to be at most n; lgm bits. This
takes care of representing all the dense sets. We now, explain the representation of
sparse groups.

Consider a group i. Let S? be the union of all the sparse sets in the i** group. Note
that |S¢| < (Ign)*?. Find a prime p; such that the the function g;(z) = f(z) mod p;
is 1-1 on the set f(S*). Such a p; whose value is at most O(|S?|*Ig||f||) exists, from
Lemma 3.2.1. Since ||f|| = n? and |S| < (Ign)*?, we can represent p; (< (Ign)*)
using O(lglgn) bits.

We store these primes, indexed by their group number in a separate table. Each
prime is stored in a field of b = ©(lglgn) bits. If S? is empty (i.e., there is no sparse
set in the 7" group), then the table contains a string of b 0s in the entry corresponding
to that group. The total space required by this table is O(nlglgn/lgn) which is
o(n) bits.

For a sparse set SJ’: in the 5" group, let n; = |SJZ| If n; < C, for some constant
C to be determined later, we store the elements of S;- in the sorted order, which
takes n; [lgm] bits of space. Otherwise, for a sparse set Sj-, we store an implicit
representation of the set {g;(z)|z € Si}. Since ||g;|| = p;, this can be stored using
Mg (52)] bits. Since p; < (Ign)* and n} < /Ign, the space used is o(lgn) bits. We
also store a precomputed table (one for each possible size of the sparse sets) which,
given the representation of a sparse set S and a value x < p;, returns the rank of
in S, for all possible S and z. The space required by this table is o(n) bits, as the
representation of any S takes O(y/Ignlglgn) bits and z takes O(lglgn) bits.

Again, to distinguish the element z, from all the elements of the universe that

map to the value g(z,) (under g), it suffices to store the quotient value

¢ (z;) = q(.) [n*/pi] + f(z,) div p;.

We store these quotient values in the sorted order of the elements of S; Thus

the space used by a sparse set Sji- is at most Ig (52) + n; (lgm —1gp; +4) bits (apart
i .

from the o(n) bit precomputed table). The term 4n’ in the space is due to the
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ceilings in the quotient function. Hence, the space is at most n}1gm, if n} is more
than some constant. We choose C' to be this constant.

Thus, the space used for a set S; is at most |S;| [lgm] bits in all the cases. If a
set S; takes less than this number of bits, we pad it to this length so that each set
S; takes exactly |S;| [lgm| bits. Thus, the representation of a set S; starts at the
position 23;11 |Sj|1gm + 1 in the representation.

Given z € [m], to find rank;(x) we do the following:

First, find the position where the representation of S; is stored and also the size
n; = |S;| using the oracle. If n; < C, then search the elements of S; using binary
search, as the elements of S; are stored in sorted order. Otherwise, first read the
values of p and k corresponding to the hash function f.

If n; < +/Ign, find the prime p; stored in the I = (i/Ign)™ location in the table
of primes stored separately. Now find the value g;(z) = f(z) mod p; and then find
the rank of g;(z) using the implicit representation of the set g;(S;) (stored at the
position where the representation of S; starts) using the precomputed table. The
element z is not in S; if the rank is —1. Otherwise, if the rank is r, then we know
that g;(z) = g,(z,) where z, is the r** smallest element in the set S;. Now, return
rif ¢'(z) = ¢'(x,) and —1 otherwise. Note that the value ¢'(z,) is stored at the r*"
position in the sequence of quotient values corresponding to the set S;.

Otherwise n; > /Ign. Now, find the predecessor y € B of z and its rank [ in B
using a binary search. If x € B, return r [ as the rank of z. Otherwise, search for
f(z) in the dictionary for S’. If it is found, we read the satellite data ' associated
with it, for some 7' in the range [1,...,[S'|]]. Let b = r* {4+ r'. If q(z) = q(zp),
return b otherwise return —1. Again, the value ¢(z;) is stored in the b** position in
the sequence of quotient values corresponding to the set S;.

The first thing to note is that there are only O(Ign) tables (for some fixed
positive constant ¢) for operations on small sets. Thus the space required by all
tables put together is o(n). The second thing is that in order to easily find the start
of the representation of a set S;, the representations of all sets S; would need to be
padded out to precisely |S;| [lgm] bits, if necessary.

When n? > k, we follow exactly the same approach, except that we do not use
the range reduction function, f for the set S. n

In the next section, we show an application of this result by giving an efficient

representation of a cardinal tree.
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3.4 Representing Cardinal Trees

By a cardinal tree (or trie) of degree k (or a k-ary cardinal tree), we mean a
rooted tree in which each node has £ positions for an edge to a child. A binary
tree is a cardinal tree of degree 2. Since there are Ct = (**™)/(kn + 1) such trees,
(Ig(k—1)+klg 51 )n bits is a good estimate of the lower bound on a representation,
assuming n is large with respect to k. This bound is roughly n(lgk + lge) bits as k
grows. Benoit et al. [ BDMR99| have given a representation of a cardinal tree that
takes n [lgk] + 2n + o(n) bits and supports finding the parent, i"* child, degree
and the subtree size of a given node in constant time. Finding a child labeled 4,
using their representation, requires O(lglgk) time in the worst case. Using our
representation of multiple dictionaries, we give a structure that supports all the five
operations in constant time.

The cardinal tree encoding of Benoit et al. [ BDMR99]| has two parts. In the first
part, they store the underlying ordinal tree of the given cardinal tree. (An ordinal
tree is a rooted ordered tree in which the children of each node are ordered from
left to right, with no explicit labels.) They use the succinct encoding of ordinal
trees [MR97, BDMR99] (see also Section 2.2.3) which takes 2n + o(n) bits to store
an ordinal tree on n nodes. This ordinal tree representation supports finding the
parent, " child, degree and the subtree size of a given node, all in constant time. In
this representation, a node is identified by its preorder numbering in the tree (i.e.,
the position of the node in the preorder traversal of the tree).

In the second part, they store the information about the labels of the children
present at that node. In particular, they store the set of labels of the children
present using a static dictionary, for each node. They use a static dictionary that
takes n [lgm] bits of space to represent a set of size n from the universe [m| and
supports membership and rank operations in O(lglgm) time. This takes d [lgk]
bits for a node with d children in a k-ary cardinal tree. Hence, to represent this
child information for each node in a k-ary tree on n nodes, they use (n — 1) [lg k]|
bits of space, since the sum of the degrees (i.e., the number of children) of all the
nodes is n — 1. Thus, their overall representation takes n([lgk] + 2) + o(n) bits of
space.

Now, to find the child labeled 7 of a node, we first find the rank r of the element
7 in the static dictionary corresponding to that node. If the rank is —1, then we

answer that there is no such child. Otherwise, we return the 7** child of the node
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(using the ordinal tree representation).

We now describe our modification to the cardinal tree representation of Benoit
et al. [BDMRO99] to support all the operations in constant time. Let S; be the set
containing all the child labels of node 7 in the given tree, for 1 < 7 < n. Note
that Y, |S;| = n — 1. Store these sets using the representation of Theorem 3.3.1
which takes n [lgk] + o(n) + O(lglg k) bits of space. Also note that given i, the
values, 23;11 |S;| and |S;| can be computed in constant time, using the ordinal tree
representation stored. (This is because, the ordinal tree representation, a node is
identified by its preorder numbering in the tree. One can easily verify that the
preorder number of the leftmost child of a node numbered ¢ is nothing but 1 +
Z;;ll d;, where d; denotes the number of children of the j node. Also, note that
|Sj| = d;.) Thus, using this representation, given a node z and a child label /, one
can find the rank of the child labeled [ at z in constant time. Hence, this cardinal
tree representation also supports finding a child labeled j of a given node in constant

time. Thus we have,

Theorem 3.4.1 There exists an n [1gk]+2n+o0(n)+O(Iglg k) bit representation of
an k-ary cardinal tree on n nodes that supports, given any node, finding its parent,
ith child, child labeled j, degree and the size of the subtree rooted at the node in

constant time.

3.4.1 Application to Suffix Tree Representation

In Theorem 2.2.3 of Section 2.2, we gave a representation of a suffix tree for a
given text, which is stored as a binary tree by converting the suffixes of the text
into binary. Instead, if we directly store the suffix tree using the cardinal tree

representation of Section 3.4, we get the following:

Theorem 3.4.2 A suffix tree for a given text of length n over an alphabet ¥ can be
represented using n(lgn +1g|X|) + O(n +1glg|X|) bits of space using which, given a

pattern of length m, one can search for an occurrence of the pattern in O(m) time.



Chapter 4

Static Dictionary in the Bitprobe
Model

4.1 Introduction

In this chapter, we look at the static membership problem: given a subset S of
up to n keys drawn from the universe [m], store it so that queries of the form “Is
z in S7” can be answered quickly. We study this problem in the bitprobe model.
In this model space complexity is measured in terms of the number of bits used to
store the data structure, and time complexity in terms of the number of bits of the
data structure probed (i.e., looked at) in answering a query. All other computations
are free.

A simple characteristic bit vector gives a solution to the problem using m bits
of space in which membership queries can be answered using one bit probe. On
the other hand, the structures given by Fredman et al. [FKS84], Brodnik and
Munro [BM99], and Pagh [PagOla] can be used to get a scheme that uses O(nlgm)
bits of space in which membership queries can be answered using O(lgm) bit probes.

Buhrman et al. [BMRV00] have shown that both the above schemes are op-
timal. More specifically, they have shown that any scheme that uses s bits of
space and answers membership queries using t bit probes satisfies that condition:
(’7’:) < maXj<nt (215) (This inequality has been tightened further by Radhakrishnan
et al. [RSV00].) In particular, this implies that any scheme that answers membership

ol
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queries using one bit probe requires at least m bits of space and that any scheme
using O(n lgm) bits of space requires Q(lg m) probes to answer membership queries,
when n < m!'~¢, for any fixed positive constant ¢ < 1. They have also considered the
intermediate ranges and have given some upper and lower bounds for randomized as
well as deterministic versions of the problem. Their main result is that the optimal
O(nlgm) bits (for n < m!'=M) of space is sufficient to answer queries using one
bit, if the query algorithm is allowed to make errors on both sides (i.e., when the
query element is either present or absent in the given set) with a small probability.

For the deterministic case, they have shown that the static dictionary structure
given by Fredman, Komlos and Szemeredi [FKS84] can be modified to give a scheme
that uses O(nkm!/¥) bits of space and answers membership queries by probing
O(lgn+lglgm) + k bits from the structure, for any parameter 1 < k£ < lgm. Using
probabilistic arguments, they have also shown the existence of a scheme that uses
O(m3/*nlgm) bits and answers queries using ¢ probes, for any ¢ (4 <t < O(Igm)).
For n = 2, they have shown the existence of a scheme that takes O(m3/*) bits of
space and answers membership queries using two adaptive bit probes.

Our main contribution is some improved deterministic upper bounds for the

problem using explicit constructions, particularly for small values of t.

4.1.1 Definitions and Notations

We reproduce the definitions of a storage scheme and a query scheme, introduced
in BMRV00]. An (n,m, s)-storage scheme, is a method for representing any subset
of size at most n over a universe of size m as an s-bit string. Formally, an (n,m, s)-
storage scheme is a map ¢ from the subsets of size at most n of the universe [m| to
{0,1}%. Tt is called an explicit storage scheme, if there is a Turing machine which
given the subset D, outputs ¢(D) in s°()) time. A deterministic (m, s,t)-query
scheme is a family of m boolean decision trees {71,T5,...,Tn}, of depth at most
t. Each internal node in a decision tree is marked with an index between 1 and s,
indicating an address of a bit in an s-bit data structure. All the edges are labeled by
“0” or “1” indicating the bit stored in the parent node. The leaf nodes are marked
“Yes” or “No”. Each tree T; induces a map from {0,1}* — {Yes, No}. An (m, s, t)-
query scheme is explicit, if there is a Turing Machine running in time O(lg m)o(l),

which on input z and with oracle access to ¢(D) executes the correct sequence of

probes according to the query scheme and accepts or rejects accordingly.
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An (n,m, s)-storage scheme and a deterministic (m, s, t)-query scheme together
form a deterministic (n, m, s, t)-scheme which solves the (n, m)-membership problem
if (VS,z s.t. |S| < n,andz € U : T,(¢(S)) = Yes’ if and only if z € S). An
(n,m, s, t)-scheme is explicit, if the associated storage and query schemes are explicit.
A non-adaptive deterministic scheme is a scheme, where in each decision tree of the
query scheme, all the nodes on a particular level are marked with the same index. In
this chapter, we fix our universe to be [m] and hence refer to an (n,m, s, t)-scheme
simply as an (n, s, t)-scheme.

We follow the convention that whenever the universe [m] is divided into blocks
of size b (or equivalently m/b blocks), the set of elements from the subset B; =
{(i —1)b,...,ib— 1} of the universe belong to the " block, for 1 < i < |m/b] and
the remaining (at most b — 1) elements, {|m/b|b,...,m — 1}, belong to the last
block. Given a subset S of the universe and also given that the universe is divided
into b blocks, we call the i* block empty if SN B; = 0 (i.e., if no element of the set S
belongs to that block), and non-empty otherwise. We call the number of non-empty
blocks with indices less than or equal to i as the rank of the i** block among the
non-empty blocks. By characteristic vector of the 7** block, we mean the bit vector
of length m /b, where the 5 bit is a 1 if and only if (i —1)b+;j—1 € S, for 1 < j < b.

We assume, without loss of generality, that the universe size m is a perfect square.
(All the schemes which use this assumption can be easily modified to schemes which
take the same amount of asymptotic space and answer the queries using the same
number of probes, even if m is not a perfect square.) Also, given any element
x € [m], we use the abbreviations z¢ = div(z,y/m) and 2" = mod(x,/m) (¢ and
r stand for quotient and reminder respectively). We also refer to them as the first
and second halves of = respectively. Also, to simplify the notation, we ignore integer
rounding ups and downs at some places where they do not affect the asymptotic
analysis.

The next section gives improved upper bounds for deterministic schemes. In
particular, Section 4.2.1 gives some schemes for small values of n. Section 4.2.2 de-
velopes a non-adaptive scheme that answers queries using O(y/nIgn) probes, taking
O(v/nm]Ign) bits of space. In Section 4.2.3, we develop schemes with o(m) bits that
answer queries using either 1g1g n+2 adaptive probes or O(lgn) non-adaptive probes.
In section 4.3, we give some space lower bounds for a restricted class of two probe

schemes, matching some of our upper bounds.



Chapter 4: Static Dictionary in the Bitprobe Model 54

4.2 Upper Bounds for Deterministic Schemes

4.2.1 Deterministic Schemes for small n

For n = 1, one can easily get an optimal (1,¢m'/? t)-scheme [BMRV00] for any
given ¢ by splitting the bit representation of the given element into ¢ (roughly) equal
parts and storing the characteristic vectors of each part by considering it as subset
of the set [m!/*]. (The space used by this scheme is within a constant factor of the
optimum; for example, for n = 2, this scheme takes 2,/m bits whereas the lower
bound is v/2m 4 O(1) bits. One can in fact achieve the optimum space by assigning
a unique code ¢ € {0, 1}* of weight ¢ to each element of the universe, where s is the
lower bound on the number of bits required.)

For n = 2, Buhrman et al. [BMRV00] have shown that any non-adaptive two
probe scheme requires m bits of space. We first start with a simple O(y/m)-bit
non-adaptive scheme for two element sets that uses four probes to answer queries.
Given a subset {z,y} of [m], assume without loss of generality that x < y. The
storage scheme consists of three tables T3, T, and T3 each of length /m. We set
Ty[z? = 01, T1[y?] = 10 and all other locations in 7; to 00 (if z, = y,, then set
Ti[z,] = Trly,] = 01, say) and set T5[z"] and T3[y"| to one and all other bits in
T, and Ty to zero. Given a query element z € [m], the query scheme probes the
locations T1[29], Ty[z"] and T3[z"]. If (T1]29] = 01 and T3[2"] = 1) or (T3[27] = 10
and T3[z"] = 1), then we answer ‘Yes’; in all other cases we answer ‘No’. Thus, this
gives us a (2, s,4)-scheme with s = 4y/m.

Note that this immediately gives an adaptive (2, 4+/m, 3)-scheme (using the same
storage scheme). Also, using the same idea, for three-element sets one can get a non-
adaptive (3, 5/m, 5)-scheme and an adaptive (3, 5/m, 3)-scheme.

The non-adaptive (2,4+/m,4)-scheme is improved to a three probe scheme, us-
ing the idea of Steiner triples, by Buhrman et al.[BMRV00]. The storage scheme
consists of the characteristic vectors of the subsets {z9,y?}, {z", 4"} and {mod(z?+
x",y/m),mod(y? + y",\/m)} of [\/m]. Given a query element z € [m], the query
scheme probes the locations 29, z" and mod(z? + 2", /m) respectively in the three
vectors and answers ‘Yes’ if and only if all the probed locations are 1. Thus, this gives
a (2, s, 3)-scheme with s = 3y/m. Note that this scheme is inherently non-adaptive.

We now explore generalizations of these schemes in two different directions. In

the first direction in Section 4.2.2, we keep the relation between time and space
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to be the same (i.e., s = t4/m) and then try to reduce the number of probes (),
considering only non-adaptive schemes. We achieve a scheme with ¢ = O(y/nlgn)
and s = ty/m. In Section 4.2.3, we develop schemes with s = o(m) that answer
queries using as few probes as possible. We achieve a non-adaptive (n, s, t)-scheme

with ¢ = O(lgn) and s = o(m), for a large range of n.

4.2.2 Non-adaptive Schemes with s = t/m

The non-adaptive (2,4+/m,4)-scheme can be easily generalized to get a non-
adaptive (n,s,t)-scheme with ¢ = [Ig(n+1)] + n and s = (n + [Ig(n +1)])v/m.
This can be improved by generalizing the non-adaptive (2, 3+/m, 3)-scheme to the

following:

Theorem 4.2.1 There is an explicit non-adaptive (n, s,t)-scheme with t = n + 1

and s = ty/m.

Proof. The scheme has ¢ = n + 1 tables each of size /m bits. To each of the m
elements we assign t bits, one in each table. These bits are be determined by an
equation (4.2.1) below. To represent a given set of elements, for each element in the
set we set its corresponding ¢ bits to 1. All other bits are set to 0. To determine
whether an element is present, we simply check whether all its assigned bits are 1.

Let m' be the smallest prime number greater than or equal to \/m. Consider an
element = € [m|. Treating {z% 2"} as a basis of a vector space over the finite field
Z/m/', consider the following pairwise linearly independent vectors (note that both

z9 and z" are less than m'):

z? 2", 2+ 2", 229+ 2", 3+ 2, ..., (m'=1)z?+ 2", (4.2.1)

where arithmetic is modulo m’'. Because these vectors are pairwise linearly inde-
pendent and the dimension of the vector space is two, given any two of these vectors
we can obtain the unit vectors x¢ and z" from linear combinations. In other words,
the values of any two of these vectors uniquely determine the values of z? and z",
and hence also z.

Recall that to each element we must assign a bit in each of the ¢ = n + 1 tables.
Now we can specify the bits: for the i** table, we choose the bit with address given

by the i vector in (4.2.1). Because there are only m' + 1 > \/m + 1 such vectors,
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we must have t = n+1 < y/m+ 1, i.e., n < /m. But note that the statement is
trivial if n > y/m: a bit vector would suffice to prove the bound.

So, we have an assignment of bits to elements. Now observe that (by the “two
values determine all the others” property proved above) any two distinct elements
share at most one vector in (4.2.1), and hence share at most one bit. Because there
are only n elements and ¢ = n+1 bits assigned to each element, not all the locations
corresponding to any element would have been set to 1, if that element is not present.
Thus, no element will be mistakenly thought to be in the set by examining the ¢
bits. i

By choosing a larger vector field with ¢ + 1 basis elements, one can generalize

the above scheme to get the following:

Corollary 4.2.2 There is an explicit non-adaptive (n, s,t)-scheme with t = cn + 1

c+1

and s = tm"/ Y | for any integer 1 < ¢ < lgm — 1.

Now we develop a different idea to reduce the number of probes. The following
lemma gives a scheme when the given set of elements satisfies some restrictions.

This is used in the next theorem to get a structure for unrestricted sets.

Lemma 4.2.3 There is an explicit non-adaptive (n,s,2 [1g(n + 1)])-scheme with
s = t\/m, if all the elements of the set to be represented have either distinct first

halves or distinct second halves in their binary representations.

Proof. Divide the universe into blocks of size y/m. Suppose all the elements
have distinct first halves in their binary representations. The case when all the
elements have distinct second halves is symmetric. The storage scheme consists of
two tables T} and T3, corresponding to the two halves of the binary representations
of the elements. We store a number in the range [0, ..., n| (using [lg(n + 1)] bits)
corresponding to each block in each of 77 and T5.

Let z1,x9,...,x, be the sequence of elements of the given set in the increasing
order. For each i, let p; be the rank of 27 (i.e., the number of distinct values less
than z7) in the set {z}|1 < j < n}.

Now, set Ti[z]] and Ty[z!] to p; + 1, for 1 < ¢ < n and all other locations in
T; and T5 to 0. One can verify that this gives a valid storage scheme (since all the

elements have distinct first halves, i.e., z{ # z7 for i # j).
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Given a query element = the scheme looks the values stored in 77 [z7] and Ty[z"].
If these two values are equal and non-zero, it answers ‘Yes’; otherwise it answers ‘No’.
One can easily verify that this scheme correctly answers the membership queries. g
This can be combined with the simple bit vector scheme to give the following

result:

Theorem 4.2.4 There is an explicit non-adaptive (n,s,t)-scheme with t = 1 +
2[lg(n+1)] + [n/2] and s = ty/m.

Proof. The storage scheme consists of a bit vector B of length /m, two tables T}
and T, of size \/m, each storing a value in the range [0, ..., n|, and |n/2] bits vectors
Vi,...,Vins2), each of length \/m, for a total space of \/m(1+2 [lg(n +1)] +[n/2])
bits.

Divide the universe into blocks of size y/m. Note that an element z belongs to
the block numbered z?. For 1 < i < /m, the ith bit in the bit vector B is set to
1 if and only if the block has at most one element from the given set. If a block
contains exactly one element x from the given set, then store in 7}[z?] the rank of
z" in the set {y"|y € S'}, where S’ is the set of all the elements that fall into such
blocks containing exactly one element from the given set. If it has more than one
element, then store its rank, among such blocks, in 7). For each element, x that
falls into a block with exactly one element, store the value T;[z?] at location z" in
T5. For each block with at least two elements, store the characteristic vector of that
block in the vector V;, where 7 is the value stored in 77 in the corresponding block.
Set all the unspecified values to zero.

Given an element x, to find whether x belongs to the given set, we read the
bit Blz?], the values T1[z?] and T,[z"], and the bits V;[z,], for 1 < i < |n/2]. If
B[z?] = 1, then we look at the values T1[z?] and T[z"]. If these values are equal and
non-zero, then we answer that the element z is present. Otherwise, if Blz?] = 0,
then look at the bit read from the bit vector V;, where j is the value read from table
T (in other words, the bit Vr[ze)[z"]). If it is 1, then we answer that the element
is present. In all the other cases, we answer that the element x is not present in the

given set. [

Remark 4.2.5 One can use the same storage scheme to get an adaptive scheme
by first reading the 1 + [lg(n + 1)] bits from B and 73, and then reading either
the [lg(n + 1)] bits from table 75 or one bit from the corresponding bit vector V;
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(depending on the value of the bit read from B). This gives us an explicit adaptive
(n, s,t)-scheme with t =1+ 2 [lg(n + 1)]) and s = O(ny/m).

We now generalize the scheme of Theorem 4.2.4 to reduce the number of bit
probes required to answer a query (and there by also reducing the storage space
required). The main idea here is to distinguish blocks containing at most k& — 1
elements from the other blocks. We again store an ‘indicator bit’ for each block
to store this information. For all those elements that fall into blocks containing at
most k — 1 elements, we store the ranks of their second halves in a table T5.

The table T corresponding to the first halves contains £ — 1 entries for each
block. For each block containing at least k£ elements we store the rank of it among
such blocks in its first entry of 77 and also store its characteristic vector in a bit
vector indexed by its rank. For blocks containing at most £ — 1 elements, we store
the (at most k£ — 1) values stored in T5 corresponding to each of the elements falling
into that block, in the entries of T (in any order). All other unspecified entries (in
all the tables) are set to 0.

Given an element, we read all the entries corresponding to that element (namely,
the indicator bit, the entries in tables 7} and 75 and corresponding bits from each
of the characteristic vectors). From the indicator bit, we find whether it belong
to a block containing at most £ — 1 elements. If so, then we look at all the £ — 1
entries from 7 and the entry read from 75, and answer ‘Yes’ if and only if any of the
non-zero entries read from 7T} is equal to the entry read from 7. Otherwise, if the
query element belongs to a block containing at least k elements, we look at the first
entry, say i, read from 7} and then look at the bit read from the i characteristic
vector. We answer ‘Yes’ if and only if this bit is 1.

Thus we have

Theorem 4.2.6 There is an explicit non-adaptive (n,s,t)-scheme with t = 1 +
klg(n+1)] + |n/k] and s = t\/m, for any parameter k > 1.

Substituting k = |4/n/lgn| in the above theorem, we get

Corollary 4.2.7 There is an explicit non-adaptive (n, s, O(\/nlgn))-scheme with

s =1ty/m.

Note that this scheme performs better than the scheme of Theorem 4.2.1 both

in terms of time and space, for large n. This gives the best known constructive
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scheme (in terms of time) for the given amount of space (O(y/m) for fixed n). We
give another scheme that takes less number of probes albeit using more space, in the

next subsection by first giving an adaptive scheme and then making it non-adaptive.

4.2.3 Adaptive Schemes

The goal in this section is to get as small ¢ as possible keeping the space to be
o(m).

For n = 2, if only two probes are allowed, Buhrman et al. [BMRV00] have shown
that, any non-adaptive scheme must use m bits of space. They have also shown
the existence of an adaptive scheme using 2 probes and O(m?/*) bits of space. We

improve it to the following:

Theorem 4.2.8 There is an explicit adaptive (2, s, 2)-scheme with s = 3m?/3,

3 each. There are m?/® blocks.

Proof. Divide the universe into blocks of size m!/
Group m!/3 consecutive blocks into a superblock. There are m'/3 superblocks of size
m?/® each.

The storage scheme consists of three tables T, Ty and T3, each of size m?/® bits.
Each element x € [m] is associated with three locations, t(x), to(x) and t;(x), one
in each of the three tables, as defined below. Let b = m?/3 and b; = m!'/3. Then,
t(z) = div(z, by), to(x) = mod(x,b) and t;(x) = div(z,b) by + mod(z,by). (Le., in
the bit representation of z, t(z) is the value of the first two-thirds of the bits, #5(z) is
the value of the last two-thirds of the bits and ¢; (z) is the value of the concatenation
of the first one-thirds and the last one-thirds of the bits.)

Given an element z € [m], the query scheme first looks at T'(t(x)). If T'(¢t(z)) = 7,
it looks at 7T}(¢;(z)) and answers ‘Yes’ if and only if it is 1, for j € {0,1}.

To represent a set {z,y}, if both z and y belong to the same superblock (i.e., if
div(z,b) = div(y,b)), then we set the bits T'(¢(x)) and T(t(y)) to 0, all other bits
in T to 1; To(to(x)) and Ty(te(y)) are set to 1 and all other bits in Ty and 77 are
set to 0. In other words, we represent the characteristic vector of the superblock
containing both the elements, in 7}, in this case.

Otherwise, if both the elements belong to different superblocks, we set T'(¢(x)),
T(t(y)), T1(t1(x)) and T1(t1(y)) to 1 and all other bits in T', Ty and 77 to 0. In this
case, each superblock has at most one non-empty block (containing one element). So

in T, for each superblock, we store the characteristic vector of the only non-empty
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block in it, if it exists, and a sequence of zeroes otherwise. One can easily verify that
the storage scheme is valid and that the query scheme answers membership queries
correctly using two adaptive bit probes. 1

The number of probes used by this scheme can be slightly improved by general-

izing the adaptive (2,3m?3,2)-scheme to work for larger n, to get the following.

Theorem 4.2.9 There is an explicit adaptive (n, s, 1+[lg(|n/2]| + 2)])-scheme with
s = 0(m**(n/2 +1g(n/2 + 2) + 1)).

Proof. The idea is to distinguish superblocks containing at least 2 elements from
those containing at most one element.

In the first level, if a superblock contains at least 2 elements, we store its rank
among all superblocks containing at least 2 elements, with all its blocks. Since there
can be at most |n/2| superblocks containing at least 2 elements, the rank can be
any number in the range {1,...,|n/2]}. For blocks which fall into superblocks
containing at most one element, we store the number |n/2| + 1, if the block is
non-empty and a sequence of [1g(|n/2]| + 2)] zeroes, otherwise.

The second level consists of [n/2] 4+ 1 bit vectors of size m?/® each. We store
the characteristic vector of the j* superblock containing at least two elements in
the 7' bit vector, for 1 < j < I, where [ is the number of superblocks containing at
least 2 elements. We set all other bit vectors (indexed [+ 1 to |n/2]) to zeroes. In
the (|n/2] 4+ 1)** bit vector, for each superblock we store the characteristic vector of
the only non-empty block in it, if it has exactly one non-empty block or a sequence
of zeroes otherwise.

On query z, we look at the first level entry of the block corresponding to z. If it is
0, we answer ‘No’. Otherwise, if it is a number £ in the range [1, ..., |n/2]], we look
at the corresponding location of x in the k™ bit vector in the second level (which
stores the bit vector corresponding to the superblock containing z). Otherwise (if
the number is [n/2]| + 1), we look at the corresponding location of x in the last bit

vector and answer accordingly. .

Remark 4.2.10 The adaptive (2,44/m, 3)-scheme given in Section 4.2.1 can be eas-
ily generalized, for larger n, to get an adaptive (n, s, t)-scheme with ¢t = [lg(n + 1)]+
1 and s = /m(n+ [lg(n + 1)]). Note that, compared with this scheme, the savings

in the number of probes achieved by the scheme of Theorem 4.2.9 is at most one
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(and the space usage is higher). But this scheme guides us in achieving further

reduction in the number of probes.

This can be further generalized as follows. In the first level, we distinguish the
superblocks having at least k elements (for some integer k) from those with at most
k—1 elements in them. For superblocks having at least £ elements, we store the rank
of that superblock among all such superblocks, in all the blocks of that superblock.
For the other blocks, we store the rank of the block among all non-empty blocks in
that superblock, if the block is non-empty and a sequence of zeroes otherwise. The
second level has |n/k| + k — 1 bit vectors of length m?/? each, where in the first
| n/k] bit vectors we store the characteristic vectors of the at most |n/k| superblocks
containing at least k elements in them (in the order of increasing rank) and pad the
rest of them with zeroes. Each of the (|n/k] + j)% bit vectors, for 1 < j < k — 1,
stores the characteristic vector of one block from every superblock. This block is the
4" non-empty block in that superblock, if that superblock contains at least j non-
empty blocks and at most £ — 1 elements; we store a sequence of zeroes otherwise.

The query scheme is straightforward. This results in the following:

Corollary 4.2.11 There is an explicit adaptive (n,s,1 + [lg(|n/k| + k)|)-scheme
with s = O(m*3(n/k +1g(n/k + k) + k).

Choosing k = [{/n], we get

Corollary 4.2.12 There is an explicit adaptive (n, s, 2+ [ 1gn])-scheme with s =

O(m?3\/n).

This can be slightly improved by choosing the block sizes appropriately as shown

below:

Theorem 4.2.13 There is an ezplicit adaptive (n,s,2 + [+ 1gn])-scheme with s =
O(m?3(nlign)i/3).

Proof. Divide the universe into blocks of size b and subdivide each block in turn
into sub-blocks of size b; (where b and b; are to be determined later).

The structure consists of three levels. In the first level we store a bit vector of
length m/b. We set the i* bit to 1 if the i block has at least |1/n] elements, and

to 0 otherwise.
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The second level consists of a table of size m/b; each entry corresponding to a
sub-block of the universe. If the block to which a sub-block belongs has at least
|v/1] elements, we store the rank of that block, among all such blocks, in the table
entry corresponding to that sub-block. Since there can be at most [/n] — 1 blocks
with at least | /7| elements, each entry can be stored using [£”] bits.

Otherwise, if the block to which a sub-block belongs has at most [{/n] — 1
elements, store its rank among all the non-empty sub-blocks in that block, if the
block is non-empty; store a 0 otherwise. Since there can be at most [/n] — 1
non-empty sub-blocks, each entry again takes P%ﬂ bits.

The third level has two parts. In the first part, for each block with at least |/n]
elements, we store the bit vector of the block, in the order in which they appear.
Since there are at most [/n] — 1 such blocks, this requires b [y/n] bits of space.

In the second part, for each block we allocate by [v/n] bits of space. For each
block with at most [/n| — 1 elements, we store the bit vectors of all non-empty
sub-blocks in the space allocated for that block. For the remaining blocks, we store
all zeroes.

The space occupied for the overall structure is

5= % + %lgn +n'2(b + %bl)
and the number of probesist =1+ [% lgn] + 1. Thus, choosing

2/3 (15 ) 1/3 1/3(1g1)2/3
po m(gn) 7 gy, = M (8n)
91/3,,1/6 92/37,1/3
makes the space s to be 52zm?3(nlgn)'/? + o(m??) bits. -

We generalize the scheme of Corollary 4.2.12 to the following:

Theorem 4.2.14 There is an explicit adaptive (n, s, [lg(k + 1)] + [ig[n*/*]] + 1)-
scheme with s = m***) (Igk + L 1gn + kn'/*), for k > 1.

Proof. We divide the universe into blocks of size b (to be determined later) and
construct a complete b-ary tree with these blocks at the leaves. Let k& be the height
of this tree. Then, we have m = b**' or b = m/*+1), Given a set S of n elements
from the universe, we store it using a three level structure. We define the height of
a node in the tree to be the length of the path (the number of nodes in the path)
from that node to any leaf in the subtree rooted at that node. Note that the height
of the root is £ + 1 and that of any leaf is one.
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In the first level we store an index in the range [0, ..., k] corresponding to each
block. Thus, the first level consists of a table B of size b* where each entry is a [lg k]
bit number. The index stored for an empty block is 0. For a non-empty block, we
store the height A < k of its ancestor (excluding the root) z of maximum height such
that the total number of elements falling into all the blocks in the subtree rooted at
node z is at least |n"~"/k|. This will be a number in the range [1,..., k].

In the second level we store a number in the range [0, ..., [n'/*] — 1] correspond-
ing to each block. Thus this level consists of a table T of size b*, each entry of
which is a [lg nt/ ’ﬂ bit number. The number stored for an empty block is 0. For a
non-empty block, we store the following:

Observe that given any node x at height A which has less than \_n(h_l)/ kJ elements
from the set, the number of its children which have at least Ln(h_”/ ’“J elements from
the set is less than [n'/*]. Suppose the index stored for a block is [ (I # 0). It means
that the ancestor x of that block at height [ has at least [n(l_l)/ kJ elements and the
ancestor y at height /41 has less than [nl/ kJ elements. Hence, y can have less than
[nl/ ’ﬂ children which have at least [nl/ kJ elements. Call these the ‘large’ children
of y. All the leaves in the subtree rooted at each large child of y are blocks with
index [. With these blocks we store the rank of that child among all large children
of y (from left to right) in the second level.

In the third level, we have k tables, each of size [n'/¥] m/b bits. The " table
stores the representations of all blocks whose first level entry (in table B) is i. We
think of the " table as a set of [n!'/*] bit vectors, each of length m/b. Each of
these bit vectors in the i level stores the characteristic vector of a particular child
for each node at height 7 of the tree, in the left to right order. More specifically, for
each block (of size b) with first level entry ¢ and second level entry j, we store the
characteristic vector of that block in the j* bit vector of the i** table at the location
corresponding to its block of size b¥~*. We store zeroes at all other locations not
specified above.

Every element x € [m] is associated with k + 2 locations b(z), ¢(z) and t;(z) for
0 < i < k—1, as defined below: b(z) = t(z) = div(z,b), t;(x) = mod(div(z, b*)b* +
mod(z,b),b*). (These values of t(z) and ¢;(x), for each i, can be interpreted using
the bit representation of z, as in the proof of Theorem 4.2.8.)

Given an element z, to determine the membership of z, we first read i = B(b(z))

and j = T'(t(z)) from the first two levels of the structure. If j = 0, we answer ‘No’.
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Otherwise, we read the j* bit in the table entry at location ¢;(x) in table 7; and
answer ‘Yes’ if and only if it is 1.

The space required for the structure is o ([lg(k + 1)1+ [+ lgn|)+ 2k [n'/*| bits.
Substituting b = m!/*+1) makes the space complexity to be m*/ ¢+ ([1g(k +1)] +
[+1gn] + kn'/*). Also, this takes [lg(k + 1)] + [Ig[n'/¥]] + 1 probes to answer a
query. x

One can slightly improve the space complexity of the above structure by choos-
ing non-uniform block sizes and making the block sizes (i.e., branching factors at
each level in the above tree structure) to be a function of n (using similar ideas
used in the proof of Theorem 4.2.13). More precisely, by choosing the branch-

ing factor of all the nodes at level ¢ in the above tree structure to be b;, where

i L1 D)
by =m' w1 (“g(HEiELka e ]) , we get

Corollary 4.2.15 There is an explicit adaptive (n, s, [Ig(k + 1)] + [Ig|n*/*]] + 1)-
scheme with s = (k + 1)m*/*+0 (n([1g(k +1)] + ﬂgnl/’“]))l/(kﬂ), for k > 1.

By setting k = Ign, we get

Corollary 4.2.16 There is an explicit adaptive (n, s, [1glgn| +2)-scheme with s =
O(m/lgm), when n is O(m!/'8le™).

In the adaptive scheme of Theorem 4.2.14, we first read [lg(k + 1)] + [1g[n'/*]]
bits from the first two levels of the structure, and depending on these bits we look
at one more bit in the third level to determine whether the query element is present.
An obvious way to make this scheme non-adaptive is to read the [lg(k+1)] +
[lg[n'/*|] bits from the first two levels and all possible & [n'/¥] bits in the next level
and determine the membership accordingly. Thus we get an explicit non-adaptive
(n,m, s, t)-scheme with t = [lg(k + 1)] + [lg|n'/* |1+ k[n'/*] and s = tm*/*+1). By
setting k = [lgn] in this, we get

Corollary 4.2.17 There is an explicit non-adaptive (n, s, O(lgn))-scheme with s =
O(m/lgm), when n is O(m'/'8le™),

The schemes of Corollary 4.2.16 and Corollary 4.2.17 give the best known (in
terms of the number of probes) explicit adaptive and non-adaptive schemes respec-

tively for general n using o(m) bits.
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4.3 Lower Bounds

Buhrman et al. [BMRV00] have shown that for any (n, s, t)-scheme s is Q(ntm?!/?).
As observed in Section 4.2.1, one can achieve this bound easily for n = 1. They
have also shown that for n > 2 any two probe non-adaptive scheme must use at
least m bits of space. In this section, we show a space lower bound of Q(m??) bits
for a restricted class of adaptive schemes using two probes, for n > 2. Combined
with the upper bound of Theorem 4.2.8, this gives a tight lower bound for this
class of restricted schemes. We conjecture that the lower bound applies even for
unrestricted schemes. We also show a lower bound of €2(m) bits for this restricted
class of schemes for n > 3.

Any two-probe O(s) bit adaptive scheme to represent sets of size at most 2 from
a universe U of size m, can be assumed to satisfy the following conditions (without

loss of generality):

—

. It has three tables A, B and C each of size s bits.
2. Each z € U is associated with three locations a(z), b(z) and ¢(z).

3. On query z, the query scheme first looks at Afa(x)]. If Ala(z)] = 0 then it
answers ‘Yes’ if and only if B[b(x)] = 1; else if A[a(x)] = 1, then it answers
‘Yes’ if and only if Clc(x)] = 1.

4. Each location of A, B and C is looked at by at least two elements of the
universe, unless s > m. (If a location is looked at by only one element, then
set that location to 1 or 0 depending on whether the corresponding element
is present or not; we can remove that location and the element out of our

scheme.)

5. Let A; = {x € [m]:a(z) =i}, B; = {b(z) : z € A;} and C; = {c(z) : x € A;},
for 1 < i < s. Then |B;| = |Ai] or |A;] = |Cy], for all 1 < i < s. Le, all
the elements probing a particular location in table A will all probe distinct
locations in one of the tables, B or C. (Otherwise, let z,y, 2,y € A;, z #y
and z' # y' be such that b(xz) = b(y) and c¢(z') = ¢(y'). Then we can not

represent one of the sets {z,z'} (when z # ') or {y,y'} (when z = z').

6. There are at most two ones in B and C put together.
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Consider following restrictions on the query scheme:

e R1. For z,y € [m],z # y, a(z) = a(y) = b(z) # b(y) and c(x) # c(y). Le.,
any pair of elements probing the same location in A will probe at distinct
locations in both B and C.

e R2. Fori,jes|,i#j, BiNB; # ¢ = C;NC; = ¢. Le., no two elements will

probe the same locations in both B and C.

e R3. Either B or C is all zeroes.
We first show the following relationship between these restrictions:
Lemma 4.3.1 For any adaptive (2, s,2)-scheme, (R1 and R2) < RS.

Proof. R3 = (R1 and R2) :

Let x and y (z # y) be two elements in [m] such that a(z) = a(y) and b(z) = b(y)
(the case when ¢(z) = ¢(y), for some z, y, is similar), so that condition R1 is violated.
Consider an element z # x such that ¢(x) = ¢(z); such an element exists by condition
5 above. Now to represent the set {y, z}, we have set the bits A[a(z)], B[b(z)] and
Clec(y)] to 1. But this does not satisfy the condition R3. Thus, R3 = R1.

Again, without loss of generality, let a(z1) = a(z2) = 4, a(y1) = a(y2) = 7,
b(x1) = b(y1) and c(x2) = c(yz), for some elements x1,22,y1,y2 € [m], so that
condition R2 is violated. Then, to represent the set {zs,y;} if we set Ala(z)] to 0,
then we have to set Ala(y1)], Blb(z2)] and Clc(y1)] to 1. On the other hand, if we
set Ala(z1)] to 1, then we have to set Afa(y;)] to 0, and B[b(y1)] and C|c(z2)] to 1.
In both cases, condition R3 is not satisfied. Thus, R3 = R2.

(R1 and R2) = RS :

Consider any scheme which satisfies R1 and R2 but not R3. So, there exists a set
{z,y} such that a(x) # a(y) for which the scheme stores this set as follows (without
loss of generality): Aa(z)] =0, Ala(y)] =1, Blb(z)] =1, Cle(y)] = 1, Ala(z)] =1
for all z for which b(z) = b(x), Ala(z)] = 0 for all z for which ¢(z) = ¢(y) and all
other entries are zeroes.

We now argue that this scheme can be converted into a scheme that satisfies R3
also.

Let a(xz) =4 and a(y) = j. If BN B; = ¢, then we can store this set as follows:
Ala(z)] = Ala(y)] = 0 and all other entries in A as 1s, B[b(z)] = B[b(y)] = 1 and
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all entries in B and C as zeroes, satisfying R3. Condition R1 (and the fact that
B; N B; = ¢) ensures that this is a valid scheme to represent the set {z,y}.
On the other hand, if B,NB; # ¢, then R2 implies that C;NC; = ¢. In this case,
to store the set {z,y} we can set A(a(z)) = A(a(y)) = 1,C(c(x)) = Clc(y)) = 1
and all other entries in A, B and C as zeroes, satisfying R3. 1
Next we show that if an adaptive (2, s, 2)-scheme satisfies R3, then s is Q(m?/?).
Note that the scheme given in Theorem 4.2.8 satisfies all these three conditions.

Thus, this lower bound is tight for the class of storage schemes satisfying R3.

Theorem 4.3.2 If an adaptive (2,s,2)-scheme satisfies condition R3, then s is
Q(m?2/3).

Proof. From Lemma 4.3.1, it is enough to show that if an adaptive (2, s, 2)-scheme
satisfies (R1 and R2), then s is Q(m?/?).
Observe that R1 implies

A = |Bi| = |G|, Vi,1 <i<s. (4.3.2)

Hence

Y IBil =D A =m. (4.3.3)
=1 =1

By R2, the sets B; x C; are disjoint (no pair occurs in two of these Carte-
sian products). Thus, by Equation (4.3.2), >°7_, |B;|* < s*. By Cauchy-Schwarz,
s |1Bil/s)? < Yoi_ |Bil*> < s®. By Equation (4.3.3), >0, |B;| = m. Thus,
m?/s < s% or s > m?/3. .
We now show that if an adaptive (n, s, 2)-scheme, for n > 3 satisfies R3, then

s > m (showing another tight lower bound for this class of restricted schemes).

Theorem 4.3.3 If an adaptive (n,s,2)-scheme for n > 3 satisfies condition R3,

then s > m.

Proof. We first observe that any two probe adaptive scheme satisfies conditions
1 to 5 of the adaptive schemes for sets of size at most 2. Consider an adaptive
(3, s,2)-scheme with s < m satisfying R3. One can find up to five elements z, y,
y', z and Z' from the universe such that a(y) = a(y’), a(z) = a(z'), b(z) = b(y) and
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c(x) = ¢(z). (Start by fixing =, y, z and then fix 2’ and y'.) Existence of such a
situation is guaranteed by condition 5, as s < m.

Now to represent the set {z,%’,2'}, we have to set either B[b(z)] or Clc(z)] to
1. If we set B[b(x)] to 1, then we have to set Ala(y)] to 0 and C[c(y')] to 1. On the
other hand, if we set C[c(x)] to 1, then we have to set Aa(z)] to 0 and B[b(z')] to
1. In both the cases, condition R3 is not satisfied. Also note that to represent the

set {z,y’, 7'}, yielding a contradiction. Hence, s > m. .



Chapter 5

Succinct Dynamic Data Structures

5.1 Introduction

In the last three chapters, we considered succinct structures for problems in which
given an input, we would like to support the relevant operations efficiently using as
less space as possible. In all these problems, the input is fixed before the data
structure is constructed and it does not change during the operations. These are
called static structures. In this chapter, we look at data structure problems where
the input is allowed to change during the operations. These are called dynamic data
structure problems.

We mainly look at succinct solutions to two interrelated classical dynamic data
structuring problems, namely maintaining partial sums and dynamic arrays. We
consider these problems in the extended RAM model with word size ©(lgn) bits,
where n is the maximum size of the input (though, at some places, we give a more
general result by assuming a word size of w bits, where w is a parameter).

In more detail, the problems considered are:

Partial Sums

This problem has two positive integer parameters: the item size, k = O(lgn)
and the mazimum increment, 0pae = lgo(l) n. The problem consists in maintaining
a sequence of n numbers A[l],..., A[n], such that 0 < A[s] < 2¥ — 1 under the

operations:

69
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e sum(i): return the value 23:1 Alj]-

e update(i,0): set Ali] < A[i] + §, for some integer § such that 0 < Afli] +6 <
28 — 1 and || < Gmae-

We also consider the following operation:
e select(j): find the smallest 7 such that sum(i) > j.

In what follows, we refer to the partial sums problem with select as the searchable
partial sums problem. We call the operations that don’t change the data structure
as queries and those that change the data structure as updates.

Dietz [Die89] has given a structure for the partial sums problem that supports
sum and update in O(lgn/lglgn) worst-case time using ©(n lgn) bits of extra space,
for the case when k£ = ©(lgn). As the information-theoretic lower bound on space
is kn bits, Dietz’s data structure uses a constant factor extra space even when
k = ©(lgn), and is worse for smaller k. We modify Dietz’s structure to obtain
a data structure that solves the searchable partial sums problem in O(lgn/lglgn)
worst-case time using kn—+o(kn) bits of space. Thus, we improve the space utilization
and support the select operation as well.

We show the following trade-off between query and update times: for any pa-
rameter b > lgn/lglgn, we can support sum in O(log, n) time and update in O(b)
time. In particular, we can support sum in O(1) time and update in O(n®) time,
for any fixed positive constant € < 1. The space used is the minimum possible to
within a lower-order term, in all these structures.

When b = lgn/lglgn or n¢, for some fixed positive constant € < 1, our time
bounds are optimal in the following sense. Fredman and Saks [FS89] gave lower
bounds for this problem in the cell probe model with logarithmic word size, a much
stronger model than the word RAM model, we consider. For the partial sums
problem, they show that an intermixed sequence of n updates and queries requires
Q(lgn/lglgn) amortized time per operation. Furthermore, they give a more general
trade-off [FS89, Proof of Thm 3’| between the number of memory locations that must
be written and read by an intermixed sequence of updates and queries. Our data
structure achieves the optimal trade-off between reads and writes, for the above
range of parameter values. If we require that queries be performed using read-only
access to the data structure—a requirement satisfied by our query algorithms—then

the query and update times we achieve are also optimal.
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Next, we consider a special case of the searchable partial sums problem that is

of particular interest.

Dynamic Bit Vector

Given a bit vector of length n, support the following operations:

e rank(i): find the number of 1’s occurring before and including the ith bit
e select(j): find the position of jth one in the bit vector and
e flip(i): flip the bit at position 7 in the bit vector

for1 <4,j <n.

A bit vector supporting rank and select is a fundamental building block for
succinct static tree and set representations [BM99, MR97]. Given a (static) bit
vector, the rank and select operations can be supported in O(1) time using o(n) bits
of extra space [Cla96, Jac89b] (as described in Section 2.2.3).

As the dynamic bit vector problem is simply the searchable partial sums problem
with £ = 1 (with appropriate translations of the operations sum, select and update
to rank, select and flip respectively), we immediately obtain a data structure that
supports rank, select and flip operations in O(lgn/lglgn) worst-case time using
o(n) bits of extra space. For the bit vector, however, we are able to exhibit the
trade-off for all three operations. Namely, for any parameter b > lgn/lglgn we can
support rank and select in O(log, n) time and update in amortized O(b) time. In
particular, we can support rank and select in constant time if we allow updates to
take O(n°) amortized time for any fixed positive constant € < 1.

If we remove the select operation from the dynamic bit vector problem, we obtain
the subset rank problem considered by Fredman and Saks [FS89]. From their lower
bound on the subset rank problem, we conclude that our time bounds are optimal,
in the sense described above.

Next, we consider another fundamental problem addressed by Fredman and
Saks [FS89].

Dynamic Array

Given an initially empty sequence of records, support the following operations:
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e insert(x,1): insert a new record x at position ¢ in the sequence
e delete(i): delete the record at position 7 in the sequence and

e index(i): return the sth record in the sequence

for 0 <4 < n, where n is the current number of records in the array.

Dynamic arrays are useful data structures in efficiently implementing the data
types such as the Vector class in Java and C++. The dynamic array problem was
called the list representation problem by Fredman and Saks, who gave a cell probe
lower bound of Q(lgn/lglgn) time for this problem, and also showed that n‘(V)
update time is needed to support constant-time queries. The tiered wvector data
structure of Goodrich and Kloss [GI99] (for the dynamic array problem) supports
insert and delete operations in O(n¢) amortized time while supporting the index
operation in constant worst-case time. This structure uses O(n'~¢) words of extra
space (besides the space required to store the n elements of the array), for any fixed
positive constant € < 1.

We first observe that the structure of Goodrich and Kloss can be viewed as a
version of the well-known implicit data structure, the ‘rotated list’ [MS80, Fre83|.
Using this connection, we observe that the structure of Goodrich and Kloss can be
made to take O(n°) worst-case time for updates while maintaining the same storage
(O(n'~¢) additional words) and O(1/¢) worst-case time for the index operation, for
any parameter 0 < € < 1. Then, using this structure in small blocks, we obtain
a dynamic array structure that supports insert, delete and index operations in
O(lgn/lglgn) amortized time using o(n) bits of extra space. Due to the lower
bound result of Fredman and Saks, both our results above are on optimal points of
the query time/update time trade-off while using optimal (within lower order term)
amount of extra space.

We should also point out that the resizable arrays of Brodnik et al. [BCD*99]
can be used to support inserting and deleting elements at either ends of an array
and accessing the ith element in the array, all in constant time. This data structure
uses O(y/n) words of extra space, where n is the current size of the array. Brodnik
et al. do not support insertion into (or deletion from) the middle of the array.

To simplify notation, we ignore integer roundings at places where they do not

affect the asymptotic analysis.
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In Section 5.2, we describe our space efficient structures for the partial sums
problem. In Section 5.3, we look at the special case of the partial sums problem
when the given elements are bits, and give the details of a structure that supports full
tradeoff between queries (select and rank) and update (flip). Section 5.4 addresses

the problem of supporting the dynamic array operations.

5.2 Dynamic Structures for Partial Sums

Here, we consider the partial sums and the searchable partial sums problems
and give trade-offs between query and update times. Then for the dynamic bit
vector problem we give some more query-update trade-offs. We begin by describing

a weight balanced B-tree which is used later.

5.2.1 Weight Balanced B-Trees

We first reproduce the definition of a weight balanced B-tree or a WBB-tree, as
described by Dietz [Die89).
Given a list (sequence) of elements a WBB-tree is a rooted, ordered tree having

the following properties:

e The elements of the list are at the leaves of the tree, in the order from left to

right.
e The leaves of the tree are at the same depth.
e Let b be the branching factor of the tree and let N be a value chosen so that
1/2 < N/w(root) < 2.
Define the fullness of a node x to be the quantity full(z) = w(x)/b"®
For every internal node z except the root, 1/2 < full(z) < 2 and,

full(root) < 2.

Here, for a node x, h(z) refers to the height of x and w(x), called the weight of
x, is defined as the number of leaves in the subtree rooted at x.
WBB-trees are closely related to ordinary B-trees [Meh84]. The weight balancing

condition enables us to support the index operation efficiently.
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Note that for a given list of length n, the height of the WBB-tree with branching
factor b is O(log, n). Dietz [Die89] has used this structure to describe an optimal
algorithm for the list indexing problem. In particular, he shows that this structure
supports finding the position of a given element in the list (index operation), insert-
ing and deleting an element from the list all in O(Ign/lglgn) amortized time (by
taking b = lgn/lglgn). The space required by this structure is O(nlgn) bits.

We first observe that this can be easily generalized to get a structure that sup-
ports index operation in O(log, n) amortized time and insert and delete operations
in O(blog,n) amortized time, using the same amout of space, for any parameter
4 < b <n. We also use another simple generalization where we associate numbers
with the leaves and define the weight of a leaf to be the weight associated with it.
Thus, given a sequence of n elements, we use this modified structure to support
sum and select operations in O(log, n) time and the operations of incrementing and
decrementing the weight of a leaf in O(blog, n) time. This modified structure also

takes O(nlgn) bits of space.

5.2.2 Searchable Partial Sums

We begin by solving the partial sums problem on a small set of integers in O(1)

time, by adapting an idea of Dietz [Die89).

Lemma 5.2.1 On a RAM with a word size of w bits, we can solve the searchable
partial sum problem on a sequence of n = w® numbers, for any fixred 0 < € < 1,
with item size k < w, in O(1) worst-case time using O(nw) bits of space. The data

structure requires a precomputed table of size O(2€™) bits for some fived € < 1.

Proof. Let A[l],..., A[n] denote the sequence of elements for which the partial
sums are to be calculated. We store another array BJ[l,...,n] which contains the
partial sums of A, i.e., B[i] = Z;Il Ali]. As we cannot hope to maintain B under
the update operation (with O(1) time per operation), we let B get slightly ‘out of
date’. More precisely, B is not changed after each update; instead, after every m
updates B will be refreshed, or brought up to date. Since the cost of refreshing is
O(n), the amortized cost is O(1) per update.

We also maintain an array C[1,...,n] in addition to A and B. C is set to all
zeroes when B is refreshed. Otherwise, when an update changes A[i] by 0, i.e., if A[i]
is changed to A[i] + &, we set C[i] - C[i] + 6. Since |C[i]| < némee = w°O always,
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the entire array C' occupies O(nlgw) bits, which is less than fw bits, for any fixed
0 < # < 1 and sufficiently large w. Now, sum(i) is nothing but Bl[i] + Z;;ll Cli.

We construct a precomputed table, that has one entry for each possible configu-
ration of the array C' written as a bit string, and for each possible index 7, 1 <17 < n.
The entry stored for the array configuration C' and index i is the value Z;_:ll Clil.
We store these these entries in the lexicographic order of the bit strings C'; and in the
increasing order of 4 within the entries with the same C. Thus, the value 23;11 Ci
can be computed in constant time by indexing into this precomputed table. Since
there are at most 2° possible configurations of C, the space used by the table is at
most 2“1 1g(n?6,mqz) bits, which will be O(2¢™) bits for some fixed € < 1, as § < 1
and m = w-.

We now show how to perform select in O(1) time. The idea is to first find an
approximate index (for select) and then find a corrective term to find the exact index.
For finding the approximate index, we use the Q)-heap structure given by Fredman

and Willard [FW94], which solves the following dynamic predecessor problem:

Theorem 5.2.2 [FW94] For any 0 < M < 2%, given a set of at most (g M)'/*
integers of O(w) bits each, one can support the operations insert, delete, predecessor
and successor operations in constant time on a RAM with word size w bits, where
predecessor(x) (successor(x)) returns the largest (smallest) element y in the set such
that y < x (y > x). The data structure requires a precomputed table of size O(M)
buts.

By choosing M = 2¢%, we can support predecessor/successor queries on sets of
size n' = (¢w)”* in O(1) time, using a table of size O(2¢%) bits. Now, given a
sequence of length n = w¢, if ¢ > 1/4, then we construct a tree with branching
factor n’ with the given sequence of elements at the leaves. The height of this tree
will be O(1). Define the weight of an internal node to be the sum of the weights
of its children and that of a leaf to be the value in the given sequence associated
with it. Now, at each internal node, we store the partial sums of the weights of
its children using the QQ-heap structure of Theorem 5.2.2 to support the predecessor
and successor operations on its children in O(1) time. Note that the updates to
the Q-heap structure will have O(1) amortized cost. This tree structure supports
predecessor and successor queries on the array B.

If the array B were up to date, then we can answer a query for select(j), for any

J, in O(1) time by finding the successor of j in B using the above tree structure.
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However, B may not be up-to-date (but not too out-dated either, as it will be up
to date after every n updates). Thus, this gives an approximate index for select (7).
To find the exact value from this, we do the following:

Let DI[1,...,n] be an array such that D[i] = min{A[i], nas }- As with C, D
is also stored in a single word, and is changed in O(1) time (using either table
lookup or bitwise operations) whenever A is changed by an update. To implement
select(j), we first consult the Q-heap data structure to determine an index ¢ such
that B[t — 1] < j < BJ[t]. By calculating sum(t — 1) and sum(t) in O(1) time we
determine whether ¢ is the correct answer. In general, the correct answer could be
an index t' # t; assume for specificity that ¢ > ¢. Note that ¢’ is the smallest integer
such that A[t+1]+-- -+ A[t'] > j—sum(t). Since j < B([t] and Blt]—sum(t) < némaz,
it follows that j — sum(t) < ndpes. By the definition of D, it also follows that ¢’ is
the smallest integer such that D[t + 1] + ...+ D[t'] > j — sum(t).

Now, we store a precomputed table in which each entry is indexed by a triple
of the form (D, z,i) where D is any possible configuration of the array D, 1 < z <
N0maz, and 1 < i < n. The entry corresponding to the triple (D, x,1) stores the
smallest index j such that D[i+1]+...4+ D[j] > z. These entries are ordered in the
lexicographic order of the triples (D, x,1), so that one can index into the table in
constant time. Thus, given D, j — sum(t) and ¢, one can look up this precomputed
table to find ¢ in O(1) time. A similar procedure is followed if ¢ < ¢. The space
used by this precomputed table is at most 28¥nlgn which is 0(26'“’) bits, for some
constant € < 1.

Finally, the amortization can be eliminated by Dietz’s incremental refreshing
approach [Die89]. More specifically, instead of updating the entire arrays B and D
after every m updates, we update one location in each of them after every update,
in some fixed predetermined order. Thus, each value of the arrays B and D will be
updated once in every m updates, and hence the above procedures to compute sum
and select still give the correct answers. x

For larger inputs (of length n), we choose a parameter b = (Ign)¢, for some
positive constant € < 1 and create a complete b-ary tree, the leaves of which corre-
spond to the entries of the input sequence A. We define the weight of an internal
node as the sum of the weights of its children and the weight of a leaf to be the
input value associated with it. At each internal node we store the weights of its

children using the data structure of Lemma 5.2.1. The tree has O(n/b) internal
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nodes, each occupying O(b) words (of (Ign) bits each) and the height of the tree is
O(lgn/lglgn).

We now briefly outline how each of the operations can be supported. To compute
sum (i), we consider the path from root to the " leaf (from the left) in the tree, by
starting from the leaf and going up using the parent pointers. (Note that, since the
tree is a complete b-ary tree having all the leaves at the same level, one can find
i" leaf using simple arithmetic.) In this path, for each internal node, we find the
partial sum of its child (in the path) and add them up to get sum(7).

To compute select(j), we start from the root and compute select(j) in the struc-
ture stored at the root. If this returns an index 7, then we find z = sum(i) in the
partial sum structure for the root and then recursively find select(j — z) at the i
child of the root.

To update the 7** element in the sequence, we start from the i** leaf in the tree
and update partial sum structures stored at all the nodes in the path from the leaf
to the root.

Clearly all these operations take time proportional to the height of the tree as
they traverse the path from the root to a leaf, spending O(1) time at each level.

Thus, we have

Lemma 5.2.3 There is a data structure for the searchable partial sums problem on
n elements that supports all operations in O(lgn/lglgn) time, and requires O(n)

words of space.

We now modify this structure, reducing the space complexity of the structure to

kn+ o(kn) bits. We first show some trade-offs between the query and update times.

5.2.3 'Trade-off between query and update for Partial Sums

Lemma 5.2.4 For any parameter b > 4, there is a data structure for the searchable
partial sums problem that supports update in O(log, n) time and sum and select in
O(blog, n) time. The space used is kn + O((k + 1gb) - n/b) bits.

Proof. We construct a complete b-ary tree over the elements of the input sequence
A. With each internal node we store its weight (as defined above). Since the weight
of a node at height A is in the range [0, ..., 20" — 1], we need k + hlgb bits to
store the weight of a node at level h. Summing up, we need O(k + 1gb)n/b bits to
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store the weight of all the internal nodes of the tree and kn bits to store the values
(weights) at the leaves. To perform an update, we start from the leaf and update
the weights of all the nodes in the path from that leaf to the root. Since the height
of the tree is O(log, n), this requires O(log, n) time. The operations sum or select
can be implemented by traversing the tree from the root to a leaf, looking at all
the children of a node at each level. This requires O(blogy n) time to support these
operations. (Note that select can in fact be supported in O(lgn) time by performing
a binary search for the appropriate value at node in the path from the root to a
leaf.) n

Now, to support all the operations in O(Ign/lglgn) time, we divide input into
groups of numbers of size (Ign)? each. These groups are represented internally using
Lemma 5.2.4, with b = (lgn)/2. This requires kn + o(kn) bits, and all operations
within a group take O((Ign)'/?) time, which is negligible. The n/(Ign)? group sums
are stored using the data structure of Lemma 5.2.3, which requires o(n) bits now.
The precomputed tables (required in Lemma 5.2.1) also require o(n) bits. Thus we

have:

Theorem 5.2.5 There is a data structure for the searchable partial sums problem
that supports all operations in O(lgn/lglgn) worst-case time and uses kn + o(kn)

bits of space.

Combining Lemma 5.2.4 with Theorem 5.2.5 and noting that given any param-
eter b > lgn, we can reduce the branching factor from b to b/lgn. This reduces
the complexity of queries to O(b) without affecting the asymptotic complexity of
update. This gives us the following:

Theorem 5.2.6 There is a data structure for the searchable partial sums problem
that supports update in O(log,n) and sum and select in O(b) time, for any parameter

b>lgn/lglgn, using kn + o(kn) bits of space.

We now show that one can trade off query and update times for the partial
sums problem (without select). More specifically, we show that for any parameter
2 < b < n, we can support sum in O(log, n) and update in O(blog, n) time, while still
ensuring that the data structure is space efficient. As these bounds are subsumed

by Theorem 5.2.5 for b < (Ign)?, we will assume that b > (Ign)? in what follows.
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We construct a complete tree with branching factor b, with the given sequence
of n elements at the leaves. Clearly this tree has height h = log, n. At each internal
node, we store the weight of that node and also store an array containing the partial
sums of the weights of all its children. By using the obvious O(b) time algorithm,
the partial sum array at an internal node is kept up-to-date after each update. Thus,
update requires O(blog, n) time. The sum operation can be supported in O(log, n)
time by traversing the path from a leaf to the root and computing the partial sums at
each level (as described before). Unfortunately, the space used to store this ‘simple’
structure is O((k + 1gb)n) bits, since the partial sum arrays at an internal nodes at
height h requires O(k + hlgb) bits of space and the weights of the leaves take kn
bits of space.

To get around this, we use one of two methods, depending on the value of k.
If k> (lg n)l/ ?. then we divide the input values into groups of size lgn. Within a
group, we do not store the A[i]’s explicitly, but store only their partial sums. The
sums of elements in each of the n/lgn groups are stored in the simple structure
above with branching factor b = lgn. The space required by this structure is
O((k + lglgn)n/lgn) which is o(kn) bits. The space required by each group is
(k+1glgn)lgn bits; this sums up to kn+nlglgn = kn+o(kn) bits overall. Clearly
the asymptotic complexity of update and sum are not affected by this change.

If k < (Ign)'/2, then we divide the given sequence of elements into groups of size
lgn/2k each. Again, group sums are stored in the simple structure, which requires
O(kn(k +1glgn)/lgn) = o(kn) bits. We store a precomputed table that has an
entry corresponding to each possible configuration of an array of length (Ign)/2k,
where each entry is a k bit string, and an index i, 1 < ¢ < (Ign)/2k. The entry
corresponding to an array configuration D and an index ¢ is the value Z;Zl D[j].
Again, these entries are stored in the lexicographic order of the strings (D,%) to
enable constant time time access into this table. The space required to store this
table is at most /nk(lglgn)? which is o(n) bits, for the given range of k. Thus, we
can answer sum queries within a group by indexing into this table.

Finally, we note that given any parameter b > (Ign)?, we can reduce the branch-
ing factor from b to b/1lgn without affecting the asymptotic complexity of sum;
however, update would now take O(b) steps. Combining this with Theorem 5.2.5 we

have:

Theorem 5.2.7 For any parameter lgn/lglgn < b < n, there is a data structure
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for the partial sums problem that supports sum in O(log, n) time and update in O(b)

time, and uses kn + o(kn) bits of space.

Note that using the above structure, one can support select in O(lgn) time by
performing a binary search (on the partial sums of the weights of the children) at

each node in a path from the root to a leaf for the required element.

5.3 Dynamic Bit Vector

The dynamic bit vector problem is a special case of the searchable partial sums

problem. The following corollary follows from Theorem 5.2.5.

Corollary 5.3.1 Given a bit vector of length n, we can support the rank, select and
flip operations in O(1gn/lglgn) time using o(n) bits of space in addition to the bit

vector.

5.3.1 Trade-off between query and update for Bit Vector

Theorem 5.2.6 immediately gives the following trade-offs between the query and

update times for the dynamic bit vector:

Theorem 5.3.2 Given a bit vector of length n, we can support flip in O(log,n)
and rank /select in O(b) time, for any parameter b > lgn/lglgn, using o(n) bits of

extra space.

Similarly, Theorem 5.2.7 immediately gives the following trade-off result (the
only thing to observe is that, out of the two cases in Theorem 5.2.7, we apply the

one that stores the input sequence explicitly, i.e., the case when k < (Ign)'/?).

Corollary 5.3.3 For any parameter 1gn/lglgn < b < n, there is a data structure
for the dynamic bit vector problem that supports rank in O(log, n) time and flip in

O(b) time, using o(n) bits of space in addition to the bit vector.

Also, note that using this structure we can support select in O(lgn) time, by
performing a binary search (on the partial sums) to find the child containing the
required leaf at each node. We now show that this can be improved to O(log, n)
(though we don’t know how to do this for the general partial sums problem). We

first note the following proposition.
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Lemma 5.3.4 The operations select and flip can be supported in O(1) time on a
bit vector of size N = (Ign)°Y on a RAM with word size O(lgn) using a fized
precomputed table of size o(n) bits. The space required is o(N) bits in addition to

the precomputed table and the bit vector itself.

Proof. Store the bit vector at the leaves of a balanced tree with branching factor
VIgn (one bit per leaf). With each internal node, we keep the sequence of weights
of its children using searchable partial sum structure of Lemma 5.2.1. To perform
a flip operation, we flip the bit at the leaf level using bit wise operations and then
change the weights of its ancestors accordingly.

To perform select, we start from the root and follow the path down by selecting
the appropriate node at each level by using the partial sum structure stored, until
we reach a node that is one level above the leaf nodes. At these nodes (which are
one level above the leaf nodes), we need to support select in a bit vector of length
VIgn. This can be done using a precomputed table of size o(n) bits in constant
time as explained below. The table has an entry corresponding to each possible bit
string of length +/Ign and an index 4, 1 < ¢ < y/Ign, which stored the position of
the i 1 in the bit string. These entries are stored in the lexicographic order (of
the concatenation of their bit representations) to enable constant time access to the
table.

Since the height of the tree is a constant, select and flip can be supported in
constant time. The number of nodes in the tree excluding the nodes in the last two
levels (leaves and the nodes one level above) is O(N/lgn). With each of these nodes,
we have stored a searchable partial sum structure of Lemma 5.2.1. Hence, the total
space used to store all these structures put together is at most NV lglgn/+/lgn, apart
from the space required to store the precomputed tables for these structures which
is o(n) bits. n

We now show how to support select in O(log,n) time if flip takes O(b) time, for
any parameter (Ign)* < b < n.

The structure mainly consists of following sub-structures:

1. We divide the bit vector into superblocks of size 1g* n. With each superblock
we store the number of ones in it. The sequence of these superblock counts
is stored using the data structure of Theorem 5.2.7 with the same value of b.

This structure enables us, in O(log, n) time, to look up the number of ones to
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the left of any given superblock. The space used by this structure is o(n) bits
as the tree size is O(n/lg" n).

2. We store each of the superblocks using the structure of Lemma 5.3.4. The
total space used to store these structures for the superblocks is again o(n)
bits.

3. In addition, we divide the ones in the bit vector into groups of ©(lg?n) suc-
cessive ones each. Call the first element of a group as its ‘leader’. A group’s
size is allowed to vary between (IgZn)/2 and 21g®n. Consider the sequence
containing the number of ones in each group (in the left to right ordering of
their occurrence in the bit vector). We store this sequence using a WBB-tree
(described in Section 5.2.1, with the weight of a leaf being the number associ-
ated with it) with branching factor b. Again this structure takes o(n) bits, as
the number of nodes in the tree is O(n/lg?n). Given an integer j, using this
structure we can locate the group in which the ;% one lies in O(log, n) time,

and support changes due to flips in O(blog, n) amortized time.

4. With each group, we store the index of the superblock in which the group’s
leader lies. Also, with each superblock, we store all group leaders which lie in
that superblock. The total space used here is O(n/lgn), which is o(n) bits.

5. Let the span of a group be the number of superblocks other than the su-
perblock containing its leader in which the group elements lie, i.e., it is the
index of the superblock in which the next group’s leader lies minus the index
of the superblock in which its group leader lies. If the span of a group is at
least 2, we call it a sparse group. With each sparse group, we store the bit
positions of all the 1s in the group in a dynamic array. Since the maximum
size of this array is O(lg” n), using either the implementation of Goodrich and
Kloss [GI99] or the implementation of Corollary 5.4.2, we get a dynamic array
which allows insertions and deletions in O(lgn) time and accesses in O(1) time.
This requires O(lg®n) bits per sparse group, but there can only be O(n/1g* n)

sparse groups, so the total space used here is O(n/lgn), which is o(n) bits.

To compute select(j), we first locate the group in which the ;% one lies in

O(log, n) time using the WBB-tree structure. We also find the number of ones up
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to the group leader of that group. Thus, we are left with the problem of finding an
appropriate one bit in a given group. This is done as follows:

If the given group is sparse, then we look up the dynamic array associated with
the group, in which we have stored the positions of all the one bits in that group.
This takes O(1) time. Otherwise (if the group is not sparse), we find the superblock
in which the group leader lies. Now, the position we are looking for must belong to
this or the next superblock (as the next group starts in one of these superblocks).
This can be answered in O(1) time, as each superblock is stored using the structure
of Lemma 5.3.4. Thus, select can be supported in O(log, n) time.

To perform flip(j), we first flip the j* bit in the bit vector. We also update
the partial sum structure stored for the superblocks (item 1) and the structure
corresponding to the superblock to which the j** bit belongs (item 2). This takes
O(b) amortized time. Next, we locate the group to which position j (of the bit
vector) would belong, by performing the operation select(rank(j)) on the WBB-tree
storing the group sums (item 3) and then update (increment or decrement depending
on whether the j bit was initially 0 or 1) the WBB-tree. This takes O(blog, n)
amortized time. Note that group splits and merges would be taken care of by the
amortization in the WBB-tree. If the group leader (of the group to which the ;%
bit belongs to) changes, then we update it in constant time. Also, we can update
the indices of group leaders stored for the superblock (to which the j%* bit belongs
to) in constant amortized time. This takes care of item 4 above.

Finally, we need to update the dynamic array structure stored for the group,
if it is sparse. (Note that if the group becomes sparse after a deletion or becomes
dense after an insertion, we are allowed to spend time linear, in the length of the
dynamic array, amount of space and construct or free the dynamic array, as these
changes happen only after O(Ig’n) updates.) For this, we first find the value i =
rank(j) — rank(rg), where 7y is the group leader of the group to which the ;™ bit
belongs. We then perform the operation insert(j) or delete(j) on the dynamic array
structure stored for the (sparse) group (item 5) depending on whether the j™ bit
was initially 0 or 1. It takes O(log, ) time to compute i and O(lg” n) time to update
the array.

Thus, flip takes O(blog, n) amortized time.

Again as b > lg* n, we can actually make the branching factor to be b/lgn. For

other values of b, using Corollaries 5.3.1 and 5.3.3, we get:
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Theorem 5.3.5 Given a bit vector of length n, we can support the rank and select
operations in O(log,n) time and flip in O(b) amortized time, for any parameter

b>1gn/lglgn, using o(n) bits of extra space.

5.4 Dynamic Arrays

We look at the problem of maintaining an array structure under the operations of
insertion, deletion and indexing. Goodrich and Kloss [GI99] have given a structure
that supports (arbitrary) insert and delete operations in O(n¢) amortized time and
indez operation in O(1) worst-case time using o(n) bits of extra space to store a
sequence of n elements. Here, first we describe a structure that essentially achieves
the same bounds above (except that we can now support updates in O(n) worst-
case time) using a well known implicit data structure called recursively rotated list
[MS80, Fre83]. Using this as a basic block, we will give a structure that supports
all the dynamic array operations in O(lgn/lglgn) amortized time using o(n) bits
of extra space.

We assume a memory model in which the system returns a pointer to the begin-
ning of a block of requested size and hence any element in a block of memory can
be accessed in constant time given its index within the block and the block pointer.
This is the same model used in the resizable array of Brodnik et al. [BCD199].

Rotated lists [MS80] were discovered to support dictionary operations implicitly,
on a totally ordered set. A (1-level) rotated list is an arbitrary cyclic shift of the
sorted order of the given list. We can search for an element in a rotated list on n
elements in O(lgn) time by a modified binary search, though updates (replacing one
value with another) can take O(n) time. However, replacing the largest (smallest)
element with an element smaller (larger) than the smallest (largest) can be done in
O(1) time if we know the position of the smallest element in the list.

A 2-level rotated list consists of elements stored in an array divided into blocks
where the i-th block is a rotated list of 7 elements. It is easy to see that such a
structure containing n elements has r = O(y/n) blocks. In addition, all the elements
of block 7 are less than every element of block 7 4+ 1, for 1 <4 < r. This structure
supports searches (for an element) in O(lgn) time and updates (insert and delete)
in O(y/n) time, if we also explicitly store the position of the smallest element in each

block (otherwise the updates take O(y/nlgn) time). This is easily generalized to an
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I-level rotated list where searches take O(2'lgn) time and updates take O(2'n'/!)
time [Fre83]. The structure uses O(n'~'/!) pointers to store the positions of smallest
elements in each block.

To use this structure to implement a dynamic array, we do the following. We
simply store the elements of the array in a rotated list based on their order of
insertions. We also keep the position of the first element in each recursive block.
Since we know the size of each block, indez(i) operation just takes O(l) time in an
[-level rotated list implementation of a dynamic array. Similarly, inserting/deleting
at a given position i can be performed as done in a rotated list, taking O(2'n'/!)

time. Thus we have,

Theorem 5.4.1 A dynamic array having n elements can be implemented using an
[-level rotated list such that queries can be supported in O(l) worst-case time and
updates in O(2'n'/Y) worst-case time using an extra space of O(n*=") pointers, for

any integer parameter 1 < <lgn.
Choosing | = 1/¢, we get

Corollary 5.4.2 A dynamic array containing n elements can be implemented to
support queries in O(1) worst-case time, and updates in O(n®) worst-case time using

O(n'~¢) pointers, where € is any fized positive constant.

Using this structure, we now describe a structure that supports all the dynamic
array operations in O(lgn/lglgn) amortized time using o(n) bits of extra space.

We divide the given list of length n into sub-lists of length ©(Ig* ). In particular,
each sub-list will be of length between %lg‘ln and 21g*n. We implement each of
these sub-lists using the dynamic array structure of Corollary 5.4.2, with ¢ = 1/8.
These arrays support updates in O(y/Ign) time and access in constant time. The
total extra space required to store all these dynamic arrays is O(n/+/Ign) bits.

Next, consider the sequence obtained by storing the sizes of these sub-lists in the
order in which they appear in the array. We construct a WBB-tree on this sequence
(described in Section 5.2.1, with the weight of a leaf being the number associated
with it) with branching factor \/Ign. The space required to store this tree is o(n)
bits, as the number of nodes in the tree is O(n/(lg* n)).

Now, to access an element, we first use the WBB-tree to find the sub-list to
which the element belongs and then use the dynamic array corresponding to that

block to access the element. Thus queries take O(lgn/lglgn) time.
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To update the array, we first update the WBB-tree using O(lgn/lglgn) amor-
tized time. Then we find the sub-list in which the update has to be performed (using
the WBB-tree) and update the dynamic array corresponding to that sub-list. Thus,
it takes O(lgn/lglgn) amortized time to perform an update. Thus we have

Theorem 5.4.3 A dynamic array can be implemented using o(n) bits of extra space
besides the space used to store the m records, in which all the operations can be

supported in O(1gn/lglgn) amortized time, where n is the current size of the array.



Chapter 6

Conclusions

We have considered succinct representations of suffiz trees, suffix arrays, static
dictionaries supporting membership and rank, cardinal trees, a list of numbers to
support partial sums queries, dynamic bit vectors and dynamic arrays in the ex-
tended RAM model with appropriate word sizes arising naturally from the problem
instances. We have also considered the problem of static dictionary in the bitprobe
model. Here we summarize our main results, describe further work and mention

some open problems.

6.1 Summary, Related Work and Open Problems

6.1.1 Swuccinct Structures for Indexing

We gave a suffix tree representation for a text of length n over an alphabet 3,
that can be stored using nlgn + 4n + o(n) bits of space. Given a pattern of length
m, this structure supports finding an occurrence of the pattern in the text (search
query) in O(mlg|X|) time. The main idea here is to use the succinct representation
of binary trees to represent the tree structure of a suffix tree. Counting the number
of occurrences of the pattern in the text (counting query) can also be supported in
the same amount of time with no extra space. Finding all the occurrences of the
pattern in the text (enumerative query) can be supported with an additional O(occ)

time, where occ is the number of occurrences of the pattern in the text.
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For binary texts, we obtained two space efficient structures: one structure uses
%1gn + O(n) bits of space and supports search queries in O(m) time. The other
structure requires O(nlgn/lglgn) bits of space and supports existential queries
(finding whether a pattern occurs in the text) in O(m) time. This was the first
structure to break the O(nlgn) bottleneck on space though it supports only ex-
istential queries. Each of these structures uses a different technique, either in the
storage scheme or in the search algorithm, to reduce the space requirement. The first
structure constructs a sparse suffix tree for all the suffixes that start with the bit that
occurs most number of times in the given binary text. The second structure uses an
iterative algorithm to search for the pattern. Since the first appearance [MRR9S]
of these results, several improvements have appeared and we briefly describe some
of them here.

Building on our suffix tree representation and using other techniques, Grossi and
Vitter [GV00] have developed an O(n) bit index structure for a given binary text
that answers search queries in o(m) time — O(m/lgn + 1g°n) when m is Q(Ign)
and O(1) otherwise. Enumerative queries, using this structure, can be supported in
O(m/1gn + occlg®n) time, where occ is the number of occurrences of the pattern
in the text and € is any fixed positive constant less than 1. Their representation is
based on an O(n)-bit representation of a compressed suffix array.

Extending the ideas of Grossi and Vitter, we gave a compressed suffix array repre-
sentation for a given binary text of length n that can be stored using O(nt(Ign)"/")
bits of space, which answers lookup queries in O(t) time, for any parameter 1 <
t < lglgn. In particular, this gives an indexing structure for a binary text of
length n that uses O(nlg®n) bits of space and answers indexing queries in optimal
O(14m/1gn) time. Finding all the occurrences of the pattern requires an additional
O(occ) time. This gives the first o(nlgn) bit structure that supports enumerative
queries in optimal time.

More recently, Mékinen [M&k00, Mak01] has given a structure, called compact
suffiz array, that takes less space than a suffix array (though no explicit bound was
shown) and supports search and counting queries in O(m + lgn) time. He used the
idea of representing regions of a suffix array from previous regions by incrementing
the corresponding entries using a pointer from the later regions to the previous
regions (similar to Ziv-Lempel data compression [ZL77]), to reduce the size of the

suffix array.
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Ferragina and Manzini [FM00, FMO1] have given an opportunistic data struc-
ture for the indexing problem and have shown its experimental performance. They
describe the space occupancy of their structure to be optimal in an information-
content sense, as the given text is stored in space linear in the k-th order entropy
of text, for any fixed k. Search and counting queries, using this structure, can be
supported in O(m) time and enumerative queries in O(m + occlg®n) time, for any
fixed 0 < e < 1.

Sadakane [Sad00] has proposed a compressed text database using the compressed
suffix array of Grossi and Vitter. The space occupancy of this compressed database
is linearly proportional to the O-th order entropy of the text. This structure sup-
ports search and counting queries in O(mlgn) time and enumerative queries in
O(mlgn + occlg®n) time. This also supports the decompress operation, which re-
turns a substring of length [ in the compressed database in O(l +1g°n) time and the
inverse operation which returns the inverse of the suffix array.

Some interesting open problems in this area are:

e Is there a compressed suffix array representation that uses O(n) bits and sup-
ports lookup queries in constant time (or can one prove that no such structure
exists)? Due to a lower bound result of Demaine and Lépez-Ortiz [DLO01],
Q(n) bits are required by any structure that answers indexing queries in O(m)

time.

e One obvious way to construct our suffix tree representations is to construct the
usual suffix tree first and then construct the parenthesis representation of the
tree from it. However, this method uses more space during the construction

phase than is required by the final structure. Can one avoid this problem?

6.1.2 Static Dictionary Supporting Rank

We gave a static dictionary representation that supports membership and rank
(for the elements present) queries in constant time (called a rank dictionary) for a
subset of size n from a universe of size m that uses n [lgm]| + O(lglgm) bits of
space. Using this as a substructure and using the techniques of universe reduction
and sharing primes, we got a structure that stores a set of dictionaries with total
cardinality n over a universe of size m, using n [lgm| + O(lglgm) bits of space.

This structure supports rank and membership queries on individual dictionaries



Chapter 6: Conclusions 90

in constant time. We then used this structure to get a representation of a k-ary
cardinal tree on n nodes that uses 2n +n [lgk]| + o(n) + O(lglg k) bits of space and
supports ‘parent’, ‘4*" child’, ‘child labeled j’, ‘degree’ and ‘subtree size’ operations
in constant time. This cardinal tree representation can be used to get a suffix tree
structure that takes n(lgn + 1g|3|) + O(n) bits of space, for a given text of length
n and supports search queries in O(m) time.

Recently Raman et al. [RRR02] have obtained a static dictionary representation

that uses B(n,m) + o(n) + O(lglgm) bits of space and supports both rank and

Q

select operations on the given set in constant time, where B(n,m) = lg (Z’)
nlg(m/n)+nlge+ O(lgn) is the information theoretic lower bound on the amount
of space required to store a subset of size n from a universe of size m. Using this, they
have also obtained a cardinal tree representation that uses C(n, k) + o(n + 1g k) bits
of space and supports ‘parent’, ‘¢ child’, ‘child labeled j’ and ‘degree’ operations in
constant time, where C(n, k) = [Ig (545 (k";rl))] ~ n(lgk + lge) is the information
theoretic lower bound on the space required to store a cardinal tree of degree k with

n nodes. But this structure does not support the subtree size operation (in constant
time). It is an interesting open problem to extend this or find a representation that
uses comparable amount of space and also supports the subtree size operation.

It is also interesting to see if one can get a static dictionary structure (perhaps
also supporting rank and select) that uses only B(n,m) + o(n) bits of space. (This
bound has been achieved in the cell probe model [RRR02].) The lower bound due
to Mehlhorn [Meh82] shows that in the word RAM model one cannot get such a
structure using minimal perfect hashing based methods. One major open problem

is to make the succinct dictionary structures dynamic, while keeping them succinct.

6.1.3 Static Dictionary in the Bitprobe Model

We have shown the construction of a scheme to store two element subsets of
the universe [m] using 3m?/3 bits of space which can be used to answer membership
queries using two adaptive bit probes. This improves the 3m?/* bit existential scheme
given by Buhrman et al. [ BMRV00]. We then generalized this to a scheme resulting
in an adaptive scheme that answers queries using lglgn + 2 probes using o(m) bits
of space, for a large range of n.

More recently, Radhakrishnan et al. [RSV00] have studied the quantum com-

plexity of the static dictionary problem and have given several upper and lower
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bounds.

Pagh [Pag01b] has given a structure that requires O(kn + m/2*) bits of space
and answers queries using O(k) bit probes to the structure. For k£ = lg(m/n), it
gives a scheme that takes O(B(n, m)) bits of space and supports membership queries
using optimal O(lg(m/n)) bit probes to the structure. This matches the above lower
bound for t when s = O(B(n,m)). Note that, for k£ = Iglgn, this gives a scheme
using O(m/ Ign) bits of space that answers queries using 1glg n probes. Though this
scheme does not improve the scheme of Corollary 4.2.16, this scheme is better for
sufficiently large values of n.

Using the ideas of Theorem 4.2.8, we can get, for example, a scheme with s =
O(t*m!/®=1), for any ¢t > 3, for two element subsets of the universe (i.e., n = 2)
and a scheme with s = O(t*m!/(*=2))  for any ¢ > 5, for three element sets of the
universe. The real open problem here is to come up with an explicit scheme that
uses o(m) bits of space and answers queries using constant number of probes. Using
probabilistic methods, Buhrman et al. [BMRV00] have shown the existence of such
a scheme. We conjecture that, for example, there is no scheme using o(m) bits that

answers queries using three probes.

6.1.4 Dynamic Data Structures

We mainly focused on the partial sums problem and the dynamic array problem.
For the partial sums problem, we gave a succinct structure that supports sum in
O(logyn) time and update in O(b) time, for any parameter b > lgn/lglgn. We
also gave a succinct structure that supports both these operations and the select
operation, all in O(Ign/lglgn) worst case time. As a special case, we considered
the dynamic bit vector problem where, using o(n) bits of extra space, we can also
support the select operation in O(log, n) time while flip can be supported in O(b)
amortized time, for any parameter b > lgn/lglgn.

For the dynamic array problem, we first gave a structure that uses o(n) words
of extra space and supports updates in O(n¢) worst case time and query in O(1)
worst case time, for any fixed positive constant € < 1. Then, using this structure, we
obtained a dynamic array structure that supports both query and update operations
in optimal O(lgn/lglgn) amortized time using o(n) bits of extra space.

The following related problems remain open:
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e In the searchable partial sums problem, we were able to support select in
O(log, n) time and update in O(b) time using kn + o(kn) bits of space, when
either £ = 1 (for any parameter b > lgn/lglgn) or b = lgn/lglgn. When is

this trade-off achievable in general?

e For the partial sums problem, we have shown tradeoffs between the query and
update times. Can we show similar tradeoffs between query and update oper-
ations for the dynamic array problem (both upper and lower bounds)? Also,
in particular, is there a succinct structure where updates can be supported in

O(1) time and accesses in O(n®) time?

e Another closely related problem looked at by Dietz [Die89], and Fredman
and Saks [FS89] is the list indexing problem which is like the dynamic array
problem, but adds the operation position(z), which gives the position of a
given item z in the sequence, and also modifies insert to insert a new element
after an existing one. Dietz has given a structure for this problem that takes
©(n) extra words and supports all the operations in the optimal O(lgn/lglgn)
time. It is not clear how one can reduce the space requirement to just o(n)

extra words, and still support the operations in optimal time.
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