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Chapter 0

Abstract

The work of 5.W.Hawking has revealed a deep relationship between the laws
of thermodynamics and those of black hole mechanics. Clas:sica.li}u black holes
obey laws that are similar to the laws of thermodynamics. A semi-classical
analysis of black holes shows that they also radiate, with a thermal spectrum.
These two facts together imply that the laws of black hole mechanics could
indeed be thought of as laws of thermodynamics of black holes, where cer-
tain quantities associated with black holes could be identified with standard
thermodynamic quantities. In particular, one-fourth of the area of the event
horizon of a black hole would then be identified with the thermodynamic en-
tropy associated with a black hole. A major test for any quantum theory of
gravity is to account for the thermodynamic entropy in terms of microscopic
states assoclated with a quantum description of the black hele. It has heen
shown that in computations of black hole entropy in many formulations of
quantum gravity (like canonical gravity and string theory), the semiclassi-
cal Bekenstein-Hawking entropy formula is reproduced exactly. It has also
been shown recently that for the (3 + 1)-dimensional Schwarzschild black
hole in the canonical gravity formulation, the next-order correction to the
semni-classical entropy is —3/2 log A, where A is the black hole horizon area.
This correction has been reproduced in many string theory computations,
and leads to the intriguing question of whether the next-order correction to

the semi-classical entropy is also universal, and if so, what its origin is.




Another recent development has been the AdS/CFT conjec-
ture [15] proposed in string theory. According to this proposal, the large
N limit of a conformally invariant gauge theory in d dimensions is governed
by string theory on the product of a (d + 1)-dimensional anti-deSitter{ AdS)
space with a compact manifold. An important application of the AdS/CFT
conjecture 15 in the context of black holes in anti-deSitter space. A study of
supergravity in the background of an AdS black hole gives valuable infor-
mation about strongly coupled gauge theories living on the boundary of the

hlack hole spacetime.

In this thesis, we study some aspects of black holes in anti-
desitter ( AdS) spacetimes. These black holes are solutions to the Einstein
equations with a negative cosmological constant. The question of the micro-
scopic origin of entropy can be posed for these black holes. For the case of
the BTZ [6] black hole. which is an AdS black hole in (2+1) dimensions, this
question is easier to address, as gravity in (2 + 1) dimensions can be rewrit-
tent as a Chern-Simons theory, The BTZ black hole thus offers an arena for
studying the origin of the states accounting for the semi-classical entropy and

of the next-order correction which also seems to be universal.

We look at the BTZ black hole in different formulations of
Euclidean gravity in three dimensions. The semi-classical entropy of the BTZ
black hole has been obtained earlier in Lorentzian and Euclidean formulations
of gravity. However, the Lorentzian and Euclidean computations do not
agree in the next-order correction term to the Bekenstein-Hawking entropy,
which is surprising, The correction to the Bekenstein-Hawking entropy for
the Lorentzian BTZ hlack hole has been computed by studying the Cardy
formula for the growth of states of the asyvmptotic conformal field theory at
the boundary of the hlack hole spacetime. It agrees with the correction to the
semi-classical entropy originally obtained in the quantum geometry formalism
for the (3 + 1)-d Schwarzschild black hole [7], and is —3/2 log(Area), i.e it

is proportional to the logarithm of the black hole area.

We derive an eract expression for the partition function of the

£]



BTZ black hole in the Euclidean path integral approach, Our computation
uses the formulation of three-dimensional gravity with a nepative cosmologi-
cal constant in terms of Chern-Simons theory. From the exact expression for
the partition funciion, we show that for black holes with large horizon area.
there is indeed a correction to the semi-classical entropy that is proportional
to the logarithm of the area (horizon length in this case) with a coefficient
—3/2 in agreement with the result for the Schwarzschild black hole obtained
in the canonical gravity formalism. We find that in the context of the BTZ
black hole, the right expression for the logarithmic correction comes from the

modular invariance associated with the toral boundary of the black hole.

In this thesis, we also examine the BTZ black hole in the
Ponzano-Regge-Turaev-Viro (PRTV) Euclidean lattice gravity formulatjon.
We describe the BTZ black hele in this formulation and show that on con-
sidering all possible triangulations of the BTZ black hole keeping the horizon
length fixed, the semi-classical Bekenstein-Hawking entropy is reproduced.
The maximum contribution to the entropy comes from states at the hori-

zon. We also comment on the next-order corrections to the entropy in this

formulation.

| Recent interest in the study of black holes in anti-deSitter space
comes from the AdS/CFT conjecture - a study of supergravity fields in the
black hole background gives information about a strongly coupled gauge the-
ory on the boundary of the black hole spacetime. We focus on the computa-
tions of the spectrum of the dilaton field in supergravity in the background
| of the infinite mass limit of the AdS-Schwarzschild black hole in five dimen-

sions, This spectrum matches with the scalar glueball spectrum of lattice
| QCD in three dimensions. We show that the correct self-adjointness analysis
of the problem reveals that in addition to the modes that correspond to the
glueball spectrum in QC' D, there is a discrete infinity of modes which corre-
spond o an imaginary mass for the glueball. Further, the mode frequencies

corresponding to this discrete spectrum depend on a /(1) parameter, the

self-adjointness parameter, that labels the choice of boundary conditions at



the horizon. We discuss the possible significance of these modes and of the

self-adjointness parameter in the boundary theory.

We also study the time-independent (*zero’) mode of the mass-
less scalar field in various non-extremal black hole backgrounds. Again. a self-
adjointness analysis of the operator corresponding to the zero mode solution
sugagests the presence of a non-trivial zero mode solution. This non-trivial

zero mode is not seen for the extremal Reissner- Nordstrom black hole.

We also compute a particular class of non-equililbirium modes
{quasi-normal modes) for the the dilaton in the AdS-Schwarzschild black
hole background. Quasi-normal modes, espacially, the imaginary part of
the lowest quasi-normal mode, give the time-scale of decay of the dilaton.
The AdS/CFT correspondence, relates the perturbation of the black hole by
the dilaton field to a change in the expectation value of the operator that
couples to the dilaton in the Yang-Mills theory on the boundary due to a
perturbation from the state of thermal equilibrium. The imaginary part of
the lowest quasi-normal mode for the dilaton field gives the time-scale of

return of the Yang-Mills theory back to thermal equilibrium.

We propose a novel method based on superpotentials for ab-
taining the guasi-normal modes of AdS black holes. We obtain the lowest
quasi-normal mode of the (2 + 1 }-dimensional BTZ black hole exactly. This
i5 possible because the black hole potential belongs 1o a class of exactly solv-
able potentials, derived from a superpotential. [t is inferesting to note that
this 1s perhaps the enly known case where the quasi-normal modes of a black

hole can be found eractly. The modes are proportional to the surface gravity
of the black hole,

We propose a scheme by which the potential corresponding to
a scalar field perturbation of any AdS black hole can be approximated by a
potential series derived from a superpotential. We use this to compute the
quasi-normal modes of the five dimensional AdS-Schwarzschild black hLole.

| We also discuss the applications of our method and results.
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| Chapter 1

Introduction

The study of black holes, which are predicted by Einstein's theory of gravi-
tation, has resulted in interesting new connections between diverse areas of
physics, Both classical and quantum aspects of black holes have been stud-
ied extensively, Black holes are believed to be a possible final cutcome of a
collapse of a star about a few times the mass of our sun. Stars like our sun
are known to be well described by classical general relativity. Some of these
| classical aspects can be studied for black holes as well. However, a black hole

is characterised by two lmportant features :

e The presence of an event horizon, such that any object that falls into

it is irretrievably lost to any observer outside the horizon.

e A singularity in spacetime, where all known physics is not valid. This
singularity need not be a curvature singularity : it can also be & point
beyvond which analytic continuation of the spacetime produces closed

timelike curves,

| As we shall see, these two features necessitate the understand-

ing of the quantum black hole, i.e a description of the black hole in & quantum
|

theory of gravity.
1
|




In this chapter, we take a look at some of the classical and
quantum aspects of black holes and see how theyv have [uelled the search far
& quantum theory of gravity. We also present motivations for studving these

properties for a specific elass of black holes : black holes that asymptoticallv

go to anti-desitter spacetime. The recently proposed AdS/CFT conjecture

in string theory implies that certain properties of black holes in anti-deSitter
space are related to properties of strongly coupled gauge theories. We con-
clude the chapter with a briefl review of the AdS/CFT conjecture and its

implications.

1.1 Black Hole Thermodynamics

Research in black hole physics entered an exciting new phase in the 1970s
when it was found that black holes abeyed certain laws that were similar to
the laws of thermodynamics., Historically, the first step in this direction was
the work of Hawking [1] who showed that the surface area of the event horizon
of & black hole can never decrease in time. This is a purely geometric result
and bears a superficial resemblance to the second law of thermodynamics,
which states that the entropy never decreases in time. However, this and
the fact that information is irretrievably lost as a body crosses the horizon
led Bekenstein [2] to propose that there was an entropy associated with the
black hole which was proportional to its horizon area. For stationary black
holes, Bardeen, Carter and Hawking [3] derived laws of black hole mechanies
analogous to the zeroth and first law of thermodynamics. The zeroth law
states that there is a quantity associated with the black hole, called its surface
gravity «, that is a constant en the horizon. & physically represents the
acceleration al Lhe horizon : it seems analogous to the temperature. The first
law relates the change in the parameters M (mass), J (angular momenturn)
and A (horizon area) of a stationary black hole as it is perturbed. The

variation in these quantities, to first order satisfies the following equation :

SM = éxfi + Q8J (1.1)

m



where {0 is like the angular velocity of the horizon. This is in units with
G =c=h="Fk=1. Together, all the results point to a strong similarity to
the laws of thermodynamics. In the spirit of Bekenstein, it would be ratler
teripting to suggest that the black hole was indeed a thermodynamic object
with an entropy proportional to its area, a temperature proportional to its
surface gravity, and an internal energy proportional to its mass, However,
there is a problem with such a suggestion : the classical black hole is a cold
object, and could be thought of as being at zero temperature. Thus, the

physical temperature of the black hole seems to have nothing to do with its

surface gravity.

The justification for thinking of the laws of black hole mechan-
ics as the laws of thermodynamics associated with black holes came with
the startling discovery of Hawking [4] that black holes actually radiate. A
semi-classical analysis of quantum fields in the black hole background shows
that the black hole radiates with the thermal spectrum of a black body af
a temperature proportional to the surface gravity. The analysis considers a
free quantum field propagating in the background of a spacetime that is un-
dergoing gravitational collapse to form a Schwarzschild black hole. The field
15 initially 1 its vacuum state prior to the collapse. However, the particle
content of the field at late times is that of a perfect black body at a tem-
perature 3=, Thus the surface gravity is indeed proportional to a meaningful
temperature (called the Hawking temperature) that can be associated with
the black hole. This also lends credence to the suggestion of Bekenstein that
the physical entropy of the black hole is proportional to its area (and in faet is
Af4]. However, the entropy of a system that is macroscopically described by
thermodynamics has a statistical mechanical origin in terms of microstates
associated with the system. Thus. the natural question to ask is : What are
the microscopic states associated with black hole entropy? The analogue of
the thermodynamic description of a system seems to be the classical general
relativistic description. To find out the microstates accounting for the black
hole entropy, it is necessary to describe the black hole in a quantum theory of

gravity., Black hole entropy has been a testing ground for candidate theories




of quantum gravity. A variety of approaches to quantum gravity have repro-
duced the Bekenstein-Hawking entropy formula for the black hale, notably

string theory [5] and canonical gravity {12, 13].

Another motivation for a quantum theory of gravity comes
from the information loss paradox. For asymptotically flat black holes.
the Hawking temperature increases as the mass of the black hole decreases.
Therefore, a black hole will radiate away some of its mass through Hawking
radiation, and this will increase its Hawking temperature. It will then ra-
diate more, and finally evaporate away completely within a finite time. In
the final stage of evaporation, the black hole has a very small size - of the
order of the Planck length. Thus, the final stage of evaporation can only be
described by a quantum theory of gravity. The black hole whicl is formed
from gravitational collapse of matter, is initially in a pure state. However,
alter it has radiated and evaporated away, we are left with a mixed state.
Since a pure state cannot evolve unitarily into a mixed state, we are faced
with a paradox. It is hoped that the correct quantum theory of gravity may

shed light on this issue.

1.2  Why study Anti-deSitter black holes 7

In this thesis, we study some aspects of black holes in anti-deSitter {4dS)
spacetimes, These black holes are solutions to the Einstein equations with a
negative cosmological constant and asymptotically tend to AdS spacetime.
The reasons for studying AdS black holes are twofold. One has to do with
the issue of black hole entropy, and the other has to do with the AdS/C'FT

correspondence presented in the following section.

As we saw, an important question that a quantum theory of
gravity must address is the microstates accounting for black hole entropv.
This is a difficult question to answer for black holes in (3 + 1) dimensions,
due to the non-trivial nature of gravity in (3 + 1) dimensions. However.

(2 + 1) dimensional gravity 15 simpler and can be rewritten as a Chern-

G



Simons theory. There does indeed exist a black hole solution to (2 4 1)
dimensional gravity with a negative cosmological constant, the BTZ black
hole [6], that asymptotically tends to anti-deSitter spacetime. The BTZ black
hole offers an arena for studying the origin of the states accounting for the
semi-classical entropy, and may clarify several open issues about black holes
that have nothing to do with the actual number of spacetime dimensions
the black hole is in. It has been shown that in computations of black hole
entropy in many formulations of quantum gravity (like canonical gravity
and string theory), the semiclassical Bekenstein-Hawking entropy formula is
reproduced. It has also been shown recently that for the (3 + 1)-dimensional
Schwarzschild black hele in the canonical gravity formulation, the next-order
correction to the semi-classical entropy is —3/2 log A [7]. where A is the
black hole horizon area. This correction has been reproduced in many string
theory computations [11], and leads to the intriguing question of whether
the next-order correction to the semi-classical entropy is also nniversal. and
if so, what its origin is. The BTZ black hole is also of interest in string
theory : it arises naturally in the near-horizon geometry of stringy black
holes - the near-horizon geometry of certain near-extremal four and five-
dimensional black holes is a product of the BTZ black hole geometry and a

compact manifold. The entropy of these black holes is the same as that of
the BTZ black hole.

In chapter 2, we examine the BTZ black hole in a Fuclidean
lattice gravity formulation. It is hoped that this formulation might lead to
# better picture of the states corresponding to the black hole entropy, We
describe the BTZ black hole in the Ponzano-Regge-Turaev-Viro formulation
8. 9] and show that on considering all possible triangulations of the BTZ
black hole keeping the horizon length fixed, the black hole entropy is propor-
tional to the horizon area. The maximum contribution to the entropy comes
from states at the horizon [10]. The expression for entropy has an arbitrary
parameter, Its origin is similar to that of the Immirzi parameter that appears
in the calculation of the entropy of the Schwarzschild black hole in (3+1)—d

in the framework of loop gravity [12], [13]. The entropy obtained by us is the

Lo



familiar Bekenstein-Hawking expression for the same value of the arbitrary

parameter as that of the Immirzi parameter in the (3 4+ 1) — d calculation.

In chapter 3, we derive an ezact expression for the partition
function of the BTZ black hole in the Euclidean path integral approach [14].
Our computation uses the fact that three-dimensional gravity with a nega-
tive cosmological constant is described in terms of two SU7(2) Chern-Simons
theories. Then, SU(2) Wess-Zumino conformal field theories are naturally
induced on the boundary. The quantum degrees of freedom corresponding to
the entropy of the black hole are described by these conformal field theories.
From the exact expression for the partition function, we show that for black
holes with large horizon area, there is indeed a correction to the semi-classical
entropy that is proportional to the logarithm of the area (horizon length in
this case) with a coefficient —3/2 again in agreement with the result for a
four dimensional black hole obtained in ref. [7]. We find that in the context
of the BTZ black hole, the right expression for the logarithmic correction

comes from the modular invariance associated with the toral boundary of
the black hole.

Another important reason for studying AdS black holes has to
do with the recently proposed AdS/CFT correspondence. An implication
of the AdS/CFT conjecture in the context of AdS black holes is that a
study of supergravity in the background of an AdS black hole gives valuable
information about strongly coupled gauge theories living on the boundary of
the biack hole spacetime. In the next section, we take a briel lock at the

AdS/CFT conjecture and its applications.

1.3 The AdS/CFT correspondence

According to the AdS/CFT correspondence in string theory [15], string the-
ory on the product of a (d + 1)-dimensional anti-deSitter( AdS) space with a
compact manifold gives information about the large N limit of a conformally

\invariant gauge theory in d dimensions. Here, N is related to the curvature

L1



of the AdS space.

To understand the motivations for the conjecture, we first look

at a system of coincident D-branes and its connections to gauge theories,

In addition to strings, superstring theory contains soliton-like
membranes of various internal dimensionalities called Dirichlet branes (or
D-branes) [16]. A Dirichlet p-brane (or Dp-brane) is a (p + 1) dimensional
hyperplane in (9 + 1) dimensional space-time where open strings are allowed
to end. For the end-points of such a string, the (p + 1) longitudinal coor-
dinates satisfy the conventional free (Neumann) boundary conditions. while
the (9 — p) coordinates transverse to the Dp-brane have the fixed (Dirichlet)
boundary conditions; hence the origin of the termn Dirichlef brane. A D-
brane is essentially a non-perturbative object in string theory : the tension
of the D-brane is proportional to 1/g, where g, is the string coupling con-
stant. A fascinating feature of D-branes is that they naturally realize gauge
theories on their world volume. If we consider N coincident Dp-branes, then
there are N? different species of open strings because thev can begin and
end on any of the D-branes. These open strings have massless modes which
describe the oscillations of the branes, a gauge field living on the brane and
their fermionic partners. N? is the dimension of the adjoint representation
of U{N), and the low energy dynamics of the open strings is described by a

maximally supersymmetric {/{N) gauge theory.

Now, if NV is large, then the stack of Dp-branes is a heavy ob-
ject embedded into a theory of closed strings which contains gravity. This
macroscopic object will curve spacetime : it may be described by some classi-
cal metric and other background fields including the Ramond-Ramond p + |
form potential. Indeed, in supergravity which is the low energy limit of string
theory, such brane solutions can be found, carrying the appropriate Ramond-
Ramond charge. Thus, we have two very different descriptions of the stack
of Dp-branes: one in terms of the U(N) supersymmetric gauge theory on
its world volume, and the other in terms of the classical Ramond-Ramond

charged p-brane background of the type II closed superstring theory.




The AdS/CFT conjecture is motivated by a study of the low
energy effective action for string theory in the background of N coincident
D3 branes. The D3-branes are extended along a (3+ 1) dimensional plane in
(9 + 1) dimensional spacetime. There are both open string and closed string
perturbative excitations. The closed string excitations are excitations of the
empty space, and open string excitations are excitations of the D3-branes.
In the low energy limit, the action has cantributions from only the massless
modes. The closed string massless states give a gravity supermultiplet in
ten dimensions, and their low-energy effective action is that of type 1IB
supergravity. As we saw, the open string massless states are described by a
low-energy effective action that is a U(N) gauge theory - in fact, it is N =4
U(N) super Yang-Mills theory. The complete low-energy effective action is
the sum of the actions for two decoupled systems, type I1B supergravity in

the bulk, and A* = 4 U(N) super-Yang-Mills theory on the brane.

Considering the D3 brane system from a different point of view
as a solution of supergravity, again the low energy theory consists of two
decoupled pieces - bulk supergravity, and excitations of the near-horizon ge-
ometry of the brane system, which is AdSs x 5°. Since in both descriptions.
one of the decoupled pieces is bulk supergravity, the conjecture identifies the
second piece that appears in the two cases. With this identification, the con-
jecture in its strong form implies that A~ = 4 U{N) super-Yang-Mills theory
in (3 + 1) dimensions is dual to type [1B superstring theory on AdS; < S
This means that the Yang-Mills theory at the boundary effectively sums over
all spacetimes which are asymptotic to AdS; x S°. and correspond to dif-
ferent situations like gravitons, fundamental string states, D-branes. black
holes etc. An analysis reveals that the regime of small curvature in the
anti-deSitter spacetime, where classical supergravity is a valid approxima-
tion, is related to strongly coupled Yang-Mills theory at the boundary of the
spacetime. The strong form of the AdS/C FT conjecture, which is physically
interesting, states that the two theories; N = 4 U(N) super Yang-Mills
theory in (3 + 1) dimensions and type IIB superstring theory on AdSs x 53

are equivalent to each other for all values of the string coupling constant and

13



N In its most general form, the conjecture also states a correspondence he-
tween string theory on any (d+ 1) dimensional AdS space and an appropriate

superconformal gauge theory on the d dimensional boundary of the space.

An intuitive way of seeing such a possible duality for d = 4
..1 follows : N° =4 U(N) super Yang-Mills theory in (3 + 1) dimensions
is & conformally invariant theory. The conformal group in four dimensions
;_;fgSD[-'l,‘Z}, including the Poincare transformations, scale transformations

and the special conformal transformations. The theory also has a global

SU(4) R-symmetry that rotates the six scalars and four fermions in the

heory. Therefore, if it is dual to a string theory, the string theory must also

obtain a SO(6) = SU(4) symmetry.

The AdS/CFT correspondence was stated in a way useful for
pliysical applications by Witten [17]. Since in AdS spaces, infinity is timelike,
9 onull seodesic can reach infinity in finite time. Interactions are not cut
infinity, unlike for asymptoetically flat spaces. Thus, natural physical
srvables are not scattering amplitudes which can be used only if there
well-defined asymptotic |IV > and |OUT > states. Instead, the relevant
physical observables are correlators. From the AdS/CFT correspondence,
e are correlators in the boundary CFT. In the limit of small curvature of
dS space, string theory on AdS space can be approximated by classical

gravity. Supergravity felds in the bulk AdS spacetime are dual to

.;;_ﬁ AdS spacetime (rather, its conformal compactification). Then,

(o [, #00) = 2s(t0) (12)

Pwihere Z5(co) is the supergravity partition function. For classical supergrav-

14



Zs(én) = exp(~Is(do)) (13)

and Is(@) is the classical supergravity action. More generally, the r.h.s of
(1.2) is a sum over classical supergravity partition functions on backgrounds
that are asymptotically AdS and have the same boundary topology. With
this interpretation, Witten [18] showed that for a particular choice of the
boundary topology, one could have two such backgrounds : A thermal gas
in AdS5 space, or an AdS-Schwarzschild black hole. For large value of the
horizon radius, the black hole phase dominates; i.e the supergravity partition
function for the black hole background is much larger than that for the gas
in AdS space. However, for small horizon radii, it is the AdS gas phase that
dominates. This is an example of the phase transition first discovered by
Hawking and Page [19] in the context of four dimensional AdS black hales.
It was argued by Witten [17] that with a choice of supersymmetry breaking
boundary conditions at the boundary, the boundary theory is no longer super-
conformal Yang-Mills theory, but ordinary three-dimensional QCD. Then,
the Hawking-Page phase transition in the bulk is dual to a confinement-
deconfinement phase transition in the boundary QCD. The precise statement
of the proposal was that supergravity on the infinite mass limit of the five-
dimensional AdS-Schwarzschild black hole background could be related to
the strongly coupled limit of three-dimensional non-supersvimmetric QC 1
There is strong evidence in favour of this proposal as supergravity on this
background gives many of the features of strong coupling limit of JC D, like
the area law behavior of Wilson loops, confinement, and the glueball mass

“spectrum with a mass gap.

In chapter 4, we focus on the supergravity computations that
teproduce the glueball mass spectrum. The spectrum corresponding to the
scalar glueball is reproduced by studying the dilaton field of supergravity
in this black hole background. We study the time-independent equilibrium
modes of the dilaton, which is a massless scalar field, in this background. The

correct self-adjointness analysis of the problem reveals that in addition to the



modes thal correspond to the glueball spectrum in QC D, there is a discrete
infinity of modes which correspond to an imaginary mass for the glueball.
Further, the mode frequencies corresponding to this diserete spectrum de-
pend on a [7(1) parameter, the self-adjointness parameter, that labels the
choice of boundary conditions at the horizon. We discuss the possible signif-

icance of these modes and of the self-adjointness parameter in the boundary
theory [20].

We also study the time-independent ("zero’) mode of the mass-
less scalar field in various non-extremal black hole backegrounds. The analysis
is similar to the above case of the infinite mass limit of the five-dimensional
AdS-Schwarzschild black hole. The self-adjointness analysis of the operator
corresponding to the zero mode solution can be used to obtain a non-trivial
zero mode solution peaked at the horizon. There is an infinite choice of
boundary conditions again labelled by a U(1) parameter, all of which lead to
the same zero-mode solution. Interestingly, this non-trivial zero mode is not

seen for the extremal Reissner- Nordstrom black hoele [20].

We have already stated the fact that a mode analysis of fields
of supergravity in AdS black hole backgrounds reveals features of a strongly
coupled gauge theory on the boundary. There is a very natural class of
modes of fields in black hole backgrounds - quasi-normal modes - that have
been extensively studied for asymptotically flat black holes. These are non-
equilibrium modes, and correspond to modes with ingeing boundary con-
ditions at the horizon. Thus they are characteristic modes associated with
the decay of a perturbation of the black hole. They have been numerically
computed for asymptotically flat black holes where they are of relevance in

the context of gravitational wave detection.

For the dilaton field in an AdS black hole backeround, these
modes (particularly, the imaginary part of the lowest quasi-normal mode)
give the time-scale of decay of the dilaton. However, from the AdS/CFT
correspondence, the perturbation of the black hele (by the dilaton field)

implies a perturbation of the Yang-Mills theory (or rather, the expectation

L6



value of the operator that couples to the dilaton) at the boundary away from
thermal equilibrium. Thus, the imaginary part of the lowest quasi-normal

mode for the dilaton field gives the time-scale of return of the Yang-Mills
theory back to thermal equilibrium.

In chapter 5, we propose a novel method, based on SUperpo-
tentials for obtaining the quasi-normal modes of AdS black holes, We notice,
that for the (2 + 1)-dimensional BTZ black hole, the exact analytic quasi-
normal mode solutions can be obtained as the black hole potential belongs to
& class of exactly solvable potentials, derived from a superpotential. This is
perhaps the only known case where the quasi-normal modes of a black hole

can be found exactly. The modes are proportional to the surface gravity of
the black hole.

Based on analogy with the results for the (2 + L}-dimensional
\BTZ black hole, we suggest that for the five-dimensional 4dS-Schwarzschild
black hole, the black hole potential can be described by a potential series
erived from a superpotential - a truncation of the series at any finite arder
then represents the order of approximation to the exact potential in this
scheme.  The problem is then exactly solvable for any order and the form
of the quasi-normal mode wave function is thus known. This is used as
an ansatz to obtain the quasi-normal modes of the AdSs-Schwarzschild black
hole numerically. A convergence is seen in the values of the modes as the order
of approximation is increased. This scheme (of approximation by exactly
solvable potentials) can be used to compute quasi-normal modes for AdS
._;_1::1{ holes in any dimension [21],

In the concluding chapter, we summarise and discuss the re-

sults of the thesis, We also touch upon interesting future directions that

em to emerge from this work.
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Chapter 2

The BTZ black hole in lattice

gravity

In this chapter, we study the (2+1)-dimensional BTZ [6] black hole in detail
-and analyze the peometry of its Euclidean continuation. The BTZ black hole
(is a classical solution to Einstein gravity in spacetime with a negative cosmo-

logical constant. As is well-known, gravity in three spacetime dimensions is

simple. For spacetime with a negative cosmological canstant, the solutions to
Einstein's equations are all locally spaces with constant negative curvature
~and differ from each other only in global identifications. The main motiva-
tion for studying the BTZ black hole is that the simple nature of gravity in
three dimensions can be used to address questions related to the quantum

properties of black holes which are difficult to answer for black holes in (3+1)

dimensions.

We use a lattice formulation of Euclidean gravity in three di-
mensions developed by Ponzano and Regge [8] and later madified by Turaev
and Viro [9] (although it was used by Turaev and Viro to construct three-

manifold invariants, and not as a formulation of lattice gravitv). We first

18



describe the formulation in detail. We then propose a picture of the BT7

black hole in this formulation and use it to compute the semi-classical entrapy

of this black hole. We discuss corrections to the entropy in this formulation.

2.1 The Lorentzian black hole

The Lorentzian BTZ black hole is 4 solution to gravity in (2 + 1)-dimensions

with a negative cosmological constant A = T - The action is

= ]ﬁ}r(rfﬁ[ﬁ-+ 2{"“] d*zdt + B, (2.1)

where B is a surface term that for the black hole solution, will be related to

its mass and angular momentum. The Einstein field equation

1 2
RH QJMH{H—FF:‘:D [I :I

2
{18}

is solved by the black hole solution described by the metric

ds® = —~N3dl* + N~2de? 4+ r*(N?dt + deé)? (2.3)

where the lapse function N(r) and the angular shift N%(r) are given by

r? Ji
Nir) = —M+?5+
) J
J'"l'd'lf:?‘j —_ —m

With —co <t < oo, 0<pr<oo and 0 < ¢ < 27,

M and J appearing in (2.3) are the conserved charges associ-

ed with asymptotic invariance under time displacements (mass) and rota-

mnal invariance (angular momentum}, respectively. These charges are given

y flux integrals through a large circle at spacelike infinity.

The lapse function N(r) vanishes for two values of r given hy

M J 5 1f2
Pr=u [? (1 /11— (m) :[ . fl‘i}

1%



Of these, ry is the black hole outer horizon. In order for the lorizon to exist.
one must have

M >0, [J|<Ml (:

i)
(o] |
i

For the extremal black hole case |J| = M.

It is interesting to note here that with a simple coordinate
transformation, the metric (2.3) reduces to that of anti-deSitter space. The

black hole arises from anti-deSitter space by discrete identifications, For the

BTZ black hole, the singularity at » = 0is not a curvature singularity as the

spacetime geometry of the black hole is one of constant negative curvature. It
iﬂasingula‘rity in the causal structure - continuing past » = 0 brings in closed
timelike curves. When the angular momentum of the black hole J = 0.
there is, in addition, a singularity in the Hausdorff manifold structure of the
spacetime at v = 0.

2.2 Euclidean continuation

'__e Euclidean continuation of the BTZ black hole [22] is obtained by writing

—ity Mp.. = M and Jy,. = iJ. Then the metric

2

ds® = (N*)2dr? + f-2dr? 4 1% (do + N°dr) (2.6)

T 5
Ve set
M Jz \ 2

lhe coordinate transformation
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takes the metric to the form of the metric for hyperbolic three-space Ha. The

metric becomes

2
ds? = f—z{dr +dy* +dz%), >0, (2.10)
Here we have set
; 4
Irz| =dre=— (2.11)
ari

s from (2.8), r_ is pure imaginary. Changing to “spherical” coordinates

r = Rcosfcosy
y = HRsinfcosy (2:12)
z = HRsiny

‘with & periodic, 1.e.,

‘accounting for the periodicity of the Schwarzschild angular coordinate &, we
~must make, in the new coordinates, the identifications
ETr e E'T|J'*._|

(B,0.3) ~ (Retrlt g+ ==L ), (2.14)
The three dimensional Euclidean black hole may thus he de-
scribed as the quotient of hyperbolic space Ha by the isometry (2.14). As in
_:_.11' dimensions, the Euclidean black hole corresponds to the region outside
the event horizon of the Lorentzian solution. The topology of the Euclidean
hole is that of a solid torus, with the horizon a circle of radius ry at

the core of the solid torus. r_ represents the amount of twist made hefore

making the discrete identifications to obtain the solid torus.



2.3 Ponzano-Regge gravity

In this section, we study the lattice gravity approach of Ponzano and Regge
8] in three dimensions. The simplest notion of lattice gravity which avoids
the use of coordinates was first propesed by Regge [23] in 1961. In Regpe
ccalculus, an n - dimensional curved Riemannian manifold is approximated by
a collection of n-dimensional polyhedra. For e.g, a three-dimensional man-
ifold is approximated by a collection of tetrahedra, where each tetrahedron
is filled inside with flat space, and curvature can be thought of as being con-
centrated on the edges of tetrahedra. More precisely, since each edge of the
tetrahedron separates two faces, the angle between the outward normals of
two faces separated by the i-th edge, #; is the discrete analogue of curvature
in this picture. A complete specification of the lengths of all the edges of
the tetrahedra in the discretisation (called a triangulation) of the manifold
carries the information that the metric carries in the continuum picture. The

discrete analogue of the gravity action is then

o
et
]
-

sﬂrggn: = ZEI I{ |: .
1

‘where the sum is over all the edges in the triangulation.

In the lattice gravity approach of Ponzano and Regge [8] in

proposed. Oune first considers a triangulation, i.e a simplicial decompasition

‘of the three-manifold M. Each three-simplex is a tetrahedron. To each edge

he

is the discretized length of that edge. These lengths must of course satisfy the
triangle inequalities corresponding to the triangular faces of the tetrahedron.
It is seen that the Racah- Wigner 67 symbol which appears in the tensor
product of SU{2) representations is also defined for a similar set of inequalities

', As was shown in [8], we can associate it with this ‘coloured’ tetrahedron -

when the lengths are large, the fij symbol is related to the Regge action for

AMore details of i symbols and their properties can be found in Appendix 1

by
Inat



Figure 1. Refinement of a tetrahedron into four tetrahedra

a tetrahedron.

(=1}t {ﬂ:; 5 ﬂ:f}'} ~ S cO8{Stgpe +7/4) (2.16)

12%

HEI‘E, SREHEG = ZF:: 'Hl' {jl + la'lrz:l
A partition function is constructed for the manifold M out of
‘the various 6 7 symbols associated to the tetrahedra in the simplicial decom-

position of M. In lattice gravity, one sums over geometries of the discretisation

of M in this picture, it corresponds to fixing a lattice structure and summing

i

‘over all possible edge lengths. An important question to ask in any lattice
approach is whether the model has a well-defined continuum limit. The con-

tinuum limit corresponds to refining the triangulation such that the discrete

lattice starts approximating the smooth manifold M better and better.

The Ponzano-Regge partition function can be constructed to
be invariant under refinement of any tetrahedron in the triangulation into

four smaller tetrahedra. This process can be seen in Fig. 1. This scale

invariance is achieved with an appropriate choice of weights in the partition



For a manifold without boundary, the partition function pro-

posed by Ponzano and Regge is

dpr = > 11 I (Zi+1) x

colourings Jenls werdices e edges

H Expl:__l;ﬂzj'i“]} { jl{f] .““:] ..'I'I.'l-“] } [ :

i tetrahedra J‘*{t} JE“} JE{”

1

L+t
e
=1
—t

Here, the maximum spin value (maximum edge length) is cut

‘off at L. For every vertex in the triangulation, a factor 1/A appears in

Iy

the partition function. This regularizes the partition function as the limit

[ -+ oo is taken. A is given by

1 R

fphy <L
|JJ.—-|'31£_1'-| g dly

Tt is shown in [24] that this partition function is the same as the

tition function of ISO(3) Chern-Simons theory on the manifold M. The

_Eecl knowledge that (24+1)-d gravity can be written as an [50(2,1) Chern-

Regge picture corresponds to a trivalent network as shown in Fig, 2. As

.
¥l

an be seen, both are dual pictures. A tetrahedron corresponds to a dual

etrahedral spin network. This can be seen in Fig. 3.
Turaev and Viro showed [9] that there was a natural way of

egularizing the Ponzano-Regge lattice sum - by considering the g-analogue

the model, where the spins are now associated with the quantum group



J

Ja Ja

A triangle and a dual trivalent spin network

gure 3. A tetrahedron and dual tetrahedral spin networl
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U(SU(2)) and ¢ = e ¥, kis an integer, and this leads to a natural cut-off
on the maximum value of each spin, i.e j < k/2. In the partition function
of Ponzano and Regge. ordinary numbers are replaced by g-numbers and
~ordinary 63 symbols by SU(2), — 6; symbols. This choice of regularisation

Jin fact corresponds to gravity with a cosmological constant.

The g-number of a number n is

qn,r'z q—n,."i

[n], = 7 (2.19)

q—l”
petalls of 517/(2), —6j symbols can be found in Appendix 1, The Turaev-Viro
partition function for a manifold without boundary is

Zv = ¥ IO & I (=0%Pi+1,

colourings J-:E‘}f- vertices * 9 e edpes
o (i 3 It galt) Jalt)
s s P (T 22 5HD) {;hm is(t) Jslt) } s

Here, vertices, edges and tetrahedra are those associated with the iriangu-

I'\.-I

.20

fation. The subscript g and square brackets indicate ¢ numbers instead of
ordinary numbers, and SU(2); — 6j symbols instead of ordinary 6§ symbols.

B —2{k+2

(e 7—g=177)

The Turaev-Viro partition function is related to three-
dimensional gravity with a cosmological constant where the deformation pa-
tameter ¢ is related to the cosmological constant, The g— 67 symbol for large
hias been shown to be related to the Regge action for a tetrahedron for the
tase of gravity with a cosmological constant [27]. It has also been shown that
thie Turaev-Viro partition function is the square of the partition Tunction of
Chern-Simons theory, where the coupling constant k, is related to the
leformation parameter g as g = exp f_:‘ﬂ [28]. The Turaev-Viro partition
unction, written in terms of Chern-Simons theory is related to the Einstein-
1 action for Euclidean gravity as follows: The partition funetion of the
ganalogue lattice model given by the square of SU(2) Chern-Simons parti-

function, may be rewritten in terms of SL{2, C) Chern-Simons theory

(S5

s f[ﬂ."»’l dA] exp[-_j[qcm+ A%) _ (AdA 4 :

v:.\.-
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where A is an S5L(2, C) connection. To relate this to 3 — d gravity, in terms

of the triad e and spin connection field w, we define 4 = w + = and
A =w - <= and denote [[4] = £ [(AdA+2£A3). Then, the action in
[2.21) can be written as the Einstein-Hilbert action of gravity with negative
cosmological constant.

A - 1A) = = [ R+ 3) = I 2

;:Th'e cosmological constant is A = — and the coupling constant k given
B — L
by k = 5.

The issue of writing the Turaev-Viro partition function for a
‘manifold with boundary is tricky. In the picture of Turaev and Viro, one
‘can consider a Heegard splitting of a closed manifold M into two manifolds
(handlebodies) M, and M; with boundary, such that both M, and M, have
the same boundary topology. The Turaev-Vire partition function for M is
given by (2.20). Now, M can be obtained by gluing the boundaries of M,
and M, after an appropriate diffeomorphism. Therefore, in this scheme,
‘:'_E partition funection for a manifold with boundary should be such that
the gluing of two such manifolds yields the correct expression (2.20) for the

tesulting closed manifold.

For a manifold with boundary, in the expression in (2.20).

i addition, there is a factor of 71"‘_ per boundary wvertex, and
q

Zry is related to |Zgyy)|* which is related to Z,,,,, the partition function of
Buclidean gravity, However, as pointed out in [29], the integration measure
; the Chern-Simons partition function is [dA, dA], whereas for the gravity
partition function, it is [de,dw]. Since A = w+ %, the relation between

i two involves % factors, It was argued in [29] that for a closed manifold,

the factors of ,qu appearing in (2.20) are to do precisely with the difference
'_fi;:he measures. This can also be extended to the case of a manifold with
boundary, because the choice of _\r;ﬁ__u per boundary vertex in the Turaev-Viro
partition function was made so that on fusing two such manifolds to make

@ closed manifold, one obtained the partition function (2.20) for a closed

I
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manifold. Therefore, the Turaev-Viro partition function could be thought of
as equivalent to the square of a Chern-Simons partition function, but would
be equal to a gravity partition function only without the A, terms in (2.20),
Tlae partition function for gravity for a manifold with boundary would be

given by

Z_rn'rn- s Z H {_1}2_1! [2_?! + ]!li‘ *

colourings I-.-E% e interngledges

[ exolimi)y/Zin+ 1]

br boundaryedges

L R Alt) Jalt) galt) N
i rcrznl*.:.l.;m&rqexp( Zi:JIH}}{ .?.4[:1} J'-E{”' ..'FIE“J }q {Q-M:'

The expression in (2.23) is a functional of the triangulation and spins on the

It must be pointed out here that this is not the only general-

| - " . * d - r
dsation of the Turaev-Viro partition function for a manifold with houndary.

2.4 The BTZ black hole in the PRTV picture

We would like to compute the entropy associated with the BTZ black hole,
nd obtain a picture of the states associated with it in the PRTV laitice
ty formalism. The question to be addressed is what the black hole cor-
ponds to in this framework. We recall from section 2 that the Euclidean
hole has a solid torus topology. The horizon is a circle at the core of

fadius .. |r_| is the amount of twist made before making discrete identifi-

gations fo obtain the solid torus.

Each triangulation of a solid torus is‘a realisation of the black

topology in the lattice picture. With each such triangulation with speci-

]
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fied lengths on the boundary is associated a ‘partition function’ (2.23) which
is the contribution corresponding to a fixed boundary metric given by the
‘boundary lengths. The total black hole partition function is formally a path
integral over both bulk and boundary metrics - in this case, a sum over spin
~assignments in the bulk and on the boundary such that the longitude has
| length 2rry. Summing over the spins in the bulk yields an expression of the
form (2.23) which is a functional of the spins on the boundary. Summing
over the all boundary spins consistent with the circumference being 2mr,
would give the black hole partition function. We now proceed to estimate

the contributions to this sum.

We look at all possible triangulations of this solid torus with
different spins on the boundary. Remembering that a spin j corresponds to
@ length (y/j(j + 1)) in the triangulation , we see that for any given triangu-
lation, the spins will be constrained by the lengths of the circumferences of

this solid torus.

We can have an arbitrary triangulation of the solid torus in
three steps as follows : In Fig. 4, the torus is formed out of blocks, each
'f‘iwhich has two N-polygonal faces of the type in Fig. 5, that are joined
fo the {aces of the next block. Each of these faces can be triangulated, and
corresponding triangles on the opposite face can be joined to these triangles.
@s in Fig. 5, resulting in each block being broken up into a certain number

of prisms (six in the case drawn here).




Figure 4. Torus formed out of polygonal blocks
Then each prism can be triangulated into tetrahedra, as shown

this triangulation to represent a state of the black hole, however, some of the
spins corresponding to the longitudinal eycle must be restricted by the fact

that the sum of the lengths associated with them is 2rr,.,

In Fig. 4, we see that the spins j;, 72 ete. corresponding to
the longitudinal cycle have to satisfy

Th X Wi+ ) =2y (2.24)

i=no. of bocks

‘where the unit of length used is v [,. [, is the Planck length in three dimen-
i‘pns and v 1s an arbitrary parameter. There is an ambiguity in the unit of
length in the Ponzano-Regge formalism itself. The result of a loop gravity
calculation by Rovelli [31] suggests that in Ponzano Regge gravity, the unit
length associated with a spin is [, In (3 + 1) — d canonical gravity [32],
[33], there is an arbitrary parameter associated with secaling of the canoni-
'-1 variables, and multiplies the expression for area and volume cigenvalues,
Here too, we find that there is an arbitrary parameter 5 which multiplies the

unit of length [, obtained in [31], and is associated with scaling of e and w.

We first consider the case of the torus formed out of blocks of
,;'-i.sms. each of which is triangulated as in Fig. 6. Then, the spins that are
testricted in each prism by constraints of the form {2.24) are the longitudinal

Spins j4p, jge and jop and their corresponding counterparts in other prisms

in Fig. 6. These three steps yield a a triangulation of the solid torus. For |
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rure 6. Triangulation of prism into tetrahedra
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- the length associated with each of these spins when summed with lengths

associated with corresponding spins in all other prisms must give 2mr,,

Given this restriction, we try to estimate the partition function

‘with a certain assignment of spins is given from (2.23) as

ur unsherededges 5: sharededges
e W . . Fxs
exp (—im(jap + Jac + 1Bc + Jop + 1ap + JBD)) { ion
. : ) . P JBC
exp (=im{jpc + jor + jpF + jor + jep + Jep)) { ine

exp(—i7(JBE + JEF + JBF + IDF + iBD + JED)) { jif_

!bﬂks to which the prism is fused to form the solid torus.

JEC
Jan
JCF
JB1
JEF
JBD

1T s

= I  VRi+lexpmy TI (20 +1]% exp(=

jzll’.ﬁ
JB1
JaF
Job
iBF
JED

‘contribution {rom these prisms for all possible values of the various spins. The
contribution can be estimated by considering each prism separately, and then

multiplying contributions from all prisms. The contribution of each prism

) o

} 5

)

} "
¥

}iu

(2.25)

Here, j, refers to the unshared sides and j, to the sides shared with the

The expression Zy corresponds to one prism. For a triangula-

:';1 with n identical prisms, the contribution would simply be (Z)". It is

difficult to calculate the partition function exactly for arbitrary spins asso-

fribution comes [rom a specific assignment below.

ciated with the edges. We shall calculate the contribution to the partition

function for some specific assignment of spins to argue that dominant con-

The simplest choice of spins we can take is jag = Jac = jgr =

ipE = jer = ipr = 0. Then, the choice of the other spins decides the number




number of blocks n for fixed ry is given by
25
no= i (2.26)
¥ dy \/J' (7+1)

f_:: e largest value of n corresponds to the lowest spin, j = 1/2. This in

furn yields the maximum contribution to the partition function. Fach prism
contributes a value [2],, and therefore, the total contribution to the partition
function for large k is 2%, wheren = %.

7 ip

Any other assignment of spins yields a contribution less than
-_:a_.t of this case. To see this, let us consider the case jip = jac = Jpeo =
'-_E = Jer = jpr = R, (R large), we can take recourse to the following
ptotic formula for the 65 symbel for £ > 1 (details in Appendix 1)

walid in our case for large k:

=2
]
=1
e

{ i "-J c } o [_I}f CIEU (
R R R[™ Broct1) '
where C0,, is the Clebsch-Gordon coefficient.

Here, we find that the largest contribution to the partition
function comes again when jap = jer = jpr = 1/2 and jop = jer =

~ R. This contribution for large k is (v/2)" where n is given by

The contribution from the intermediate values of spins remain
.!.i:'e found. The difficulty with calculating this contribution is due to the
fact that the 67 symbols in the contribution have to be evaluated, In order
o obtain this contribution, we look at the corrections to the asvmptotic
formula (2.27) for R not very large. We find that for B > 2, considering the

corrections, we have

a b ¢ (=¥ 0 :
{ R R R } E \/M—-{.”Gnﬂbﬂ EEZB}

We now take the following choice of spins : jag = jpe = jpg =

BF = Jep = R, jac = jpr = Jep = jer = B — ], Jap = jor = jBE = .

A4



The contribution of this choice of spins can be estimated using the r.h.s of

_EQ.ES}. This can be done in two regimes :
)R > j. In this case, B > 2.
i1) 7 3 R. Here, j > 2.

Case i) is estimated numerically. It is found that case i) has a

ligher contribution, and its contribution is highest for j = 1/2, Further, this

g:gp:tribution is less than (v/2)". Case i) and ii) describe those values of spins
where some spins are larger than others. There are other choices which can
'I"inve.-stigat.ecl, e.g those where all the spins have the same value. I thisis a
large value (= 2), again it is seen that this contribution is much lesser than
(V2"

Finally, there remains the case where all spins are small. Here,
it is possible to do exact calculations for a large number of cases. In all these
cases, it is explicitly found that the contribution is less than (v/2)", Some

examples are :
a)las = JBc = JED = JEF = jap = Jop = jor = jre = 1/2,
jac = jpr = jar = jsp = 1.
This contributes (4/5)".
b)jas = jac = jpe = jor = jap = jer = jee = 1/2,
Jec = Jer=Jep=jJep=1, jer=3/2
This contributes {\/m:l“.
c)jas = jac = JBc = JpE = jor = jer = 1,
Jap = jer = jge = 1/2, jop = jsp = jgr = 3/2.
This contributes (,/50/27)".

Summing the contributions from the prism triangulation from

ill these different regimes of spin values, we see that the maximum contribu-
jon seems to come from the first case considered, where jup = jic = jpe =

pe = jer = jer = jpr = 0 and jap = jor = jer = jep = jsp = jor =

3



1/2, and where the torus collapses into the longitudinal cycle.

We have considered upto now, only the prism triangulation of
(the torus. As mentioned before, the torus can be triangulated by other polyg-
~onal blocks, each of which can be triangulated by breaking the block into
prisms and triangulating them. Therefore, many of the simplifying methods
used here can also be used to determine the contribution from other polysons.
Fﬂr polygonal blocks with large spins on the polygonal sides, it is possible to
estimate the contribution, which is less than (v2)". Also, for some simple
Eﬁlyguns (cube, pentagon) with very small values of spins on their polygonal
sides, it is possible to explicitly calculate the contribution, again less than
{v2)".

The discussion above suggests that the maximum contribution
on considering all possible triangulations would still come from the term
corresponding to the torus collapsing to the longitudinal cycle, i.e from states

af the horizon. This contribution is ([2],)", which for large & is simply 27

We note here that r_ does not appear in the calculation of the

Looking at states at a fixed value of r. corresponds to work-
:-5:5;-: the microcanonical ensemble. The entropy is therefore given hy the
ithm of the partition function. As mentioned above, the leading con-
tribution to the partition function for large k is 2". The entropy is then be

-r due to this term, and § = n In2. Sincen = ﬁ’

2mry
= —— [n2 2.2
5 4G V3 In (2.29)

where 27, is the length of the horizon.



This expression for entropy has factors similar to that obtained
in 2 different context for the Schwarzschild black hole in (3 + 1) — d in
-.,,i.‘?iframewm'k of loop gravity [12], [13]. As mentioned before, in the loop
gravity result, there is an arbitrary parameter in the expression for entropy,
]ﬁi’:h is related to scaling of the canonical variables. This is chosen to
have a particular value so that the expression for the entropy matches the
gkenstein—H awking result. On choosing the same value, :7’25, for 4 in our

expression (2.29) for the entropy, the entropy assumes the familiar form
5 = —_ (2.30)

where A is the ‘area’ of the horizon, 2mr,.
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Chapter 3

in the previous chapter. Now, we deseribe in detail, the Chern-Simons for-
,:..imiﬂn of three-dimensional gravity [25, 26]. We use it to compute an
exact expression for the partition function of the BTZ black hole. From

he partition function, we show that for a black hole with large horizon

:.j;i'- the entropy correction for the Schwarzschild black hole [7] in the four
{imensional canonical gravity formalism [12, 13]; and also with a Lorenzian
omputation of BTZ black hole entropy [11]. We show that the right ex-
pression for the logarithmic correction in the context of the BTZ black hole

gomes from the modular invariance associated with the toroidal boundary of
fie black hole.
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3.1 (2+1)—d gravity as a Chern-Simons theory

We know that gravity in (2 4 1) dimensions is simple. The action for pure
gravity with a cosmological constant A js

mﬁrgf o /—G(R — 2A) (3.1)

The vacuum Einstein field equation
1
R'p.h == EQHHR.{_ ﬂgyu == [} {3.2)

In (24 1) dimensions, every solution of (3.2) has a constant

curvature, positive if A is positive, and negative for A negative.
In fact, it is also possible to rewrite gravity as a gauge theory

- infinitesimal diffeomorphisms can be regarded as field dependent gauge

transformations. Large diffeomorphisms must be handled separately.
shown by Achucarro and Townsend [25] that

It was

this gauge theory is actually a

n-3imons theory - the action for gravity in the first order formalism cay,

be rewritten as a Chern-Simons action,

The gravity action can be written in the first order

formalism
it terms of the triad e, and a spin connection w?. The action s
;.u-J-. n a o b A d b c :
I= A (eua( Bl — hwy) + €apee bt + 3 Cabelyc, €5) (3.3)
1

For the case of gravity with a negative cosmological constant,

it can write this action as a gauge theory for the group 50(2,2). The
@ obeyed hy the generators is

[Jm*}b] = Er:br."j-r-l ['-"Fru Pb] = cﬂbEPFT {Pm Pb] e -'ﬂifu-flcjc {34:'

now define a gauge field Ay = el P+ wiJ,. Now,

€ = elde" aned Wt =
e, dx Cmmdmmg a general gauge transformation with

lITe parameter, u = a T 7% Js, the variation of A s

infinitesimal

0A, = —Fu—[A,, ] (3.5)



The gauge transformation leads to a variation in e, and w? of the form

o a abe ik
dej, = —8,p% — ¢ EusTe — €W T

dulfy = —8,7% — E"{'“w;_lb"rc — Ae*™ep. (3.6)

For the particular case of a class of field dependent gauge trans-

furmatmns Le for p, = v¥e? and 7% = y# Wi, (3.6) reduces to the standard

transformation law of the triad and spin connection under diffeomnorphisms.

Defining JZ = 1(J, + TP, the corresponding connections
e A} = o + VAep. Each of the A* can be thought of as an SL(2. R)
connection, as 50(2,2) ~ SL(2, R) % SL{2, R). Then the first order ar

action can be written as a difference of two Chern-

dxjtv

Simons actions.
lgrav = Ies[AH)] — fog[AC)] (3.7)

there the Chern-Simons action los[A] is

ke
lgs = 7 /Tr(AhcfA+2AﬁAﬁA) (3.8)

The Chern-Simons coupling constant k = —{/4(;,

Euclidean gravity with a negative cosmological constant ran

I again written as the difference of two Chern-Simons actions as in (3.7),

Bit the gauge group is now SL(2,C). The action for Euclidean gravity is

-Ilegmv = ICEEA] - ICS[AL {35}
2 = (ww.}eﬂ) R I (w“—;e“) T, (3.10)
1SL(2, C) gauge fields (with 7, = —i7,/2). Here, the negative cosmo-

constant A = —(1/I*). The Chern-Simons coupling constant is

= {/4G. We see that Lorentzian gravity is obtained back from the
gan theory by a continuation (7 — —(;.
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It is interesting to note that for Chern- Simons field
ifold with boundary,

on a man-
a Wess-Zumino conformal field theory is naturally j
duced on the boundary. Under the decormnposition

n-

A= g'dg + ¢4y, (3.11)
the Chern-Simons action (3.8) becomes [34, 35]
les[A] = Ies[A] + kifigule, Al (3.12)

___ere Ryzwlg, A:] is the action of a chiral SU(2)
boundary @M,

Wess-Zumino model on the

1 =1 -1 el i
dr jl_:w & (g d:99 Ozg — 2g 3&.5?.4:)

i l—;;fMTr (g—ld,g)a. (3.13)

e “pure gauge' degrees of freedom g are now true dynamical degrees of
eedom at the boundary,

ff;?zw [g,ﬁ;] =

3.2 The Euclidean black hole in the
Chern-Simons picture

ke u::]idean blaclk hole [25} was examined in detail in

he topology of a solid torus, We saw

the previous chapter.

that on making a coordinate
asiormation (2.10), the black hole metric reduces to that of hyperbolic
. with global identifications. The global identifications can be conve-

jently expressed after a further change of coordinates (2.13). The metric is

2 F 2 39,2 2 2 2 y
ds? = sty [dR? + R*d\? + R? cos xde?] (3.14)

the global identifications are given by
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2
(InR, 0, x) ~ (InR+ o 0t T X): (3.15)

Using {3-“}31 the connection 4® EDl‘rES_pDIll:ling to the metric
(8.14) may be written as:

Al = —Csc ) {ciﬂ—i-%), A? = tescy dy,
A® = jcoty [de_f%}. (3.16)

The Chern-Simons formulation of gravity was used to describe the BTZ black

first in [36], where for the Lorentzian black hole, the correspon ding

fields were evaluated.

gauge

In order to compute the black hole partition function, we must
uate the Chern-Simons path integral on a solid torus, This path integral

its been discussed in [34, 37, 38, 39]. Through a suitable gauge transforma-

the connection is set to a constant value on the toroidal boundary. [n

L
1

igtths of coordinates on the toroidal boundary @ and y with unit period, we
tan define = = (z + ry) such that

La’z =1, fEefz =7 (3.17)

there A is the contractible cycle and B the non-contractible cycle of the
torus and T = 7; 417, is the modular parameter of the boundary torus.

fien, the connection can be written as [37]:

A= ( T ds = c.l.’z) T (3.18)
2

T2

w and i are canonically conj ugate fields and obey the canonjcal
mutation relation:

.o 2
[i,u] = ;{m—} (3.19)

be related to the black hole parameters by computing the

omies of A around the contractible and non-contractible cycles of the
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ssolid torus, These holonomies have been computed in [22] for the general
‘case of a rotating BTZ black hole solution with a conical singularity (©) at

:;j;-e horizon such that the identifications (3.15) characterizing the black hole
oW generalize to :

(InR, 0, y) ~ (Ink, 6+ O, y)

(Ink, 8, y) ~ (lnR—I—z—ﬂ?i, g+ EWF;-L[. x) (3.20)

The former identification corresponds to the 4 evele and the
latter to the B cycle. Then the trace of the holonomies around the con-

tractible cycle 4 and non-contractible cycle B are:

Tr(Hy) = 2cosh(i@), Tr(Hg) = 2cosh (2—;(r++i|r'_|}) (3.21)

We note here that @ is the canonical conjugate, but not the

fomplex conjugate of u. This is so because A is a cornplex SU(2) connection.

-
The Black Hole Partition Function
B compute the black hole partition function in the Chern-Simons formula-
irst write the Chern-Simons path integral on a solid torus with a
modular parameter v, For a fixed boundary value of the connec-
fixed value of w, this path integral is formally equivalent to a state

7} with no Wilson lines in the solid torus. The states corresponding to



having closed Wilson lines (along the non-contractible cycle) carrying spin

/2 (7 £ k) representations in the solid torus are given by [34, 37, 38, 39):

[ k
Pilu,7) = exp {——uz} ¥ilu, 7)), (3.24)
4'7'2_
where y; are the Weyl-Kac characters for affine SU(2). The Weyl-IKac char-

acters can be expressed in terms of the well-known Theta functions as

k2 (k+2) =,
jl.._fI:TIch} == E"H-l Zxly :I 6_‘]_' { 1““]

Hum,0) = ©2,(u,7.0) 25)

where Theta functions are given by:

.E}ﬁ[u,'r, z) = exp(—2rikz) > exp2rik [{n + k} (n —]— }u (3.26)
nez
The black hole partition function is to he constructed from the
dary state yg(u, 7). To do that, we note the following:

a) We must first choose the appropriate ensemble. Here, we
choose the microcanonical ensemble. As has been discussed in [40], the mi-
nonical ensemble is characterised by fixing the energy of the svstem
gular momentum J and A, the “area” or size of the thermodynamic
mer. In our picture, we keep the value of the holonomy around the

ontractible cycle B fixed. This fixe® from (2.8) and (3.21), the param-
M and J at the boundary. M here corresponds to the energy of the
systemn E, Further, we recollect that the toroidal boundary is characterised
ing the coordinate y in (3.14), which from (2.10) is fixing the value of
'r.;h-'.nra.rzschild radial coordinate r at the boundary. Characterising the

Boundary by a fixed r is fixing A.

Thus we have already fixed all the thermodynamic variables
ponding to the microcanonical ensemble. The holonomy around the
actible cycle A is ©, which has a value 27 for the classical solution. From
0], 0, the defect angle at the horizon is a variable conjugate to the area, In
€ ensemble picture [40], the defect angle © is then the canonical pressure
. 1t is therefore not held fixed in the microcanonical ensemble, and

8 ust sum over contributions to the partition function from all values of

43



@ This corresponds to starting with the value of u for the classical solution,

e, with @ = 27 in (3.21), and then considering all other shifts of u of the

u — u+ar (3.27)

where & is an arbitrary number. This is implemented by a translation oper-

:~_;_1t Df the form

17,
= L 2
I' = exp (ﬂ:r fu) (3.28)

However, this operator is not gauge invariant. The only gauge-invariant way

of implementing these translations is through Verlinde operators of the form

S _n".rfu nr 'E]"- -
W, n%i exp( =t k+2ﬂu) (3.29)
Aj = —5,—j+2,...,j—2,j. This means that all possible shifts

nu are not allowed, and from considerations of gauge invariance, the only
ible shifts are

nT

- u+k+2

(3.30)

e n is always an integer taking a maximum value of k. Thus, the onl v
llowed values of @ are 2m(1+ w53 )- We know that acting on the state with no
Wilson lines in the solid torus with the Verlinde operator W; corresponds to
rting a Wilson line of spin j/2 around the non-contractible cycle. Th us,
-:"-?_:-'-1 into account all states with different shifted values of u as in (3.30)
means that we have to take into account all the states in the boundary

torresponding to the insertion of such Wilson lines. These are the states
ilu,7) given in (3.24).

b) In order to obtain the final partition function, we must inte-
wer all values of the modular parameter. i.e. over all inequivalent tori
the same holonomy around the non-contractible cycle, The integrand,
is a function of u and 7, must be the square of the partition function

gauged SU(2), Wess-Zumino model corresponding to the two SI/(2)
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Chern-Simons theories. It must be modular invariant — modular invariance

torresponds to large diffeomorphisms of the torus, and the partition function

must not change under a modular transformation,

The partition function is then of the form

L ;

Z ﬂ.j{T} ﬁ:j{u, T:|

=0

E:zf@hf} (3.31)

Where dy(7, 7) is the modular invariant measure, and the integration is over
alundamental domain in the r plane. Coefficients a;(7) must be chosen such

ihat the integrand is modular invariant.

Under an § modular transformation,
= —1/7 and u — u/r, the SU(2)

r characters transform as

. ul . —1
;.;j{u,rj — exp (—2:“!;: a;) X5 (;‘ —_r—)

2
= exp (—Eﬁfk ii—) Z .5'_,; }(.I{HT'?‘II {332}
ki)

there matrix Sy given by

= [ g [FE DAY
k42 k+2 !

e note here that this §

D<j i<k (3.33)
matrix is orthogonal: 25 85 S = 4y,

We are interested in the transformation property of the state

') under an § modular transformation. The prefactor in (3.24) trans-
to itself under such a transformation apart from an extra piece that

cancels the prefactor in (3.32). Thus, under an S transformation

Uil m) — 3 Sy dhi(u, 7) (3.34)
!

ider 2 7 modular transformation (7= 7+1), ¥;(u, 7) picks up & phase,

Yilu,m) = exp(2mim;) ¥;(u,7)

(3.35)
;= ;—*Eﬂ-_-% — 1. For the integrand in (3.31) to be moduy.
variant, the coefficient aj(7) must transform under the S transfor-

as a;(t) = Y, a,(r) Sp; and under the T transformation as



!

ke
Zoisa f du(r 7)Y | 3 (500, 7)) w5(w, ) (3.36)
7=0

Finally the modular invariant measure is

drd
du(r,7) = _TF; (3.37)

The expression (3.36) is an exact expression for the partition
function of the Euclidean black hole. To make a comparison with the semi-
lassical entropy of the black hole, we evaluate the expression (3.36) for large
n radius vy by the saddle-point method. Substituting from (3.24),
and {3.26), the saddle point of the integrand oceurs when = is pro-

partional to r. and therefore large. But for large, the character y ; is

sinm(f+ 1)u
sinwu

(3.38)

| Wi § 4.)
z
2,

wi
xi(mou) ~ exp[ ( had

fenow use in (3.36) the form of the character for large 75 from (3.38). In
pression for « in (3.21), we replace © by its classical value 27. The
gmputation has been done with positive coupling constant & and at the end.
emust perform an analytic continuation to the Lorentzian black hole. by
G — —(G. It can be checked that after the analyvtic continuation, it

the spin j = 0 in the sum over characters in (3.36) that dominates the

on function,

We obtain the leading behaviour of the partition function
| for large ro (and when |r_| << ry) by first performing the inte-

over 7y in this regime. The m integration is done by the method of

pest descent. The saddle-point is at 7 = 7, /L. Expanding around the

-point, by writing 72 = »y/l + =z and then integrating over x, we
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tontinuation G — —( is then

; # I8r.G 277y
JLM = ;‘z _F 2x ( 4(; ) {3+4m

upto a multiplicative constant. The logarithm of this expression yields the

hole entropy for large horizon length r:

2rry 3 2mr
& w = 34 ( +) B
10 5 %\Tg ) T

(3.41)

The leading contribution to the black hole entropy is the famil-
H_ﬁkenstein—ﬂawking term. The next-order correction to the semi-classical
entropy is the logarithm of the black hole area 2mry. The coefficient —3/2
of this correction is in agreement with that of the logarithmic correction
b semi-classical entropy of four dimensional Schwarzschild black hole first
ed in ref. (7] in the quantum geometry formulation of gravity, The
eiil-classical Bekenstein-Hawking entropy for the BTZ black hole was previ-
tudied in the path integral Euclidean formulation in ref. [42], but the
hmic correction was not seen there, As described above, the right log-
ic correction is obtained by considering the correct modular invariant
gasure while integrating over all inequivalent tori (as the holonomy around
Enon-contractible cycle is held fixed).

The calculation presented here should be contrasted with arl
lier calculation of partition function of a BTZ black hole coupled to a scalar
fd [41]. This is a perturbative one-loop calculation which incorporates a
tcific type of fluctuation, namely a scalar field. For small T4, this leads to
ent coefficient of the the logarithmic correction in the entropy. On the
gr hand, our calculation is exact; it includes all possible quantum gravity

fluations. It is therefore not surprising that the results differ,
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The AdS Gas Partition Function

finally, we make a few remarks on the AdS gas partition function. It is well-
known [19] that for four-dimensional AdS-Schwarzschild black holes. there is
a phase transition below a certain temperature from the black hole phase to
dS gas phase. [t is not clear if such a phase transition occurs for the BT,
hole. Tt has been proposed by Maldacena and Strominger [43] that such
'i':ia__se transition may take place. They show that the action for the AdS
an be obtained from that of the BTZ black hole by & transformation.
For the case of a non-rotating black hole, this transformation has the form

; = s

We can perform this transformation to our expression for the

partition function for the black hole. This gives us a candidate partition
unction for the AdS gas. The AdS gas partition function is

2

3
2 (0, 7)) vy )

3=D

Zasslra) = [ du(r,7)

Il,-w t = ;_—1! (—2-2?1'1' + ?_—-:_I)

The AdS gas partition function can again be evaluated by
iddle-point method. Small ry leads to a saddle-point with 7 large. In

s limit of small ry (i.e small temperature), the partition function is

r mi?
Zaaslr] = (T'PJ% exp (42?"+"3) (3.43)

jis, at the leading order, agrees with the corresponding semi-classical ex-

gssion in ref. [43]. It also shows the sub-leading behaviour as a function of
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Chapter 4

of AdS black holes can be related, through the AdS/CFT correspondence,

_'.-fea,tures of strongly coupled gauge theories.

The propagation of various kinds of matter fields in black hole
backgrounds has been well studied and yields information about diverse clas-
sical and quantum aspects of black hole physics. Detailed analvsis of modes
of the scalar, spinor and gauge fields in black hole backgrounds can be found
xample, in [44]. In particular, for scalar fields, the energies of these
s are given by the square root of the eigenvalues of the spatial part of
'-Klein-Gm-don operator in that background. For static spacetimes with
mill singularities, it has been argued [45, 46] that the spatial part of the
-Gordon operator is essentially self-adjoint. Further, since it is positive
symmetric, one can choose a positive self-adjoint extension such that
igenvalues are all positive and hence the energies real. However, as we
show in this chapter, in the case of many black hole spacetimes. near the null

singularity at the horizon, the zero (time-independent) mode of the scalar

ield has to be handled separately. In particular, the boundary conditions
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E:'I':'n};u:as-ed on the zero mode both at the horizon and at infinity are different

from those on the other modes with real energies, In fact, we will show that
there are an infinite number of boundary conditions. labeled by a U(1) pa-
tameter, that lead to one zero mode solution. This solution could he thought

of as a ‘horizon state’ as it is localized at the horizon.

An interesting application of this analysis is to to the the infi-
aiite mass limit of the AdS-Schwarzschild black hele [19]. Tt leads to results
at are of relevance in light of the AdS/C FT' correspondence. As proposed
by Witten [18], the AdS/CFT duality relating supergravity on anti-de Sit-
space to a supersymmetric Yang-Mills theory on the boundary can be
ended to non-supersymmetric QCD. The AdS background is replaced by
AdS-Schwarzschild black hole background. Gravity on this background
prisingly does reproduce some features of the strong coupling limit of
D, like the area law behavior of Wilson loops, confinement, and the alue-

mass spectrum with a mass gap [18, 47, 48, 49].

The glueball mass spectrum is reproduced by certain time-
Ependent and normalizable modes obtained by solving the dilaton wave
equation in the black hole geometry. These modes were numerically corm-
. ._"& first in [47, 48]. These modes are “equilibrium modes™ for the black
Le. the current vanishes at the horizon, which has been recognised in

40] as the correct boundary condition to be used at the horizon,

It has been argued that “non-equilibrium” modes of the same
ick hole (with ingoing boundary conditions at the horizon) give the time
e of approach to thermal equilibrium of the boundary Yang-Mills theory.
lhese modes, i.e. the quasi-normal modes of the black hole, have been
omputed recently [20, 50, 51].

In this chapter, we study the scalar wave equation in the AdS-
JN

chwarzschild background, and show, that written as a Hamiltonian prablem,
115 not self-adjoint. Self-adjointness and completeness requires inclusion of

modes ignored in [47, 48, 49]. These modes are also equilibrium modes of



the black hole but are irregular at the horizon !
We suggest that these modes are dual in the AdS/CFT sense to modes in
ICD; signaling the onset of a Savvidy-Nielsen-Olesen-[ike instability of the

wacuum [52, 53, 54, 55).

The organization of the chapter is as follows: In section 1,
we briefly describe two kinds of modes that are commonly discussed in
telated literature, namely the normalizable equilibrium modes, and the
non-normalizable quasi-normal modes, to emphasize the differences be-
n them. We also show that for a massless scalar field propagating
in Schwarzschild or Reissner-Nordstrom black hole background, the Klein-
Gordon operator is self-adjoint. In section 2, we focus on the zera energy
mode of the scalar field in these backgrounds, and in the background of the
{I-+1)-d black hole [56] as well as the BTZ black hole [6]. The equation
obeved by the zero mode has some unusual properties, which we analyze in
:':!:'-'-v 3. In particular, we show that this state js localized at the horizon.
b section 4, we apply the results of section 3 to study the zero mode of
lhe massless scalar field in the background of the infinite mass limit of the
AdS-Schwarzschild black hole, and argue that the “horizon states” are nec-
essary for completeness. In section 6, we speculate on the interpretation of
.'-irregular modes in the boundary theory, and suggest that they may be
glated to a Savvidy-Nielsen-Olesen-like instability.

Modes of the scalar field in black hole

background

8 mentioned before, the energies of normalizable modes of a scalar field
lithie exterior of a black hole spacetime (i.e. in the region from the outer

on to infinity) have real energies.

'-:[43, 49], the existence af irregular modes is mentioned. However, they are noi

. They are also tachyonic.



This can be verified for the Schwarzschild or Reissner-
Nordstrom black hole in the exterior. There are no normalizable mode solu-
‘tions with complex (or pure imaginary) energies. However, this is not true
'in a region of the black-hole spacetime near a timelike singularity. For the
Reissner-Nordstrom spacetime, in the region between the timelike singular-
ity and the inner horizon, the spatial part of the Klein-Gordon operator is
1ot self-adjoint, as also observed by [57], but can be made sell~adjoint by
a suitable choice of boundary conditions. There exist boundary conditions
for which there is a negative eigenvalue for this operator, leading to a mode
solution with imaginary energy. However, this solution cannot be extended

1o the physical region of interest between the outer horizon and infinity.

Other modes of importance in the context of black holes are
- quasi-normal modes (see for example, [58, 59]). We mention them here
o clearly distinguish them from the modes we are studying in this chapter.

~| the case of as}’mptutica.llv flat black hn‘.les, these are defined to be purely

which include purely imaginary modes [60]. Recently, quasi-normal modes

the AdS-Schwarzschild black hole have also been studied [51, 21] - an

An analysis of the spatial part of the Klein-Gordon operator
or the AdS-Schwarzschild black hole shows that as expected in [46]. the

ds? = —F[:r]n:i*r2 + FYr)dr® + r*d0?,  where (4.1)
F(r) = (1473 —rj/r?). (4.2)

Here b is the radius of curvature of the anti-de Sitter space and ry is related

T
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ﬂ,-f - 3;43]"3
lﬁTl‘Gs,

(4.3)

Let us look at a massless scalar field in this background geom-
v. One can in principle consider a complex scalar field with charge ¢ and
s m, but for simplicity we shall consider only the massless and uncharged

ield in the black hole background. The action for such a field @ is
D e 2l 5 (9,0)(8,0)d°
= —5 [Visle” (6.)(850)d%s, (4.4
. 1 jee : 3 {i'z 2 2 2
= E_Lci-r/dtjdﬂ[r{F—i—Fﬂ} (120 L%0 |

The Klein-Gordon equation for the field @ can be obtained

tom above. On making the ansatz

T [ ¥ -
Pie= {':E*,f_j Y{angles) exp —(iwt), (4.5)
i wave [unctions are defined on the measure dr/#. The Klein-Gordon

fuation can then be written in terms of the tortoise coordinate ro. which is
d by dr. = dr/F, 1t takes the form

di
— IV = W, (4:6)

he measure now being dr.. The potential is positive, vanishes at the
prizon v. = —oc and diverges at » = co. This corresponds to a finite r.
erefore the solutions have to vanish there. Multiplying (4.6) by the
omplex conjugate of f and integrating over the spacetime from the herizon
.'tj.-’, it can be seen that there can be no normalizable solutions that
pond to w?® negative or complex. This is in conformity with the fact

gl the Klein-Gordon operator is self-adjoint.



42 Time independent mode in black hole SO-

lutions

The positive energy solutions to the Klein-Gordon equation can be analyzed
ost black hole solutions by going to the tortoise coordinate r. mentioned
i the previous section. The solutions behave as [ ~expiw(t £+ v.) near the
':.'.' on and near infinity, The horizon is at r, = —oa, while the infinity
of the Schwarzschild radial coordinate is either at r. = o0 or at a finite
,_fﬂie‘pending on the black hole considered. The solutions are plane wave

jarmalizable, and have infinitely oscillating phases at the horizon.

The near-horizon analysis of black hole solutions reveals, how-

sier; that the time independent (w = 0) mode of the scalar field has to be

=

dled carefully.

A

The metric for an asymptotically flat, spherically svmmetric,
fatic black hole in 4-D is of the form

ds® = —F(r)dt* + F~(r)dr? + r2dQ? = giydrida’, (4.7)

or a Reissner-Nordstrom black hole,

Br) = ‘h’_h,}.gph}: (4.8)
r+ = Qlp+ Elp % (2QEL} + E*I4)2. (4.9)

e, [p is the Planck length and £ = M — Q/lp is the energy above ex-
emality. For a Schwarzschild black hole, F(r) = (1 = 2M/r).

Let us look at a massless scalar field in this background geom-

. The action for such a field o is

o i o

D = —gfv!gfgjﬁ.-qaﬂjcﬁ- (4.10)
If we restrict out attention to spherically symmetric configu-

lonts, the action looks like

; il
$=—3 [ [0 + P pma (111)



"-_'l_‘his immediately allows us to identify the Lagrangian:

L= % Fffi:'i [(8)2 = F(r)(8)?]. (4.12)

The modes of the scalar field are obtained from the ansatz that the time

dependence of ¢ is ¢ ~ exp(iwt). We are interested in the time-independent
solutions, so we take w = 0. Then the Klein-Gordon equation for this case

s obtained simply by considering the second term in the Lagrangian, and is
1 d d
= e —_—— = — {]‘, 4.1&
4 Fdr (Fnﬁ") v (ele)
':':'ji= wave functions are defined on L2[(0, o0}, r* F'dr]. 1t is more convenjent

transformation from L*[R*, F(r)dr] to LAR* dr] via Ug = \/r2F(r) = y.
In this new basis, H reads:

B ﬂrg.?( {T‘ﬂF}” {TEF:I" 2 B r

On putting the value of F' for the black hole in (4.14) and
taking the near-horizon limit, we find that both for the non-extremal black

holes, (4.14) in the near-horizon limit is

d? 1 .
(—E—Q y =0, (4.15)
Mibere © = (r — ry) is the near-horizon coordinate. ry is the horizon, For

he extremal Reissner-Nordstrom solution, however, (4.14) reduces near the

ﬂr’i‘ .
_.dz_?‘éz , (4.16)

Another situation where we see a similar equation is the near
on geometry of the one-dimensional black hole discovered by Witten

6. The metric for this black hole is of the form
ds? = — tanh®(r/R)dt* + dr?. (4.17)
hie action for a scalar field propagating in this background is

=_1/2 f V0919 8:60; ddrdt. (4.18)



The Lagrangian is

- _¢ .
£= l,f'?ftanh{r,’R] [ta.nh?{rg’ﬁ} i ] dr. (4.19)

The Klein-Gordon equation for the zero mode can be calculated from the

s

Ind term, the functions being defined on L[(0, oc), tanh(r/ R)dr]:

L d d |
~fanh(r/R) dr [““h‘”’ R}E] et (4.20)

Again, we can make a unitary transformation from

;[_R*,ta,nh{?*fﬁ)dr] to L2[R*,dr] via Uy = \/tanh(r/R)¥ = y, the equa-

u- now is

x 1 —1/4
¥ & l /

LY. S . T T ! - 9
&2 7 e /) + y tanh*(r/R) 2} 1 (4.21)

for small v, the equation is approximately

d*y [ 1 1
dr?

i o = 4 a0
FEiy QR?] x=4 A2
Another black hole that exhibits the same behavior is the BTZ
lack hole in (2 4 1) — D gravity [6]. For simplicity, we take J = 0. It has a
metric given by

ds® = —N?dt* + 1/N3dr? 4 r*dg?, (4.23)

here N* = (r*/I* — M), —1/1* is the curvature of AdS space and M is the

lack hole mass. Here, again, the near horizon Klein- Gordon equation is

ﬂ'f::
L S (4.24)

dr?  4r?

here (r — [« M) = z is the near-horizon coordinate. In the case of the
chwarzschild, non-extremal and Reissner-Nordstrom equations, the next-

frder correction is of order 1/(r — r4).

Thus, in all these cases barring the exiremal RN black hale,
224] is the near-horizon equation for the zero-mode solution. The solutions.
th to (4.24) and the extremal case are discussed in the next section. The

genvalues of the Hamiltonian which is just the Lh.s of (4.24) and of the

ab



operator which is the Lh.s of (4.16) are obtained. The sclutions of interest
are the zero eigenvalue solutions for that Hamiltonian problem. We will see
'h the self-adjointness analysis of the Hamiltonian H, i.e the L.h.s operator

in (4.24) will help us find these solutions.

4.3 Self-Adjointness of the operator H

As has been discussed in Appendix 2, (and see for example [61, 62]), discus-
.r.. of self-adjointness (or *hermiticity”) for an unbounded operator requires

0 look at its deficiency indices.

The Hamiltonian i is a special case of a more general Hamil-
nian studied extensively in the literature. It is defined on a domain

R, dx] and is of the form

]

=t (4.25)

ssically, the system described by this Hamiltonian is scale invariant (e is
ensiorless constant). However, the quantum analysis of this operator
ch more subtle, As was shown by [63, 64], H, is essentially self- adjoint

gly for & > 3/4. For e > 3/4, the domain of the Hamiltonian is
Dy = {t € L3(de),¥(0) = #'(0) = 0} (4.26)

for o < 3/4, this operator is not essentially self-adjoint (and therefore cannot

ns D. of the Hamiltonian H.. The set D. contains all the vectors in

b and vectors of the form ¢, + e*1_, where

hy = P H W (2", (4.27)
o = 2V HP (g™, (4.28)
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phere v = 1/1/4 + o, and H{Y*)s are the Hankel functions J, + iN,. The
1 z behavior of ¥, 4 ey is

Yy + TPl ~

i$1f2 (m)y g—dmivf4 _ ei:+3?r:'y,l'4

sin(mv) |\2 Pl +v)
T\ Y Ei:-l-{frulr’-l . e-'"."‘:‘"“ .
+(3) [l —v) ] =

We can now solve the eigenvalue equation for bound states:
~" 4 == —Ey, (4.30)
T

Boro > 3 /4, there are no bound states. Mare precisely, there are no normal-
solutions to the Schridinger equation with negative energy. However,

1—1/4 < a < 3/4 there is exactly one bound state of energy Ej, where E,

. _|[sin(z/2 + 37 /4) tv ,
Br= )= l sin(z/2 +nvjd) | (4:31)
d the corresponding eigenfunction is
¥ = N(E2) P (i Byx) — €™ J_, (iv/Eaz)]. (4.32)

The existence of bound states seems to be in contradiction with
ale invariance, since scale invariance implies that there is no length scale
pthe problem, whereas the existence of the bound state provides a scale.
nsion can be resolved by looking at how scaling is implemented in the
itum theory. The scaling operator is

zp + pr
A

—id/dx. Tt is easily seen that A is symmetric on the domain D of

- (4.33)

Il

that for o > 3/4, A leaves invariant the domain of the Hamiltonian.

Ay = 22y + e (4.34)

The small x behavior of the function A is of the form

_.;'pi.l,lr? N y E—3‘.‘-‘fu,|"4 = £I'E+3:n'u,l’-1
= =) (2711
g Sin T |:(2) (2e ) ( I'(1+v)

N = E:'E+:'rr:-,-"-i_e-i1n—-f-1 B
+ (3) ( O(1—v) )l+ S

own

oo



where 2 = =+ /2. 50 Ay clearly does not leave the domain of the Hamilto-
mian invariant. Scale invariance is thus anomalously broken, and this break-
ing occurs precisely when the Hamiltonian admits non-trivial self-adjoint ex-
tensions. This also explains the quantum mechanical emergence of a lengih

cale, namely the bound state energy.

We must remark here that there do exist self-adjoint extensions
hat preserve scale invariance, For example, if z = —(7r/2). then there is no
hound state. From the point of view of the domains, the operator A leaves
omain invariant, implying that scaling can be consistently implemented

in the quantum theory.

Now that we know about the subtleties about gquantum me-
cal evalution in 1/2* potential, we can apply these ideas to our case.

Ihie potential near the horizon is like —1/4z? for the problem of interest.

For the —1/4x* potential, there are infinite number of bound

tates for a given fixed self-adjoint extension z. These are given by

Wel2) = NoviERol(y Exz), n € Z, {4.36)
E. = exp [%{1 — 81 ) cot :;] ., ned (4.37)

P =22 £ i Plng) + e (a? — i P Ine). (4.38)

Returning to the original problem of finding the zero mode

ger . | he zero mode solution is obtained from (4.37) in the n — =
. In particular, the wave function for the solution to (4.24) near the
s

W= N1+ In(y/ Eaz)). (4.39)
iere [, is given by (4.37) and N, is an appropriate normalization factor.

lien one takes the limit n — oco. This leads to a solution that is non-zero
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Figure 1.
‘Absolute value of zero mode solution for a Schwarzschild black

hole with horizon radius r4. = 50

only at the horizon, where it peaks, and can be thought of as a ‘horizon state’,

pumerical interpolaion,

For the one exception, the extremal Reissner-Nordstrom black
::__' the equation (4.16) is easily solved. The corresponding Hamiltonian
problem for which the solutions to (4.16) are the zero eigenvalue solutions
as considered in the section above. However, it does not lead to the kind

of non-trivial boundary conditions for the zero eigenvalue solution as in the



other cases. This is because the self-adjointness analysis of that operator
yields only one bound state. The bound state vanishes for a particular value
of the self-adjointness parameter, as discussed. Therefore, there seems to be

1o non-trivial zero mode for the extremal black hole.

1

44 Time-independent modes in the plane

AdS black hole

3
ds®* = F(r)dr®+ F~'r)dr® +0* Y daf, {4.40)
=1

= (r*/b® — b*/r?). Let us look at a massless scalar field in

1 .
—5f\!lg!g”iﬁﬂ")(ﬂj@}dﬁm. (4.41)
o @ o " h2
= 5[] ar [P [TE {%+ F(®)7 + 1/s7 Zwu...*bf}]'

Phis action, where the scalar field is the Type IIB dilaton field, has been
scussed in [18, 47, 48]. Modes for the field which are = independent are
tonsidered, where ®(r,z) = f(r)exp(ik.z). Then the equation of motion
or f(r) is

] 3,2 2 . . A
—r Y dr (3 (2 = L) df [ dr)) + K2 = 0, (4.42)
liere b = 1 is taken for simplicity. On demanding normalizability of f(r)

. the measure rdr and regularity of the solution at » = 1, a discrete
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tegative spectrum for & was obtained. It was identified with the glueball

spectrum in the boundary theory.

We show below that one can consider (4.42) as an eigenvalue
problem for &* and examine the operator in this equation for self-adjointness.
As 1s well known, a self-adjoint operator has only real eigenvalues. and any
‘wave function in the domain of the operator can be written in terms of its
eigenfunctions. We therefore wish to find the complete set of k modes such
‘that any function of compact support in the domain can be expanded in terms
f the mode functions. It is seen that the operator is not self-adjoint, but
. an be extended to a self-adjoint operator. However, more general boundary
conditions are required at r = 1, Then, the spectrum of k is also enlarged to
include a discrete infinity of positive k? states, and some negative k? states

A5 well.

The operator of interest is
T = —r7tdfdrir® (v = 1/r%)d/dr], (4.43)

where wave functions are defined on a measure r3dr.

We can therefore check the operator T for self-adjointness, We
first check if it is symmetric, i.e. if (4,T¢) = (T, ), where ¢ ¢ D(T),
:‘_._1_. '!,l':’ t .D(T':]

[f the operator T is symmetric, it is self-adjoint if (T"+4)y = 0
lias no solutions ¢ in D(T*).

But with this measure, we see that the operator is not even
etric. We therefore consider the measure rdr which from the action
1 is the natural measure to consider if one is interested in looking for
lie eigenvalue problem for the operator (4.43). However, this measure is
ot enough to guarantee finiteness of the second term in (4.42). Therefore,
fie take the domain of functions D(T) to consist of C\, square integrable
anctions with respect to the measure rdr which fall off at least as 1/+% (or
et than that) that are of compact support. (Actually, it is enough if they

fill of as 1/r** where § > 0. For convenience, we take § = 1, and it does




not affect any of the analysis. )

The self-adjointness question is easier to address after a change

in coordinates, following [48]. On making the transformations

r* = coshe, (4.44)

Alz) = \/fsinh(2z)f(z), (4.45)

the measure becomes du/ cosh x, and (4.42) becomes

—4dcosha d*/dz*A(z) + 4cosh 2 A(z) — 4 cosh zA(z)/ sinh(2z)?
= —k*A(z)  (4.46)

In these coordinates, the horizon is at @ = 0. Here, one can define the
domain of interest D(T') to consist of C, square integrable [unctions A(x)
with respect to the measure dz/coshz and which fall off asymptotically
8 least as A(z) ~ exp(—3z/2). Also, they are of compact support, so

m =0) = A'{x = 0) = 0. Then it can be shown that the operator on the

dince a self-adjoint extension invelves only a change of boundary condition

at v = 0, we deal with the near-horizon form of (4.46) for simplicity.

On using the near-horizon (z small) approximation, (4.46) be-

.2 e
—{d%df}ﬂ{m}—% s Al "';]A["':'. (4.47)

This looks like a Hamiltonian problem for a potential — L5 (which was dis-

tussed extensively in the previous section) with the eigenvalue —(%% + 1) /4,

The results of the previous section can be applied to the case

1.47) to find the additional states that arise due to the changed boundary

fi3
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condition. They are given by (4.37) with E, = (k*+1)/4. Thus. there are
eigenvalues &2 for each n, and n is any integer. The eigenvalues also depend
on the self-adjoint parameter z. There are positive k* eigenvalues. There

is a possibility of finding some values of &% with &* negative too. for which

What has been done above is a near-horizon analysis of (4.46).

'seenl to be irregular only at the horizon, exactly like the solution in Fig. 2.
Imposing a particular boundary condition at the horizon demanded by sell-

ointness picks out a discrete infinity of normalizable positive k* states as

A feature of these modes that is immediately noticeable is that
they are irregular at the black hole horizon. However, from considerations of
self-adjointness, they are necessary for expressing any arbitrary, regular field

configuration in the bulk in terms of a complete set of mode solutions. In



Mact, the difference of any two of these irregular solutions is regular, This
is because the irregular solutions are irregular only at the horizon, where
‘they behave as fi(r) ~ In(k(r — 1)) where r = 1 is the horizon. Taking the
difference of two solutions fi, (r) and fi,(v), we see that the resultant solution
is regular at the horizon. Therefore, any arbitrary regular field configuration
in the bulk can be constructed with regular mode solutions and an even

number of irregular mode solutions.

It may seem that the irregular solutions can be gotten rid of
"y shifting the domain of interest a small distance € away from the horizon,
where £ > () and repeating the self-adjointness analysis for this new domain.

However, letting € — 0, the irregular solutions reappear. Further, the one

4

does not pick any particular boundary condition at the horizon [63].

e find that on examining scalar field theory in the background of the in-

finite mass limit of the AdS-Schwarzschild black hole, there are more time-

We analyzed the time-independent, L = 0 solutions of the
14 1) — d Schwarzschild and Reissner-Nordstrom black holes, the (14 1) —d
ilatonic black hole and the BTZ black hole. There are several features in
e backgrounds that are similar to the case of the plane AdS-Schwarzschild
lack hole. In particular, there is again a one parameter family of boundary
tnditions labeled by the self-adjoint parameter z as before. However, now
lead to the same solution. The solution is a “horizon state', i.e. it is
bealized at the horizon. There seems to be no such non-trivial zero mode

jor the extremal Reissner-Nordstrom black hole.



Lastly, we would like to speculate on the possible interpreta-
tion of these irregular modes in the boundary theory. As first observed by
] 18], the modes with negative k? correspond to glueballs with mass k2. This
correspondence, when applied to the irregular states, seem to imply the ex-
_'__t_.l_Ence of tachyonic glueball states. Actually, such a scenario is not as exotic
as it may appear to be at first sight. It was pointed out a long time ago
_}r Savvidy [52], and also by Nielsen and collaborators [53, 54, 53] that the
perturbative vacuum of JC' D (when there is a constant colour magnetic field
; ackground) is unstable. Considering a translation invariant background for
5U(2) gauge fields, they obtained the effective one-loop potential. This has
the structure of a double well potential along with an imaginary term sig-
_:,'_llng the onset of instability. This persists in SU{N) theories and at finite
temperature [65]. Our scenario seems to suggest such an instability that per-
L appears due to the choice of the plane-AdS black hole in the bulk, as

indicated by the presence of these modes. We comment more on this in the

Gt



Chapter 5

uasi-normal modes of AdS

black holes

ﬁmerical studies of perturbations of black holes have revealed the presence
of certain characteristic modes that govern the time evolution of the initial
perturbation. In particular, they dominate the decay of the perturbation at
late times. These modes seem to depend only on the black hole parame-
lers and not on the nature of the perturbation. This was first recognised by
Yishveshvara [66] while studying perturbations of Schwarzschild black holes.
Since then, perturbations of asymptotically flat black holes have been anal-
ysed and these characteristic modes{called quasi-normal modes) have been

bund for some black holes (a detailed account can be found in [59], [58]).

Recently, there has been an interest in quasi-normal modes of
4dS black holes in light of the AdS/CFT correspondence [17]. There is
ome evidence to suggest that an off-equilibrium configuration (like a per-
irbed black hole or black hole formation from collapse of matter) in the
itk AdS space is related to an off equilibrium state in the boundary theory.
particular example is [67], where black hole formation by collapse of a thin
iell in AdS space is investigated. The shell is related by AdS/CFT duality

0 an off-equilibrium state in the boundary theory which evolves towards
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ilibrium when the shell collapses to form a black hole.

A quasi-normal mode governs the decay in time of a pertur-

black holes in various dimensions has been done in [51].

In this chapter, we compute the quasi-normal modes for the
AdS-Schwarzschild black hole in five dimensions using a superpotential ap-
proach. This is done for the perturbation of a black hole by a minimally
toupled scalar field, Time-independent normal modes of a scalar field in
the background of this black hole have already been analysed in the last
pter[sea also [20, 18]).

We notice, that for the (24+1)—d BTZ black hole, exact quasi-
ormal mode solutions can be obtained from the Klein-Gordon equation as
fhe black hole potential belongs to a class of exactly solvable potentials,

derived from a superpotential.

We propose, based on analogy with the results for the (2 +
|- d BTZ black hole, and on numerical evidence in five dimensions, that
ke black hole potential can be described by a potential series derived from
g superpotential. The problem is then exactly solvable and the form of
e quasi-normal mode wave function is thus known. This is used as an
nsatz to obtain the quasi-normal modes of the AdS; black hole. However,
iz numerical values of the mode frequencies do not agree with the earlier

J:I'iation in [31]. We comment on this discrepancy.

The organisation of this chapter is as follows: The next section
§a brief review of quasi-normal modes and their properties, and a short

immary of some numerical approaches to computing these modes.

The actual computation of quasi-normal(QN) modes for the

(w2



AdSs-Schwarzschild black hole is described in Section 2. First, the QN modes
;_r the (2 + 1) —d BTZ black hole are evaluated. Motivated by this, a
superpotential approach to finding the QN modes for the five-dimensional

‘black hole is presented and the mode frequencies obtained.

In Section 3, we discuss our results. We show that the be-
boviour of the modes computed numerically by us for small black holes is
onsistent with that expected from the differential equation obeyed by the
mode solutions. We mention salient points of two earlier papers [50] and
' 1] on the subject and comment on the discrepancy between the numerical
yalues obtained by us and those in [51]. We also state work in progress on

F‘ modes for the RN AdSs black hole, and black holes in other dimensions.

51 Quasi-normal modes and their properties

'uasi-normat modes of a black hole are characteristic modes associated with
lhe decay of any perturbation outside a black hole. In general, these modes
do not form a complete set, in the sense that the decay in time of a per-
furbation cannot be described completely in terms of them. However, they
dominate the decay at certain intermediate or late times. To compute these
modes, one studies the decay of an initial perturbation by imposing ingo-
houndary conditions at the horizon and (for asymptotically flat black
lioles) outgoing boundary conditions at infinity. This ensures that no grav-
ftational wave from the horizon or infinity disturbs the initial perturbation.
{o these houndary conditions, the quasi-normal modes are complex. The
e wave functions are non-normalisable in space but expounentially decay
me. Since the exact mode wave functions are not known even for the
warzschild black hole, there exist only numerical computations of quasi-
al modes. These are also very difficult to do as it is not easy to isolate
; purely ingoing wave near the horizon that is also outgoing at infinity.
lich & wave function blows up at these points and could be contaminated

by a small outgoing part at the horizon or a small ingeing part at infinity
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\where these parts go exponentially to zero. A unique boundary condition to
isolate quasi-normal modes has been given by Nollert [59]. The QN modes
are poles of the Green’s function corresponding to the wave equation obeyed

E:!  the perturbing field. Using this, the QN modes for the Schwarzschild and

dents in the series obey a three-term recurrence relation and depend on the
guasi-normal mode frequency. The frequencies then have to satisfy a con-
finued fraction relation. An interesting analytic approach to computing the
"!r modes is by approximating the black hole potential by an exactly solv-
ible potential (the Poschl-Teller or Eckart potential) [71], [72]. Ferrari and
llashhoon [71] have mapped the problem of QNMs of the Poschl-Teller po-
Ential to the bound states of the inverse potential and computed the modes,
[hese approximate the fundamental QN modes of the Schwarzschild black

iole well.

For the case of asymptotically anti-deSitter black holes, the
hole potential diverges at infinity. Therefore, as pointed out in [51], the
piasi-normal modes are defined to be those that are ingoing at the horizon,
it fall off to zero at infinity. It can be shown that this also agrees with
i¢ unique boundary condition of Nollert [59] for obtaining quasi-normal
odes. However, due to the divergence of the AdS black hole potential at
most of the methods deseribed above to compute the QN modes
mptotically flat black holes cannot be used directly. It is seen that a
smbination of two methods, inspired by the case of the (2 4+ 1) — d black
ey vields good results, i



5.2 Numerical computation of quasi-normal
modes

We first consider the case of the QN modes of the non-rotating (2 +1) — d
” black hole [6]. The non-rotating BTZ black hole metric for a spacetinie

with negative cosmological constant A = — is given by

dst = (NP d*+ (N)2 dr* +1? (do)? (5.1)
with
d
N = (=M + (5.2)
The horizon radius o = MI. We consider a massless scalar field in the

“hole background. The Klein-Gordon equation for the scalar field is

ritten using an ansatz for the field

1 .
= 7 x(r) exp(iwe) (5.3)
id by going to the tortoise coordinate r, where dr, = ;——r; The Klein-
flordon equation is
d?x 2 "
_dl"g + V[T}X = WX ij "”

T T®E T (9:5)
mce = —ry coth{ar.) where
_ 1 d{N?) VM
W =G e TS T (78}
M 3 1
V= — + ) (5.7)

41 " (sinh{ar.))? (cosh(ar.))?

e surface gravity of the black hole and is equal to 257 where T is the

@wking temperature.



This potential can be obtained from a superpotential [73] of

W = A coth(ar.) + B tanh(ar.) (5.8)
V = W? - (W) - 4% — B® — 9248 (5.0)
flere, from (3.7},
A= —a(lf241) (5.10)
o i
B=-2 (5.11)

As discussed in [73], the lowest energy state for the potential
2 — (W) has energy zero, so the lowest energy for the potential V is

{4+ B)*. The wave function corresponding to this state is

Bt = exp(-ﬁwn = (sinh(ar.))™ " (cosh{ar.))™P/"  (5.12)

orany of the two values of A and B in (5.11), the wave function (5.12) is not
malisable. It blows up either at the horizon or at r = oo (i.e r. = 0), We
ginterested in the quasi-normal mode solution that blows up at the horizon
-_':Is off to zero at infinity. This corresponds to A = —(3/2)a. Also,
=—7. The lowest energy (formally, since the wave function corresponding

S

ihis is non-normalisable) is then

E = —44 (5.13)

w o= —2ia (5.14)

Thus, for a given horizon radius ry = v MI, we can calculate

{h [ = 1. Then we can read off the value of the lowest quasi-normal
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The case of the quasi-normal modes of the AdS5-Schwarzschild

black hole is not so simple as the black hole potential is more complicated

‘than the BTZ case.

The metric for this black hole is

ds? = —(N)2d®+ (N)? dr? + 0% (ds)? (5.15)

with

N = 1+ (rf1)* = (ro/r)? (5.16)

where the black hole mass M is

o 3‘431“3

L 167Gs

(5.17)

and Ag is the area of a unit 3-sphere. The Klein-Gordon equation for the
ar field in the background of this black hole can be written, as belore, as
a potential problem. Using the ansatz for the field

342
fo= (%) x(r)Y (angles) (5.18)

nd by changing to the fortoise coordinate given by dr. = ;;‘F%, the Klein

Gordon equation is

d*y
~ 42 + Vir)x = w? oy {5.19)
where
15 3 9 N
Vir) = (? + 5 -+ tlTi) (1 + = r—gj (5.20)

Here, for simplicity, we have taken [ = 1. If the potential
uld be written as an exactly solvable potential in the r. coordinate, then
le quasi-normal modes could be obtained easily from the ‘lowest’ energy,
sin the BTZ case. As mentioned in the previous section, the fundamental

N modes of the Schwarzschild black hole were closely approximated by the




N modes of the Poschl-Teller potential. This is also an exactly solvable

ptential derivable from a superpotential [73].

We propose that the potential can be written as a series. de-

ived from a superpotential of the form

e i A, cqth{vzcxr;} (:

n=|

i
]
i

fhere as in (5.6), o is the black hole surface gravity,

d(N*) s -
= (1/2) Tgre) = e+ 2 (5.22)
s before, @ = 27T, where T is the Hawking temperature.
The potential derived from this series as in (5.9) is
(A% + nAaa) = An A .
5.2
:L: sinh*(nar.) i ".m=¥ﬂ$m tanh(nar.) tanh(mar.) (P-4
thas lowest energy
E = —(> A.)° (5.24)
=1

flie form of the potential is such that it goes exponentially to zero in r. as
'iii"+ and blows up as 1/72 as r. —+ 0 (or r — oc). This reproduces the
haviour of the black hole potential. We propose that this potential series
wactly equal to the black hole potential (5.20). Terminating this potential
s at finite order would then mean an approximation to the black hole
jotential in the spirit of the Poschl-Teller method for asymptotically flat
holes. The wave function corresponding to the lowest energy state is

EXP(_ffW}] = ﬁ[ainh{n.nr,]}—Anf[flaa (5.25)

n=l1

ansatz in the equation (5.19). However, we truncate the product in the
fisa upto some finite order. This is equivalent to truncating the potential

aes. We first write

x = 1 exp(—iwr.) (5.26)



This isolates the non-normalisable part of the wave function. We can rewrite
13.19) as an equation for ¢ as
d?h difs

21w

-z Tt ViR =0 (5.27)

Here, V' is the black hole potential (5.20). We now try to solve for w by

leking the ansatz

N A
h = H{l — exp(2nar.)) we (

n=1

on
[
2

The ansatz for i is substituted into (5.27) and the Lh.s of

6:27) is expanded as a series in (z — £, ) where

o = (5.20)

om (5.27), each term of the series is to be equated to zero. We first divide
) by . Then, we have

N N
— 4] Ak ) — AR AL~

m=1 m=1

W N
da (Y mAGKL) + 4iw (3 AnKn) + V. = 0 (5.30)
m=] m=]
where
h exp(2mar,) iy
Hom 1 — exp((2mar.) (5:31)
kpanding each of the terms in the Lh.s of (5.30),
Kn = ) cm(n) (@—=4) (5.32)
=0
K% = 3 du(n) (2 —ay)" (5.33)
n=0

Vo= Y Valz—ay)
=0

e



Bubstituting these expansions into (5.30), and equating the term of order

lz— 2. ) in the Lh.s to zero, we obtain

15 ﬂ ﬂlrgz"
a4 = AT E T+ ) (5.35)

Efiw = ﬂ'}l:;[{l}
Similarly, equating the term of order (z —z.)" in the L.h.s to zero, we obtain

arecursion relation for Apy.

—a(Tosi mAnen(N))  a(ENI mAnda (V)
(Na — w)en(N) (Na — dw)en(N)
(ZREL Twivanisne=n AmAncn(N1)ea(N2))

(Na — iw)en(N)
(Zhci Amem(N)) Viv
(Na — dw)en(N) A Na — iw)en(N)

An

+ fw

(5.36)

The A, coefficients are functions of w and of the hlack hole
rameters. The recursion relation for the A, is complicated, unlike the
@e of the method of partial fractions [70] applied to asymptotically flat
ick holes. There, an ansatz was taken for the wave function (removing its
mgular part) and it was expanded as a series whose coefficients obeved a
mple three-term recursion relation. From (5.27), as r. — 0 (i.e as r — o),
e two kinds of solutions are ¢@ ~ r_:*a and 1 ~ r.%. The first selution is not
;allisahle. We want the quasi-normal mode solution to vanish as r. — 0.
gwe choose the second solution. But from our ansatz (5.28) for the solution.

s implies a relation between the coefficients A,. More precisely,

XA

S — = —5/2 (5.37)
=1 T

Since the A, coefficients are functions of w, this relation gives
value of the lowest quasi-normal mode as a Tunction of the black hole
meters. This would then be an approximation to the actual QN mode

lack hole at order N. Thus, the asymptotic behaviour of the actual



Radius ry Re(w) Imfw)

1 0.6948 1.4648

2 1.0713 1.9817

5 2.4462 4.2642

10 4.8249 £8.3279
50 24,0159 41.3183
100 48.0251 82.6165
150 72.0358 123.9190
500 240.1150 413.0500
750 360.1720 619.5740
1000 480.2290 826.0980

Table 1.

solution is explicitly demanded of the ansatz. This is used to obtain the mode

frequencies from the relation (3.37).

We have used this method to calculate the QN modes at vari-
ous orders N. We find that as we increase NN, there is a convergence in the
mode frequency. The mode frequencies are given in Table |. They have been
-m_Jlated at order N = 18. Beyond this order, as (5.37) is complicated,
it becomes computationally time-consuming to find its roots. However, as
there is a clear convergence in the mode frequency as one increases the order
from NV = 1 and as the percentage difference between the real and imaginary
e ts of the mode frequency at order N = 18 and N = 17 is about 1% (for
ftew, 1t is 1.26%, and for fmuw, it is 1.09%), these numbers should be a good
f '_roximation to the QN modes of the black hole (more discussion on results

5 given in the next section).

T
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Figure 1. Convergence in I'n(w) as order N is increased, for r, = 10
5.3 Discussion of results

The lowest quasi-normal mode frequencies for different horizon radii r, are
_';ven in Table 1. As mentioned in the last section, there is a convergence in
i'j_u mode frequency as the order N is increased. The convergence curve for
r+ = 10 is given in Fig.1. The rate of convergence does not seem to depend

on the value of the horizon radius r,.

The real and imaginary parts of the mode {requencies are plot-

-'.as a function of ry for large r; in Fig.2a and Fig.2h,

It is seen that the both the imaginary and real parts of the

_;'5.. [requency are proportional to vy for large ry. The real and imaginary

=
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y a. It is seen that for both small and large r, the real and Hmaginary

iits of the frequency are approximately proportional to a. He(w) ~ 0.24 o

ides where the modes could be obtained exactly, we saw that they were
gportional to the surface gravity. Our numerical results seem to suggest
-'j,‘- ‘may be true even for the five dimensional black hole - at least for
ysmall and very large black holes. The surface gravity a = (2r, + =)
a is large for very small and very large black holes. We have
fied numerically that for very small black holes, the mode frequencies are

plarge, and w ~ # This behaviour of the mode frequency is expected -
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Figure 2b. [m(w) as a function of ry for large Ty

s can be seen from the differential equation (5.27) on changing to the inverse
r; coordinate z given hy (5.29). Then, the differential equation in these

cordinates is

—p d*y . i)
.2 2 9
(—rgae® + 2t +z }-E + (22 — 4rja® + 2iwz?) dx

(15 " E i QT‘E:_{:JI
4 4 4

b =0 (5.38)

low, we scale z as ¢ = ¢z, (where 7, = ﬁ) Now, (5.38) is

80



d*
(—eid’ =’ +aid + ) 55 +
. S v/
(2e3¢° — 423 ¢® —4¢° + ‘Etw:c.,.q?}d—?; —
i 322 ¢ i 9z2 ¢*
4 4 4

1
+ 2y = 0 (5.39)

Then we see that for very large black holes (small x4 approxi-
ation), x4 can be scaled away from (5.39) near the horizon in this approx-
imation provided w = ﬁ where C is a constant independent of z,. It can
ilso be checked that near the horizon, there are no solutions to the scaled
equation with €' = 0, except the trivial solution. This shows that w is

indeed proportional to ry (i.e ﬁ} for large black holes.

For very small black holes (i.e in the large z, approximation),
4oain x4 can be scaled away from (5.39) near the horizon provided w = D xy
yhere ) is a constant independent of z,.. Here too, it can be checked that
ear the horizon, there are no solutions to (5.39) in the large =, approxima-
fion with 0 = 0 {except the trivial solution). This implies that for small
lack holes, w is proportional to & (i.eto x4 ). This is also just a reflection of
the fact that a very small AdS-Schwarzschild black hole has negative specific

teat and actually resembles a Schwarzschild black hole.

We now examine the previous numerical work on QN mades

of AdS black holes in four, five and seven dimensions.

However, the numerical results obtained in [51] for the five
limensional black hole do not agree with our values for the QN modes. There,
solution to (3.27) is expanded as a series around the horizon in the

mverse radial coordinate r = 1/r. Using this, the Lh.s of (5.27) is expanded

if the black hole parameters and the mode frequency w. Therefore,

Y o= ) an(w) (z—z4)" (5.40)

i

':-mcrde frequencies are then the roots of the equation obtained by setting

he series to zero at x = 0. In actual computation, the series is truncated,
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_'g_ure 3a. Re(w) as a function of

nd the roots obtained. However, the mode frequencies seem to g0 0 Zero as
+ 0, which is not the behaviour expected from the differential equation.
e also wish to make a comment here on a numerical integration by Zhu

al [74] where it is claimed that the modes of the five-dimensional black

dS potential barrier at infinity is cited as the reason for this difference.
going into the details of the numerics, we wish to point out the
ing : The numerical analysis of [74] concentrates on the near-horizon

don. It is not clear then how such an analysis would reflect the properties

the AdS barrier at infinity. Assuming it does, it is natural to expect

o
=3
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Figure 3b. Im(w) as a function of &

that for any potential that behaves like the black hole potential at both the
orizon and infinity (i.e has a potential barrier of the same form as a function

7. and the same dependence on r,. at both ends), the quasi-normal modes
fould behave in a similar manner. But that js not true. The simplest

tractly solvable potentials similar to what we have used in our analysis for
ke BTZ black hole, but with a representing the surface gravity of this five
imensional black hole can be checked for this. The advantage is that for
lhem, the solutions can be found exactly. They do not reflect the small "4
viour found in [74]. Therefore, we feel that the numerical integration of
4} must be cross-checked by taking a test potential as suggested above, and

emg If it reproduces the behaviour of the exact solution, which is known.



A numerical computation of QN modes is tricky because of the
nature of the boundary conditions on the mode solution at both the horizon
and at infinity, The mode, which is ingoing (and not normalisable) at the
horizon, could be contaminated by an outgoing component which goes to
zero there. At the other boundary, the solution is required to go to zero.
In & numerical truncation, it could also be contaminated as @ — 0 (i.e as
r — co) by the solution that blows up at this end. Therefore. in a numerical
computation, it is essential to ensure the correct ingoing behaviour near the
horizon and the correct asymptotic behaviour of the solution that goes to
zero as r — oo. In our method, similar to the continued fraction method for
asymptotically flat black holes, we have a specific ansatz for the wave function
where the behaviour at both boundaries is explicitly present in the form of
the ansatz. The form of our ansatz ensures that there is no contamination
from the outgoing part at the horizon. At the other end as r — 0 (i.e as
T —+ o), we demand that the solution must fall off as +% at every order,

This ensures that there is no contamination from the solution that blows up
at this end.

We have presented a new approach to computing the quasi-
formal modes of AdS black holes. The novel feature of this method was an
ansatz for the QN mode wave function which was derived from a superpoten-
tial. This was made in analogy with the case of the three dimensional BTZ
]_::!a:l». hole where the modes can be obtained exactly and the wave function
is derived from a superpotential. The BTZ QN modes were proportional
o the surface gravity, The modes obtained by us numerically for the five
dimensional black hole are also approximately proportional to the surface
avity, More importantly, the modes obtained by us numerically are pro-
jortional to the inverse of the horizon radius for small black holes, reflecting
he well-known fact that these black holes are unstable. We have also shown,
tom some scaling properties of the differential equation obeved by the mode
utions, that this is indeed to be expected for small black holes. Worlk is
1 progress to compute the QN modes for AdS black Loles in four and seven

imensions, and also the corresponding Reissner-Nordstrom black holes us-



ing this approach. Some preliminary work on the five dimensional RN AdS

black hole seems to suggest that the QN mode increases with the charge of
the black hole.



Chapter 6

Conclusions

The last three decades have seen extensive progress in our understanding of
black hole physics. Recent developments like the AdS JCFT correspondence
have related properties of black holes to those of gauge theories, motivating
further research on black holes, particularly anti-deSitter black holes. How-
ever, some key questions still remain unanswered. The purpose of this thesis
has been to extensively study both classical and quantum aspecis of certain
anti-deSitter black holes. The quantum aspects have been studied with a
view to addressing the unanswered question of the origin of black hole en-
tropy and also of quantum corrections to the semi-classical entropy. The
classical aspects of AdS black holes studied in this thesis can be related to

non-trivial features of strongly coupled gauge theories.

[n the first chapter, we have studied aspects of black holes in
anti-deSitter spacetime, and addressed the issue of a description of black
hole entropy in terms of microscopic states. We have reproduced the semi-
classical Bekenstein-Hawking entropy of the Fuclidean BT7Z black hole in
the PRTV lattice gravity formalism in terms of states corresponding to var-
lous triangulations of the black hole manifold. We have obtained, in the
' second chapter, a closed form expression for the partition function of the

Euclidean BT7Z black hole, and seen that the next-order correction to the
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Bekenstein-Hawking entropy is logarithmic in the black hole area. A cor-
rection of —3/2log(area) was seen first for the Schwarzschild black hole in
the canonical gravity formalism [7]. We obtain the correction with the same

value of the coefficient, —3/2, as in [7]. The origin of this correction lies in

the medular invariance of the partition function under modular transformza.

tions of the toral boundary. However, this correction is not seen in the PRTV
lattice computation that we looked at earlier. This is due to the fact that
the partition function derived from the PRTV formulation does ot possess
invariance under transformations of the boundary. Recently, a generalisation
of the PRTV formulation for the case of a manifold with bou ndary has been
proposed in [30] where the partition function is invariant under piece-wise
linear (PL} homeomorphisms of the triangulation of the manifold, including
those of the boundary. These homeomorphisms can be described by three
elementary moves, the Pachner moves [75]. The proposed partition fune-
tion can be thought of as an invariant for a three-manifold with boundary,
under Pachner moves. This invariance under PL homeomeorphisms for the
triangulated manifold, for the case of the manifold boundary seems to he
the discrete analogue of modular invariance. It would be very interesting if
this could be proved. Possible future work could be also to obtain the BTZ
black hole entropy using this partition function, and to see if the logarithmic

correction to the semi-classical entropy is reproduced.

In the third and fourth chapter, we look at some classical as-
pects of black holes in anti-deSitter space. We stud ¥ the modes of the dilaton
field of supergravity in 4dS black hole backgrounds. The spectrum of a cer-
tain class of equilibrium modes of the dilaton field in the infinite mass limit of
:t-he Ad5-5chwarzschild black hole background reproduces the glueball spec-
Jdrum of three-dimensional QCD. This has been understood as evidence in
favour of the AdS/CFT correspondence. We have shown that the correct
self-adjointness analysis reveals a discrete infinity of equilibrium modes in
addition to those that correspond to the glueball spectrum. The interpre-
tation of these modes for the boundary QCD is not clear. In the chapter,

we have speculated on the possibility of it signifying the instability of the

o]
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QCD vacuum. There could however be another reason for these additional
modes. There could be a problem with the way the infinite mass limit has
been taken. This can be checked by following the spectrum of equilibrium
modes of the dilaton as the infinite mass limit s being taken, and seeing if
in the self-adjointness analysis, these modes still persist. This remains to
be done. If they still persist, then they would indicate the kind of vacuum

instability that we speculate about.

In the third chapter, we have also applied a self-adjointness
analysis to scalar fields in the background of other non-extremal black holes.
For these black holes, we seem to see a non-trivial time independent mode

localised at the horizon. Interestingly enough, there is no such mode for the
extremal RN black hole,

There are another class of well-studied modes of the scalar field
in a black hole background. These are the quasi-normal modes. The quasi-
normal modes of AdS black holes, wheich determine the fime-scale of decay
of a perturbation of the black hole, also describe, via the AdS/C'FT conjec-
ture, the time-scale of return to equilibrium of the Yang-Mills theory on the
black hole boundary. We compute, in the fourth chapter, the quasi-normal
modes of the BTZ black hole eractly and find that they are proportional
to the surface gravity. This is the first instance of an exact computation
ol quasi-normal modes for a black hole. We also present a novel method,
based on superpotentials, for computing these modes for A4dS black holes in
any dimension. We use the method to compute these modes for the five-
dimensional AdS-Schwarzschild black hole. Again, the modes seem to be

proportional to the surface gravity,

The computation of quasi-normal modes. particularly for the
BTZ black hole, makes many issues accessible for study. One of these is the
issue of black hole formation. Quasi-nermal frequencies are characteristic
frequencies associated with the black hole and determine the decay of any
perturbation of the black hole. The formation of a black hole from collapsing

matter is believed to be associated with a characteristic scaling of certain



natural order parameters during the collapse process. This scaling, first seen
by Choptuik [76] in the context of asymptotically flat black holes, is known

as Choptuik sealing and there is also a scaling exponent associated with it.

One could then ask the following questions :

o Are the quasi-normal modes of a black hole for perturbation by a scalar
field, for e.g, related to the Choptuik scaling exponent for the formation
of the black hole from collapse of scalar fields?

® The quasi-normal modes for a black hole are different from those of
a star. As a black hole has a horizon, it is necessary to put ingoing
boundary conditions at the horizon. This has a physical meaning, as
the black hole absorbs, and any perturbation will eventually decay.
The black hole quasi-normal modes are therefore complex. Can one
fellow the black hole formation process from the collapse of matter, and

erplicitly see the appearance of the complex quasi-normal mode as the
black hole is formed ¢

» Cuan the quasi-normal modes associated with gravitational perturbations

be related to the black hole entropy ¢ !

These questions have not been easy to address in the absence
of eract quasi-normal mode solutions. However, we have computed the quasi-
normal modes exactly for the BTZ black hole. Scenarios for the formation of a
BTZ black hole from collapsi ng matter have been well studied. These include
the formation of & BTZ black hole from the collision of two point particles
{7], from the collapse of a spherical dust shell [78], and from scalar field
collapse [79]. Therefore, the above questions could be addressed for the BTZ
black hole, (The third question however, does not have much relevance in
{2+ 1) dimensions as there are no gravitational waves,) Following our work.
@ relationship between the quasi-normal modes and the Choptuik scaling

exponent for the BTZ black hole has already been found [80]. However, the

!Discussions with R. Sorkin on this issue are gratefully acknowledged.
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second question relating to the appearance of the quasi-normal mode in black

hole formation needs to be answered.

These questions are also of interest as the AdS/CFT corre-
spondence relates any process in the bulk space, like the formation of a black
hole, to a corresponding process in the boundary. There has been some work
in this direction [67, 81, 82], but answering the above questions could lead

to interesting interpretations of the corresponding process in the Yans-Mills

theory on the boundary,

In conclusion, the thesis has been a study of certain aspects of
black holes in anti-deSitter space. This study has been used to successfully
deal with issues related to black hole physics, and also to predict certain
features for strongly coupled gauge theories related to the black holes via the
AdS[CFT correspondence. The work in this thesis has also made it easier
to address certain questions in black hole formation. However, many more

issues remain to be resolved. We hope to be able to return to them in the

future,
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Chapter 7

Appendix 1 : 67 symbols

7.1 Definition and Orthogonality

This appendix is a short summary of some important results and proper-
ties of the Wigner 67 symbols. More details and useful references for these
can be found in [83]. The Wigner 67 symbols are related to the coefficients
of transformations between different coupling schemes of three angular mo-
menta. Angular momenta ji, j,, 73 may be coupled to give a resultant angular

momentum j and its projection m in three ways:
) i1 +Jd2 =Gz, Jiz+Jjs=7,
) ja+Ja=Jas, Ji+Jaa=17,
II) 51 +ja=j1ss Jiz+J2=J.

Let us consider first the coupling scheme 1. A state

l7172(712)J23m > can be written using the Clebsch-Gordon coefficients as

JJII_?:EUI:ZJ.jﬂjm = Z leTmujam;G;:E::;:mg |.1"-1”?-1=J'2m21j3”?3 >. (7.1)

Ty Mg, Ty

Similarly, for the coupling scheme I, a state |71 7205(fazy g >
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is written as

17203 F23)im >= > Cf,mm.j,:,mn_cﬁi?;f:m]jlml_-.}':rmzdz?”-a}- (7.2)

Ty Tz, Ty
Then the Wigner 65 symbal is defined by the relation

< hdaldiz)iagm|jigaga(gss)i'm’ >= 8,58 0m(—1 )iy + G2 + ja + i)

ETTEE Ilt) galt) Ja(t) :
\/(?}121*1}{2}234-1} {jq{f] is(8) JG“}} (7.3)

Thus, the 67 symbols can be written in terms of the Clebsch-

Gordon coefficients

fan tzm ~3'm’ j33trg s h fl+as i3+
Ecjn*ms:da?"a lem:;:mn ;Iﬂ'lizamﬁscj:;ziaama T E.J'J"Emﬂr":_ljhﬂ TR
V@i + 1) (2 +1) { 2 2 B L7y
Ja 15 s

here the sum is over My, Mg, Miz, Moy while m and m’ are

fixed.

The arguments of the 65 symbol are integer or half-intezer non-

negative numbers. They obey orthgonality and normalisation conditions like

> V(21 +1)(22s + 1) {J & 4”} {*” it }=ﬁm;3 (7.5)

g Ja 3 jz.‘a ja j 153

7.2  The 6 symbol in Terms of a Finite Sum
The 67 symbols { ; 2 ;: } vanish if any of the triads (abc), (ede), (aef)
and (bdf) do not obey triangle inequalities between themselves. If they do,

then one can write an expression for the 6 7 symbol in terms of a finite sum.

First we define
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(@a+b+e)(a—b+c)(—atb+o)]?
(a4+b+c+1)!

Alabe) = { (7.6)

Then, the 67 symbel is given by the following formula -

{ e ;}=.ﬁ{abc}&{cdﬁl-ﬁ(afﬂﬂ‘{h‘m

(=1)"(n + 1)!
xz{n~a—b—c}!(n—c-—d—e)!fn—b-—d'—f]![a+b—|—d’+r:—n}'.
x{u-|—c+d'+f—n}l|[b+c+e—|—f-—n)! (7.7)

m

Here, the sum over n is over all integer nonnegative n such

that no factorial in the denominator has a negative argument.

Using this formula, one can obtain an asymptotic expression
for the G7 symbol valid when three of the spins are large, ied = e = f =
=1

=]
Lo a]

{ [ b c }m {_l]c Ecﬂ { J
R R R 2R(2c+1) '

where C,, is the Clebsch-Gordon coefficient.

7.3 SU(2),— 67 symbols

To define SU(2), — 67 symbols, we first define g numbers, A discussion an
g numbers and their relation to quantum groups is found in [84]. In this
appendix, we merely state the expression for the SU(2); — 6F symbol in

terms of a finite sum as before.

The g-number of an integer n is

nfi _ —nf2
q i -
[n] = g2 — 172 (7.9)

The factorial of a g-number is defined in the usual way, i.e ]! = [n][n —

1]....[2)[1].
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We are interested in the case when g = exp 2, where k is an

mteger. We can define the g-analog of (7.6) which is as follows :

| [atb+clla—b+dl[—a+b+d]?
Aglabe) = la+b+ec+1]

(7.10)

This formula is similar to (7.6) except that ordinary numbers
are replaced by ¢ numbers. Again, (7.10) is defined only when the triangle
inequalities a b+ ec, b<a+c.c <a+b are satisfied; in addition, there is

a restriction that'a + b+ ¢ is an integer that is less than or equal to k.

Now we can write the g:analog of (7.7) which is

{{:: 2 ;} = Aglabe)Ag(ede) A, (aef) A, (bdf )

. (=1)7[n + 1]!
= [[n—a—b-—c]l[n—c:—d—e]![n—b—d—f]![a—l—b—l—d+e-—~n]!
x[u+c+d+f—n]![b-:—c—]—e—!—f—n]!] (ZEL)

For k large, we see from the expréssion (7.9) that the g-number
tends to the ordinary number. Therefore, the S U(2),—67 symbol also reduces

to the ordinary 6; symbol.



Chapter 8

Appendix 2 : Self-adjoint

operators

In this appendix, we summarise some useful definitions and results imvolving
self-adjoint operators. Proofs of the results and other details are found iy
[61. 62] .

Adjoint of an operator :

A discussion of self-adjointness for an unbounded operator
first requires us to define the domain D(®) of O@. We will only be interested
in operators that are defined on domains that are dense in the Hilbert space.
This allows us to define the Hilbert space adjoint of an operator (& on a
Hilbert space H and also the domain of the adjoint D(O). If 2,y ¢ H, then
the adjoint @ of the operator © satisfies (z.0y) = (O a.y), where (.,.)

is the inner product on the Hilbert space.

Definition of a Hermitian operator :

A densely defined operator @ on H is called symmetric, or
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Hermitian if for all ¢ € D(0), O¢ = O%¢ and D(O) C DO ). This
is equivalent fo the more familiar condition (@¢, 1) = (¢, Ou) for all
P, peD(O).

Definition of a self-adjoint operator :

O is self-adjoint if and only if @ is Hermitian and D(©Q) =
D(O").

Criteria for self-adjointness - Deficiency indices :

One can check for the self-adjointness of a Hermitian operator
by studying its “deficiency indices”, which are defined as follows. Let o =
Ner(i + O°), where Ker(X) is the kernel of the operator X. The integers
ny = dimm Ky are the deficiency indices of the operator. If ny = 0, then O
is self-adjoint. If ny. =n_ =n # 0, then @ can be extended to a self-adjoint
operator. Different self-adjoint extensions of the operator are in one-to-one
correspondence with unitary maps from K4 to K_, that is, they are labeled by
a U(n) matrix. A self-adjoint extension involves adding appropriate vectors
to D{Q) such that @ remains Hermitian, and now, DO} = D(O"). If

n4 7 n_, then this cannot be done, and © cannot be made self-adjoint.

Properties of self-adjoint operators :

o All eigenvalues of a self-adjoint operator are real.
* Eigenvectors belonging to different eigenvalues are orthogonal.

» The eigenvectors form a complete set.
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