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Would you tell me, please, which way [ ought to go from here?

"That depends a good deal on where you want lo get to,” said the Cal.

"I don’t much care where-" said Alice.

"Then it doesn’t matter which way you go,” said the Cat.

"—so long as I get SOMEWHERE,” Alice added as an explanation.
"Oh, you're sure to do that,” said the Cat, "if you only walk long enough.”

Lewis Carroll, *Alice in Wonderfand’,

Vi



Abstract

In this thesis, I study some aspects of coarsening and the associated notion of
Persistence in a few well-known Nonequilibrium processes. The thesis is divided
into 5 chapters. In the introductory chapter, I briefly discuss some salient features
of coarsening systems in general and also list some of the well-known models which
we shall come across in the rest of the thesis. Coarsening is a rather well-studied
phenomena in general, while the notion of Persistence and the associated Persistence
exponent are recent entrants to this field. Persistence and its interplay with the
underlying coarsening process are the subjects of Chapters 2 and 3, and also provides
the link to Chapter 4, where we study fluctuating interfaces. In Chapter 5, the main

results presented in this thesis are summarised.

Accordingly, this thesis may be broadly divided into two parts. In the first part
of the thesis, covered by Chapters 2 and 3, we study the time evolution of the
spatial structure of the persistent region in several standard models of coarsening
in different spatial dimensions. The most important result here is the formation of
a scale-invariant pattern in the distribution of persistent regions in space. Chapter
2 deals with a rather detailed study of the problem in d = | Ising model which
coarsens only at T = 0. In Chapter 3, we extend our study to higher dimensions
and non-zero temperatures and some other relevant models. The universality of
the phenomenon is emphasised here. In Chapter 4, we take a clue from Persistence
studies and investigate whether a fluctuating interface may be viewed as a coarsening
system evolving towards a phase separated steady state. We find that this assertion
is indeed true, but the phase separation is found to be different in several ways from

that found in more conventional systems.
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Chapter 1

Introduction

1.1 Overview and Purpose

Stochastic processes in Physics needs no introduction(1]. Any time dependent phe-
nomena in a thermodynamic system, with ~ 102 individual molecules in it, nec-
essarily has some amount of randomness in it. For example, consider a volume of
gas with fixed volume and in thermal equilibrium with an external heat bath, Its
pressure and temperature fluctuates in time in a random fashion. about a mean
value which is determined by the equation of state, Let us consider a fluctuating
thermodynamic variable z(¢) with zero mean and variance @ =+/{z%). In thermo-
dynamic equilibrium, the two-time correlator o(t,t') = {z(t)z(t')) has a stationary
form (ie., it depends only on the time difference T = |t = ') and typically decays
exponentially at large T, ¢(0,T) ~ Q%~*T[2]. The time scale + ~ 1/ gives the

typical duration of a fluctuation.

However, the situation is different in systems far from Equilibrium, and in situ-
ations where the variance @ itself diverges with time. To illustrate the latter case,
let us consider one of the simplest and well-known examples of a stochastic pro-
cess, a Brownian particle in a gas[3). The particle is constantly bombarded by gas
molecules from all directions, with varying momenta. The motion of the particle as
a result of these bombardments is almost perfectly random. It is well-known that

over large enough length and time scales, this random motion is well-represented by




a random walk[4, 5], a mathematical model where, at every instant of observation,
the position of the particle is incremented by a fixed amount in a randomly chosen
direction. For simplicity, let us now consider a l-dimensional random walker, whose
position at time ¢ is denoted by 2(t). The equation of motion of such a walker over

long time scales may be written as

dz{:} = n(z,t) (1.1)

where 5 on the RHS is a random variable called the noise. This term represents
the net displacement of the walker between two consecutive observations, From the
preceding arguments, it is clear that the mean value of 1 over sufficiently large num-
ber of observations would be zero, and its correlator should vanish bevond a certain
microscopic time scale. Further, the variance of 1 is determined by the Fluctuation-

Dissipation Theorem[1, 6]. We summarize these conditions in the following set of

equations.

W) =0 ;5 ((t)n(t")) = b(]t — 1)) (1.2)

From the linearity of the equation of motion, it follows that the mean value of
the position of the randem walker is time-independent and the RMS variation Erows

linearly in time, ie., (2(t)) = 0 and (2?(f)) o ¢. It is also straightforward to compute

the normalized correlator

st 1) = LE=(E)
(3N =2 (1))
for the random walk. It may be shown that in this case, g1, t') ~ (t/t')%. In this
case, the correlator is not stationary, and does not decay in any finite armount of
time. The long-ranged correlation in this case is a measure of the tendency of the
variable z(t) to make long excursions from the mean value over large time scales,
This may be further quantified by a very simple question: What is the probability
that z(t) does not return to the starting point till time ¢ 7 In other words, consider
N random walkers, all starting from the origin at ¢ = 0. What fraction P{t) of

walkers remain on one side of the origin till time ¢ ? It is obvious that this fraction



should decay with time, but the important point is that it can be shown to decay

only as a power-law at large ¢ : P(t) ~ t=1/2,

The quantity P(t) is usually called the Persistence probability, The problem of
Persistence falls in a certain class of similar problems in stochastic processes, called
First Passage problems. One may also generalize the above definition and consider
the probability P(ze,t) that the random walker does not cross a certain (arbitrary)
point zq till time ¢. In this case it may be easily shown that P{zp. t) ~ z50~12, We
note that the exponent of time does not change from the previous expression. In
general, for a given stochastic process X (1), one may consider the probability P(t)
that X(t') > X, throughout a time interval [0,t]. In several processes of physical
interest, which includes a large class of Non-equilibrium processes, this quantity is
found to decay as a power-law in time, ie., P(t) ~ t=°[7]. The exponent @ is called

the Persistence exponent for the stochastic process under consideration.

The random walk considered above is one among a well studied class of stochastic
process called Markov processes[4]. A Markov process is defined as follows. Consider
a stochastic process X (¢) at time £. Let X(t) = Xy. Now, consider the probability
that X(f + dt) = X,, where dt is the time interval between two consecutive obser-
vations. If this probability is a function only of X, and X, , and does not depend

on the values of X at any previous instants, X (¢) is a Markov process.

We next show that for a Markov processes which also has a Gaussian probability
distribution at all times, it is possible to have an exact expression for the Persistence
exponent #[7]. To illustrate this case, we note that the random walk defined by
Eq.1.1 is Gaussian at all times if the noise 5(¢) has a Gaussian distribution. The
two-point correlator of Eq.1.1 is given by (X(1)X(t')) = min(t,t"). Now let us
consider the normalized process X (t) = ﬁf:ﬂ}ﬁ and consider a new time variable
T = log(t). Then (X(T)X(T")) = f(r) = e where r = |T'— T"|. We note that
with the log-transformation, the correlator depends only on the difference T =1,

and hence the process has become stationary.

The correlator written above for the randem walk is actuallv a special case of a
4§ I

Ll = - . "
more general form: f(7') = e=*7 which may be derived from the Langevin equation



for a general stationary Markovian process:

s

d
{f_ =—-J‘-;.}{+I’]‘ “3}

When the noise 7 is taken from a Gaussian probability distribution, the distri-
bution of X(T) also remains Gaussian at all times, in which case X(T') is called a
Gaussian process. Let Py(T') be the probability that the stationary Markov process
does not cross its initial starting point X(0) till time T, Then it is known exactly
that Po(T') = 2sin=' f(T)[8]. To find the late time behaviour, we expand sin~1(z)
around = = 0. After doing the inverse transformation T — t, we have the final

result Py(t) ~ ¢~ at large f, so that for this process, § = X,

We now consider another example, which is not Markovian. This is the problem

of a randomly accelerated particle in one dimension. which is represented by the

following equation.

d*
“8) et (1.4

Unlike the random walk problem studied before, this problem does not fall into
the class of Markovian processes (However, it is Gaussian if n is Gaussian). The
computation of Persistence probability in this problem is non-trivial. The exact
solution is P(t) ~ ¢='4[9] so that § = 1 in this problem. In a later section of
this chapter, we will review some approximate analytical methods that has been

developed to study similar non-Markovian processes,

The two simple examples we had considered so far in this section dealt with
a stochastic variable that only depended on time. At this moment, it is natural
to extend our discussion to Persistence in spatially extended many-body systems,
where the relevant stochastic variable is a function of space as well as time. It is clear
that most Non-equilibrium processes studied in Physics comes under this class. We
will explicitly discuss some of the important systems studied in this cantext, later
in this chapter, For a general discussion of the features associated witl Persistence

in such systems, let us consider a space and time dependent field ¢(x. 1) whose time



evolution at any point in space is also dependent on the field at neighboring points.
In such systems, Persistence probability P(t) is typically defined as the probability
that the field ¢(x,t) at any point X remains above a certain reference level dy till
time ¢. This definition, of course, requires an ensemble of similar systems. In
practice, P(t) is computed as the fraction of sites % in the system where the ¢ > dq
throughout the interval [0 : ¢]. This also gives rise to the notion of persistent and

non-persistent sites in such a system, whose definition is obvious from the preceding

discussion,

We now briefly describe some of the ‘many-body’ stochastic processes studied in

Persistence. The simplest system is the Ising ferromagnet, whose Hamiltonian is

H=-J3 o0 (1.5)
{17}

where ¢ = +1 are the Ising spin variables and J > 0. In general, the Ising
model has two phases: the paramagnetic phase at high temperatures where the
spins randomly take the values &1 and the low temperature ferromagnetic phase
where the configuration is predominantly ‘up’ or ‘down’. The Ising model does not
have any ‘intrinsic’ Hamiltonian dynamics, but the spin configuration can evolve
by trading energy with an external heat bath. This purely dissipative dynamics
is implemented in simulations usually through single spin-flip algorithms, where
one spin is randomly picked at a time, and its state is changed with a certain
probability (For a discussion of some of the common schemes, we refer the reader
to Appendix A). The randomness imitates the action of the fast degrees of freedom,
the heat bath variables like electrons or phonons which couple to the spins. The
fime evolution of the state of any single spin is a stochastic process. Moreover, the
time evolutions of different spins are coupled, in general, because of the interaction

between neighboring spins.

When an Ising ferromagnet is quenched from high to low temperatures, spins will
start to realign themselves in the process of evolution of the system from paramag-
netic to ferromagnetic (equilibrium) state. This arrangement of spins into domains

of up and down phases is called coarsening of the system. In this problem, one may



consider the effective process at any single site, and ask for the probability that the
spin at that site remains in the same phase for the time interval [0 : t]. This is the
Persistence probability in the problem. A large amount of analytical and numerical
effort has been devoted to the computation of the persistent fraction in kinetic Ising
model and several other well-known Non-equilibrium stochastic processes. It has
been fairly well established that for a large number of systems, Persistence follows a
power-law decay and the exponent is, in general, non-trivial, and not related to the

other exponents usually used in the characterization of a Non-equilibrium process.

In spatially extended systems with mteractions, the time evolution naturally
has an effect on the spatial correlations in the system. This is very obvious in the
process of domain growth in coarsening systems, which occurs through the collective
behaviour of spins. It is natural to enquire if Persistence decay is also mirrored in the
spatial organization of the system in some way. The most direct way to see whether
this happens, would be through very simple and direct questions, like, what is the
probability of finding a persistent site at a distance r from another persistent site
at time ¢ 7 This is the approach we shall take in this thesis, and as we shall see
in detail in later chapters, spatial correlations associated with Persistence contain
very rich and non-trivial features. In particular, we discovered dynamical scaling
and scale-invariance in the distribution of persistent sites, which indicates that the

Persistence decay at different points in space are very strongly correlated.

Before we get into more details on spatial correlations, it is worthwhile to un-
derstand in some more detail Persistence in a simple many-body system. The hest
choice to start is the one-dimensional kinetic Ising model. This model coarsen only
at zero temperature. We start from a random initial distribution of + and — spins
on a l-dimensional lattice. The system is now quenched to T' = 0, ie., assumed
to be brought into contact with a heat bath at zero temperature. The spins are
now updated one by one according to the Glauber dynamics. In this rule, a spin
always flip if the resulting energy change AE < 0, never fiips if AE > 0, and flips
with probability 3 is AE = 0(Appendix A) . This dynamics is exactly soluble in
one dimension. It is known that the mean size of domains L(t) ~ t7, and the equal

time pair correlation of spins has the scaling form (Foos) = g{;"};] where the scaling



function g(z) is exactly known[10].

Let us now consider the Persistence properties of this model. The Persistence
probability has been exactly solved for by Derrida et. al, and it is known that
P(t) ~ 177 where the exponent # has the non-trivial value 3/8[11}. The derivation
of this result is a real tour de force in Mathematical Physics, and is not particularly
illuminating. We try to motivate this result through a toy model[12, 13], which,

although is a poor approximation to the original problem, captures the right physics.

It is well-known that the Glauber dynamics in 1D Ising model can be mapped to
a reaction-diffusion problem. This is because the interfaces between + and — spins
in the Ising problem, act like a set of independent random walkers under the Glauber
dynamics, which annihilate each other when two of them meet. The number of these
random walkers n(t) at any time ¢ is simply the inverse of the mean domain length,
and so n(t) = L(t)"" ~ t~7. Consider now the spin at the origin, The probability
that this is persistent at time ¢ is P(t), then the probability that it flips for the
first time at ¢ is P/(t)dt. A spin will flip only when an interface moves across it.
The probability that an interface which was at a distance = at { — 0, will reach
the origin for the first time between ¢ and ¢ + dt is g(z,t) ~ Zre T [4]. We
now make the assumption that the interfaces, instead of annihilating upon contact,
randomly disappear with a certain rate so that their average density still decays like
n(t). Thus each of the random walkers survive up to time ¢ with probability n(t).
This is clearly an approximation, as it neglects the correlations in the positions of

the walkers arising from the annihilation. Under this approximation, we find that

P'(t)dt = —n(t) P(t)dt f_m dzq(z, 1) (1.6)

After substituting the expression for g(z,t), we find P(t) ~ t~7, where f = {—E
for this toy model. We note that the crucial ingredients that produce the power-law
decay in P(t) are the diffusive motion of interfaces, and the overall decay in their
density. While the former originates from the stochastic nature of the time evolution,
the latter reflects the domain coarsening process. We conclude that Persistence

decay is intimately related to domain COATSeNing process.



Before we start a detailed discussion on the models studied in this context, it is
worthwhile to have a look at an interesting experimental study of Persistence[14].
This study, which was the first experimental study in Persistence, involved the study
of growth and coalescence of droplets of a liquid that condense on a substrate {the
so-called breath figures). It was observed that, in this case, the fraction of area in the
substrate that has always remained dry up to time ¢ decays as a power of time, with
exponent § a2 1. It was further noted that the boundary of this persistent region
with the rest of the substrate has a fractal distribution over small enough length
scales and has a homogeneous distribution over larger length scales. The fractal
dimension measured was nearly d; ~ 1.22. The fractal nature in the distribution
1s a signature of non-trivial correlations in the spatial structure of the persistent

region. The study of similar correlations in some simple models is one of the main

themes of this thesis.

The interplay between Persistence and coarsening observed in the lsing model
also led us to explore this connection in a system which is not a priori related to
coarsening systems. The system we have is a fluctuating interface, like, for example,
the interface between a liquid and its vapour, or a thin film grown by deposition of
particles on a substrate. The dynamics of such an interface is usually represented

by coarse-grained mesoscopic equations of the form

%z.?-_[h}-l—?}{r,t} (1.7)

where the function F[h] is determined by symmetry requirements and the mech-
anisms of growth and relaxation[15]. The noise term 7 represents the stochastic
element in the growth, which could be thermal fluctuations or a random deposition
event. The statistical mechanics of fluctuating interfaces has undergone extensive
study in recent times and is one of the most advanced topics in Non-equilibrium

Statistical Mechanics[16].

The Persistence properties of fluctuating interface has also been studied in fair
detail[7]. The probability P(t,#y) that the height at any given point on the interface

remains above or below its ‘initial’ height h(x,t = ty) throughout the time interval



[to, ?] is defined as the Persistence probability. Analytical and numerical results have
shown that for several classes of interfaces, this probability decays with time as a
power-law, and the associated exponent, in general, is not simply related to the
other exponents that are usually used to characterize surface growth. The question
that we asked here was whether such an interface could be viewed as a coarsening
system, evolving towards a phase separated stead y state, In Chapter 4, we present

the results of our investigation into this problem.

Finally, why is Persistence important 7 As we had explained in the beginning of
this chapter, Persistence has provided us with more information on even the most
well-known processes, like, for example, simple diffusion. The Persistence exponent
has already found its place among the family of similar exponents that characterize a
Non-equilibrium dynamical process. The study of spatial correlations in Persistence

has shown that there is much in Persistence that still remains to be understood,

In the coming sections of this chapter, we briefly discuss the basic scaling phe-
nomenology of coarsening processes and the connections to Persistence. We present
a brief review of some of the important and widely applied techniques used to com-
pute the Persistence exponent. The problem of spatial correlations is a vary natural
offshoot of these studies, and we use both analytical and numerical techniques to
study this problem in some detail. Brief accounts of our work presented in thesis
also appears alongside the general discussion. In the last section, we show that the
problem of spatial correlations is one aspect of a more general problem, the inter-
play between Persistence decay and the underlying coarsening process, This aspect
is explored further, and we show that a fluctuating interface may actually be viewed
as a coarsening system, but with features which are, in general, different from most

of the conventional coarsening systems.
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1.2  General Review of Coarsening and Persis-

tence

1.2.1 Domain growth in coarsening systems

The time evolution of an Ising ferromagnet following a quench from high to low
temperatures is one of a class of similar processes called coarsening[17]. Coarsen-
ing systems are ubiquitous in nature. The time evolution of such systems from
disordered to ordered phase has been one of the most well-studied processes in Non-
equilibrium Physics. Examples of systems undergoing coarsening range from soap
froth to binary alloys to galactic density distributions, Generically, coarsening is
characterized by the growth of homogeneous domains of a single phase (in the Ising
model, + and — spins) from a disordered initial condition (Fig. 1.1). In many cases,
the typical domain size grows as a power-law with time, ie., L(t) ~ t}/*[17]. The

exponent z is the dynamical exponent of the Coarsening process.

In this section, we briefly discuss the basic phenomenology of coarsening dynam-
ics. A typical problem studied in Phase Ordering Kinetics is the phase segregation
of a binary fluid. Consider a binary fluid AB which contains two species of fluids,
A and B. At sufficiently high temperatures, the entropy dominates the energetics
and the most probable state of the system is a completely mixed state. A standard
method employed to segregate the species is to quench the system to low tempera-
tures. If the final temperature is less than the critical temperature T, of the mixture,
the fluids will phase segregate in course of time. This process is often called spinodal
decomposition, which is actually a term used in metallurgy in connection with phase
segregation of a binary alloy. In the late stages, one may identify three kinds of

regions in a typical configuration of the system:

e Homogeneous domains, rich in one of the species, A or B, whose characteristic

length scale £(t) ~ t%[lg]' and

o The interface region which is the boundary between an A and B type of

domain, with a finite width £ < £(t).
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(A) (B)

Figure 1.1: Snapshots of coarsening in 2D Ising model on a 256 x 256 lattice at times
t = 50 and ¢t = 150. The domain structure looks statistically self-similar, except
for an overall scaling. This idea is quantified as the dynamical scaling hypothesis,

which we discuss in the text.

In the binary fluid system, the amount of A and B material is separately con-
served, unlike a ferromagnet where a single spin can flip sign locally. In the latter
case, the absence of a conservation law makes the domains grow faster, resulting
in a faster growth law of domains, £(t) ~ ¢7. The dynamics in the two cases are
classified as conserved and non-conserved respectively. In the rest of this thesis,

unless explicitly stated, we shall be dealing only with non-conserved dynamics.

"The order parameter field in a phase ordering system may be discrete (eg. Ising
spin) or continuous (eg. density difference in binary alloys), and in general, may
be a vector (eg. Heisenberg spin) or even a tensor (Nematic order parameter in
liquid crystals). We shall be dealing only with scalar order parameter, and it is
often convenient to work with continuous variables. The Ising Hamiltonian defined
in Eq.1.5 may be transformed into a continuum Free Energy functional through the

Hubbard-Stratanovich transformation[6] followed by taking the continuum limit.

A .
F(¢) = [ d'x(5IVA + V(9) (18)

where ¢(x,1) is a coarse-grained magnetization. which is the average of a; over a

(mesoscopic) length scale | (a < | < £(T) where £(T') is the equilibrium correlation

-
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length and a is the lattice spacing). The potential term has the form Vig) =
59 + £¢%, where r « (T — T.), T, being the ((mean-field) eritical temperature.
Clearly, if T < T, the potential has a double-well form, with minima at :\/E
The gradient term in the Free Energy functional is very important, and takes into

account the energy cost in having domain walls in the system.

Like the Ising model, the continuum model also has no inertial dynamics, since
there is no time-dependent term in the Free Energy functional. However, one may
write effective equations at a coarse-grained level to describe the dissipative dynam-
ics of the system, when brought into contact with a heat bath. In the absence of

any conservation laws, a suitable coarse-grained equation of motion is of the form
(see Fig. 1.2)

do SF
where I is a friction constant and 5 is the thermal noise, which is usually assumed

to have zero mean, uncorrelated in space and time and variance fixed by Fluctuation-

Dissipation Theorem|6].

(n(x, t)p(x', 1)) = EFTJ'i{x —x")8(t =t (1.10)

Eq.1.9 is often called the Time Dependent Gingburg-Landau(TDGL) equation.
The TDGL equation may be used to describe the ordering dynamics of the system
following a quench from a random initial condition to a temperature T < T.. In this

case, it is supplemented by random, uncorrelated initial conditions in the ordering
field, (4(x, 0)¢(x,0)) = Ad(x — ')

1.2.2 Dynamic scaling hypothesis

The most commonly used probe for the study of a coarsening process is the
equal-time pair correlation function C(r,i) = (¢(x,¢)d(x +r,t)) where the an-
gular brackets indicate an average over initial conditions. The Fourier Trans-

form of C(r,t) is the equal time Structure Factor S(k,t) = (dwlt)o-i(t)) where

-
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Figure 1.2: The picture shows the standard double well potential for a phase separat-
ing system. The system, starting from a disordered initial condition (corresponding

to ¢ = 0 Is sliding down the potential valley, with a speed proportional to the local
driving force.

¢k{i] s L_d”frﬁ{x,i]e_"’k‘rddl‘.

The dynamic scaling hypothesis states that at sufficiently late times ¢, the equal-

time two-point spin correlation in a coarsening system satisfies the dynamic scaling

form:

C{F,i]=f(3%) ;T ELD (1.11)

where the conditions on r and ¢ define the scaling regime and £ and ty represent
some microscopic length and time scales. £(t) is the characteristic length scale of
the coarsening process which typically grows with time as a power-law; L(t) ~ {1/,

The exponent z is the dynamical exponent of the coarsening process.

For a system of finite linear size L, in thermal equilibrium, the pair-correlation
function satisfies Finite Size Scaling (FSS): C(r, L) = f (EJ for r = €, where £ ia now
the equilibrium correlation length. It is also important to look at the unequal time
correlation function C(r, ¢, ') = ($(x, t)d(x + r, t')) which, in the limit £(t) 3 L{t"),

has the scaling form

vy (LAY .
f.-{f‘,f,f}__(—l:'?}—) f(m) [1.12]
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where A is a new non-trivial exponent[19]. From C(r,t,t"), we can also define
the autocorrelation function A(t) = C(0,2,t'), which has the scaling form: A(t) ~
(ii;]j The exponent A is called the autocorrelation exponent[19]. Conventionally,
the dynamical exponent z and the autocorrelation exponent A was considered to
define the universality class of a coarsening process. The universality class is usually
determined by the spatial dimension d, the symmetries of the order parameter,
conservation laws and the nature of the correlations in noise (ie., whether long
range or short range). In particular, the exponents are usually independent of the
temperature of the heat bath, and the details of the dynarnics (Monte Carlo methods
and the TDGL equation should give identical results). The persistence exponent is a
new addition to this set of Non-equilibrium exponents, and therefore it is important

to investigate its universality properties.

It is possible to make some general statements about the short distance be-
haviour of the pair correlation (equivalently, the large k behaviour of the Struc-
ture Factor). For later reference, we briefly present these arguments here. We
note that in the late stages of phase ordering, the system has a few large domains,
with typical length scale ~ L(t). Consider the two-poin spin correlation function
Clr,t) = {@(x,t)@(x + r,t)), where the angular brackets denote average over all
starting points X in a single spin configuration. Clearly, C(r,t) = =1 if r is in-
tersected by a domain boundary (with typical width £, we are however considering
only r 3> £) and 1 if it is not. If r < £(t), the probability that r will be intersected
by a domain boundary is py ~ F;'ﬁ and the probability that this doesn’t happen is
pp=l-p. Thus C{r,t)=1—-2p, = 1— 27 for zig <€ 1. In Fourier space, this
implies that

]

S(k,t) ~ E{lﬁk“{f’“} (1.13)

This result is known as Porod law[20], and is valid quite generally for coarsening
systems with scalar order parameter. Note that the result does not depend on

whether the order parameter is conserved or non-conserved,

Substantial amount of analytical progress in the solution of the TDGL equation



Figure 1.3: A schematic illustration of the Allen-Cahn law for motion of interfaces in

& phase ordering system with non-conserved order parameter. The surface tension

tends to flatten the domain wall by pulling in regions of positive curvature. The

speed of motion is proportional to the mean local curvature.

turned out to be possible from understanding the structure and dynamics of domain
| walls. The most important result in this context is the Allen-Cahn equation[21],

which we briefly discuss in the following section.

1.2.3  Motion of interfaces: The Allen-Cahn Equation

In this section, we present some phenomenological arguments regarding the motion
| of a domain wall. Consider the late stages of the coarsening regime, where the order
parameter has attained value ¢ = +1 almost everywhere except at the domain
boundaries. In this regime, the Free Energy of the system F = J(V@)dix ~ aR
where T is the total length of domain boundaries in the system and o is the surface

tension.

Now let us consider a single (for simplicity, spherical) domain of radius B. The
total surface energy is ~ o R*! in d dimensions. Let F be the force per unit area
on the domain wall. The work done by the force in shrinking the domain by §R is
~ FR*§R and the decrease in the surface energy is ~ R-2§R. Equating the two,
we find ' ~ 1/R, ie., the force on the domain wall is proportional to the local mean
curvature. In purely dissipative dynamics, the velocity of motion of the domain wall

will be proportional to the force : 28 ~ —+- This gives for the size of a domain at

-
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time t, R*(t) = R*(0) — at, where a is some constant, This means that the typical
size of domains that disappears by time ¢ is about VI, and this gives the typieal
separation between domain walls at time?. Under the dynamical scaling hypothesis,
the domain structure at late times is characterized by a single length scale £(1), and
thus we conclude that for non-conserved dynamics, £(¢) ~ 7 and the dynamical
exponent z = 2. For general non-spherical domains, Allen and Cahn[21] derived

the following equation, based on the assumption that the domain walls are gently

CUrving in space.

v=-V.g (1.14)

where g is a unit vector normal to the wall at any given point in space, and & =
-V.g = “—;_,-1- where R is the mean curvature of the domain wall at the given point.
We note that the above results are based on very general arguments and is even
independent of the spatial dimension d. The result is found to be satisfied by almost

all models of coarsening with non-conserved order parameter in the asymptotic

regume,

1.2.4 Approximate treatments in Phase Ordering Kinetics

After computation of the dynamical exponent z, the next task is the evaluation
of the scaling function for the pair correlation, and the autocorrelation exponent.
Except in the case of one dimensional Ising model with Glauber dynamics, there are
no exact solutions in this front, and so one has to resort to approximate theories.
In the remaining part of this section, we will discuss briefly two of the well-known

approximate theories in Phase Ordering Kineties with non-conserved dynamics.
1. The Ohta-Jasnow-Kawasaki Theory

The essential simplification in the QJK theory[22] is to replace the actual order
parameter field ¢, which varies rather abruptly across domain boundaries, by the
sign of a smoothly varying field m(x,t), ie., @(x,t) = sgn(m(x, ). In terms of the

new field, the TDGL equation may be written as



iy

d
—g = V’m — nanyV, Vi (1.15)
where n = IE_:iI' The OJK approximation is to replace n,ny by its spherical

average (nany) = dop/d, thus leading to the simple diffusion equation %—T = D% m,
where D = 1 — 7. The initial distribution of the field m(x, 0) is usually taken to
be Gaussian, with delta-correlations. We shall come across the OJK approximation
again in connection with Persistence of the diffusion problem. The OJK approxi-
mation is expected to work better as the spatial dimension d is taken to higher and
higher values. Hence, in the limit d — oo, the phase separation process is adequately

described by the diffusion equation.

2. Mazenko's Theory

In Mazenko's theory[23], the order parameter field o is expressed as a function of
a variable m, which is physically interpreted as the perpendicular distance to the

nearest domain wall. Then the TDGL equation can be cast in the form

@'(m) = V'(4) (1.16)

The boundary conditions are ¢(+o0) = +1 and ¢(m = 0) = 0. Further treat-
ment is simplified using the assumption that the field m has a Gaussian distribution.
Correct scaling behaviour is recovered for equal time and unequal time correlation
functions and the numerical values of the autocorrelation exponent A was in very
good agreement with simulations. Mazenko's theory is one of the most successful

ones in Phase Ordering Dynamics, at least for non-conserved models.

1.2.5 Persistence in coarsening systems

The coarsening dynamics of the Ising model (and its continuum version), remains
I one of the most difficult problems in Persistence. The most important result in
this field is the exact solution for 1-dimensional Ising model, which we had briefly
mentioned in the introduction. This solution is in fact part of the solution to a

more general problem, the coarsening dynamics of the one dimensional Potts model.

B
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The kinetics of this model can be mapped to a reaction-diffusion problem. In this
problem, a set of random walkers diffuse on the lattice, and when two of them meet,
annihilate or coagulate with probability .;TET and ﬁff— respectively. A persistent spin
at time ¢ is a site that is unvisited by any walker till ¢. By mapping the problem to
an exactly soluble one-species coagulation model, Derrida, Hakim and Pasquier [11]

showed that the fraction of unflipped spins P(q, t) at time ¢ decays as ¢~%%) where

1 2 -i(2—q -
5 o () -

For q = 2 which is simply the Ising model, this equation gives § = 3/8, a highly
non-trivial result. We studied the spatial distribution of persistent sites in this
model both numerically and analytically[24]. The normalized pair-correlation for

persistent spins was shown to have the scaling form

#
Cir )= £(1)f (—) (1.18)
{ H :} E[t} K

where (1) ~ {7 and f(z) ~ 2 for x < | and constant for z 3 |. The scaling
form in Eq.1.18 is one of the main results in this thesis. It follows that for r < (1),
C(r,t) ~ r~2 which means that over length scales < £(t), the set of persistent

spins forms a fractal with fractal dimension d; = 1 — 26 = 1,

We outline the main steps in the derivation of Eq.1.18 here. We considered the
length distribution n(k,t) of intervals between consecutive persistent spins. The
process of coalescence of these intervals was studied under the Independent Interval
Approximation, where the lengths of adjacent intervals are treated as uncorrelated
random variables. We constructed a rate equation for the time evolution of n(k,t)
based on this approximation, which was solved within a dynamic scaling ansatz. A

scaling form was derived for n(k,t), and was related to C(r, ) under the IIA.

We extended this analysis to the coarsening of g-state Potts model in one di-
mension. We found that there are two distinct regimes appearing here. The ITA
calculation shows that if §(q) < L, the persistent structure is a fractal over small

length scales and homogeneous over large length scales. If 8(¢) > %+ the distribution

-
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is homogeneous over all length scales. These predictions agree with recent studies

done by other authors[25).

The Persistence probability in one dimensional TDGL model has also been solved
analytically. Unlike the Ising model, the characteristic length scale £(t) diverges only
logarithmically with time[26]. It was shown that P(t) ~ L£(t)™% where #' =~ 0.17

[27]. This work has the distinction of being one of the first analytical studies in

Persistence.

The computation of the Persistence probability in the Ising model in higher
dimensions is a very difficult task, and to date, analytic progress in this direction
has been limited. In this section, we shall outline the difficulties in this problem,
and attempts to get around them. However, substantial analytical progress has been
possible in a simpler model, the diffusion equation[28], which is actually a coarsening
system. Also, in the OJK approximation, the TDGL equation reduces to the simple
diffusion equation when the ordering field is expressed in terms of the auxiliary field
variable. As this approximation is believed to be exact in the d — oo limit, results

for the diffusion problem are directly relevant for the Ising model in the large d limit,

Before we start our discussion, it is worth noting that all the many-body problems
studied in Persistence are non-Markeovian. Consider an Ising spin system evolving
via Glauber dynamics. Let us consider the spin at any single site and study its
persistence. It is clear that the probability that this spin will flip at any time ¢
depends on the state of its neighbours at that instant, which depends on the state
of our test spin (and the state of the other neighbours also) at the previous instant,
ie., at t — §f. We note here that the history dependence of the process has already
gone beyond ¢, which makes the process non-Markovian. In general, for many body
systems like the Ising model, this history dependence goes back till the origin of the
process, which makes the process strongly non-Markovian. However. a number of
analytical tools have been developed to deal with non-Markovian processes, which
are Gaussian and stationary, Luckily, these conditions are not too restrictive, and as
we shall see, the diffusion equation perfectly fits this class, while the [sing model can
be approximately mapped to a Gaussian Stationary Process (GSPJunder Mazenko's

theory.

.
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In this section, we briefly review some of the important analytical tools used to
study Persistence in Gaussian Stationary Processes (GSP). The first two methods
are used for the so-called smooth GSPs. Examples of problems that fall under this
class are the diffusion problem and the randomly accelerating particle. In the third
subsection, we consider a perturbation theory for GSPs that are not smooth but are
very close to being Markovian. This scheme has been applied to study the Ising

model under the Mazenko approximation.

Consider a general GSP X(T') that has a stationary correlator (X(0)X(7)) =
f(T). Let us consider the small T behaviour of the function f(T). In general,
f(T) 21 —aT"+ ..., where & < 2. When a = 2, the density of zero-crossings
of the process is finite and the process is called smooth. On the other hand, if
a < 2, the zero-crossings have a fractal distribution. For the random walk (or,
for that matter, any Markovian process), f(T) ~ 1 — AT, so that @ = 1 and
we conclude that Markov processes are not smooth. On the other hand, for the
random acceleration problem, f(T) = %ea:p[—%) - %Ei“p{—3%} which has the small
T’ behaviour, f(T) ~ 1~ 2T? 4 .. so that this process is smooth. Similar results
hold for the diffusion problem, where f(T") = [sech(T/2)]%/? in d dimensions. This

process is also smooth as f(T) ~1 — l—“:-a-Tj +..near T = (.

The Independent Interval Approzimation:

For smooth Gaussian processes, one may obtain estimates of ¢ under an ap-
proximation. This is called the Independent Interval Approximation (ITA) which
assumes the separations between two consecutive zero crossings are independent
random variables drawn from some well-defined probability distribution. For the
diffusion problem, this approach gave # = 0.1203 in d = 1 and 6 = 0.1862 and
0.2358 in d = 2 and 3 respectively[28, 29]. These results are in very good agreement
with the results of numerical simulations. The value of 6 in d = 1 diffusion prob-
lem has also been recently verified experimentally[30]. For the random acceleration
problem, the estimate was f;;4 = 0.2647.., in reasonable agreement with the exact

value %

The Series ezpansion method:
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The ITA approach suffers from the drawback that it is difficult to systematically
improve. A series expansion approach has been proposed which took care of this

problem to some extent[31]. The basic idea is to start from the generating function

P(p,t) =3 p"Py(t) (1.19)

n={}

where Py(t) is the probability of n zero-crossings till time ¢. For p = 0, this is just
the usual persistent fraction P(t). For general p, it was shown that P(p,t) ~ =8
where the exponent (p) varies continuously with p, in general, For p = 1, clearly
P(l,t) = 0 implying that 6(1) = 0. From this approach, a series expansion for
(1 — €) in powers of € was proposed, which gave very good results for the diffusion

problem.

Perturbation around a Markov Process:

For processes that are close to Markovian, ie., with correlator f(T) = e=¥7T 4
efi(T'), it is possible to express the persistence exponent # in a series expansion in
powers of ¢, ie., # = X' + O(e). The starting point of this method is to write P(T)
as the ratio of two path-integrals:

2 [450 Do(7)exp(-5)
[ Dé(r)ezp(~S5)

where the numerator is the total weight of all paths which never crossed zero, and

the denominator is the weight of all paths. The action § = %fnT % drydrag(m ) G{m —

P(T) =

(1.20)

72)@(72 and G(7) is the inverse matrix of the Gaussian correlator (7). It is possible
to show that § = E, — Ey where Ej is the ground state of & quantum mechanical
problem (harmonic oscillator with frequency A’ for a Markov process) and £ is the
corresponding quantity when a hard wall at the origin is added to the problem. This
method was used for the solution of # in kinetic Ising model, under the Mazenko
scheme. The problem could be converted to a GSP approximately using Mazenko's
auxiliary field variable: s(x,t) = sgn[m(x,t)] where m(x.t) is assumed to be a
Gaussian variable within Mazenko's theory. The correlator AT still could not be

obtained in closed form above d = 1, and is obtained numerically as the solution to a



22

differential equation. It was confirmed that in all dimensions, & = 1, so the process is
non-smooth. Analytic predictions for # were possible using the equality 8 = E, — E,

described above, and estimating E, and E, using a variational approximation[32],

In Table 1.1, we have presented a summary of numerical and analytical estimates
of persistence exponent @ in various coarsening models. We note that in the Ising
model, numerical results for T = 0 Glauber dynamics points to a decrease in the
value of § with dimension. This is somewhat surprising, since, in general, we expect
0 to increase with dimension. The argument in support of this conjecture is very
simple: The more neighbours to interact with, lesser the chance of remaining in
the same phase for a long time, and hence larger the value of §. This argument is
also supported by the results (IIA and numerical) for the diffusion problem, TDGL

model (FSS analysis) and semi-analytical estimates of 8 in Ising model under the

Mazenko theory.

What could be then wrong with the Ising model at T = 0 ? There has not been
conclusive answers so far, but it seems possible that in zero temperature dynamics,
the system often develops flat interfaces in the lattice, which considerably slows
down the dynamics. It has been observed that in d = 3 Clauber dynamics, the
characteristic length scale of domains grows much slower than ¥, as predicted by
Allen-Kahn arguments[39]. We have independently verified this fact, and have also
observed that in d = 4 it grows even slower than in d = 3. It is likely that since
the average motion of interfaces is slower, Persistence probability also decays slower
than usual. This conjecture is supported by numerical results in d = 3 for coarsening
at non-zero temperatures. It is observed that for sufficiently high temperatures, 8

actually becomes much higher, close to the TDGL and diffusion values.

Since the power-law decay of Persistence is established in higher dimensions also,
it is natural to enquire about the spatial correlations in the distribution of these sites.
We investigated this problem both through direct computation of pair correlations
as well as an indirect Finite Size Scaling (FSS) analysis. For a Coarsening process
in d dimensions characterized by dynamical exponent z, we showed that. if 20 < d.
the set of persistent sites forms a fractal structure over length scales < (/% and will

be randomly distributed beyond this length scale. In this case, persistent {raction
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[ el d=1 d=2 | d=3 | d=% | d—soo
Diffusion (I11A4)y 0.1203 0.1862 | 0.2358 | 0.2769 ~\/d
TDGL P(t) ~ (Int)z7'7 | 0.2055 | 0.24pss | 0.27rss ~ 3/ d?
[sing(T = 0) 3/811 (exact) | 0.223334 | 0.163, 0.1235 | freezing 74,
Ising(T > 0) —~ 0.2237 35 | 0.2623 -
Ising(variational)s, 0.35 0.22 0.26 - -

Table 1.1: The table shows comparison of numerical values of # in different coars-

ening models. The notation FSS refers to finite size scaling techniques, which is
described in detail in Chapter 3.

for finite lattices has the scaling form

P(t,L)=L"*f (L—t-) (1.21)

where f(z) ~ 27 for ¢ <« 1 and f(z) ~ constant for z > 1. We then showed
that this scaling form actually leads to the dynamical scaling form Eq.1.18 in higher
dimensions also. The FSS analysis was also used to study persistence in another
well-known and common system, a diffusing field with inhomogeneous distribution of
initial density. This system exhibits phase ordering similar to the TDGL model with
characteristic domain size growing as £(t) ~ ¢/? in all dimensions. The persistence
probability follows 2 power-law decay and approximate analytical estimates for ¢ are
available for general spatial dimension d. We showed using FSS analysis u ptod=3
that the set of persistent sites has a scale-invariant structure. We also argued that
for the diffusion problem, this phenomenon will be present in all spatial dimension
d[36]. This result is also relevant for the Ising model, since we expect the Persistence

properties of both the models to be identical in the large d limit.

1.2.6 Coarsening and Persistence in Fluctuating Interfaces

Fluctuating interfaces and growing surfaces form a class of systems that has un-
dergone elaborate study in the past decades[16] In recent years, the persistence

properties of fluctuating interfaces have also come under investi gation[40, 41]. Con-
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Figure 1.4: Snapshots of the persistent region in 2D Ising model on a 256 x 256

lattice at times ¢ = 100 and ¢ = 250. The structure 1s evolving towards a fractal

distribution, with fractal dimension d; = 1.56.

sider a fluctuating interface characterized by a height field h(x,1), growing from a
flat initial condition at ¢ = 0. The probability P(t,1o) that the height at any given
point on the interface remains above or below its ‘initial’ height h(x,t = 5) through-
out the time interval [to,{] is defined as the Persistence probability. For interfaces
whose average height (h)(t) = LT h(x,t) diverges with time (and in any case,
for any interface defined on a finite lattice), it is natural to consider the relative

height h'(x,t) = h(x,t) — (h)(t). In the rest of this section, we briefly summarize

the known results on Interface Persistence.

Gaussian Interfaces:

For interfaces governed by a linear Langevin equation of the form

ah

rin —{—?Ej’fzh+r;{r,£} (1.22)

it was shown using analytic arguments and extensive numerical simulations that
P(t) shows a power-law decay at asymptotic times, The persistence exponent, how-

ever, depends on the choice of the ‘starting’ time 5. Two temparal regimes were

identified in this context.

.
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o If {, < L7 (the pre-steady state regime), P(t,15) ~ ¢=% where 6, is a non-

trivial exponent.

o If {y = L* (the steady state regime), P(1,¢y) ~ {%}'ﬁ—"‘ where s = 1| — 3,

While the @ in steady state is directly related to the ‘temporal roughness’ expo-

nent 3, for fy, it was possible to derive bounds which compared well with the results

of numerical simulations.

Persistence in KPZ surface:

The up-down symmetry A — —h is broken in a KP7, surface, and in this case,
we need to define two persistence probabilities, Py(tg,1) corresponding to whether
h(x,t) > h(x,tq) or h(x,t) < h(x, to) respectively. In this case, analytical progress
was limited on account of the non-linear nature of {he evolution equation, and

numerical results in d = 1 showed that

o If to < L7, Pi(to,) ~ 1% where 6 < 67

o Ifto 2 L7, Pi(t,to) ~ (L)~ where s =1 — 3.

to

Is it possible to view such an interface, evolving towards its self-affine steady
state, as a coarsening systern 7 To answer this question, let us now characterize the
height variations of the surface in terms of a discrete Ising-like variable s(r) defined
as follows: At a given instant in time, all points on the surface where the height
is below a certain reference level hy is assigned a spin s = 1, and the others are

assigned s = —1[42],

s(r) = sgn [h(r) - ha) (1.23)

We consider surfaces that are rough in the steady state ie., ((h(x,f) —
h{x+r,2))%) ~ r2 for ¢ > L*. For Gaussian surfaces in steady state, (eg. the
linear Edwards-Wilkinson surface), we showed analytically that the two-point spin
correlator in steady state C(r, L) = (s(x)s(x+r1)) = f(%). This scaling is charac-

teristic of a phase separated system. In conventional phase separated systems, flz)
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decays linearly near origin ie., 1 — f(z) ~ z[17]. In the present case, however.it is
found that 1 — f(x) ~ z* near z = 0[43]. The cuspy nature of the correlator near
r = 0 shows that the ordered phase is not as homogeneous as in more conventional
phase segregated systems (eg. binary fluid). While the largest domain is always
of size ~ L?, which signifies phase segregation, the smaller clusters have a broad

distribution, which is reminiscent of critical systems,

For general non-Gaussian surfaces (eg. the Kardar-Parisi-Zhang surface in
d = 2), we showed that these conclusions are still valid within the Independent
Interval Approximation. We verified these predictions by numerical simulations of
the EW and KPZ surfaces, and the results were in very good agreement with the
analytical predictions. We also extended the simulations to explore the pre-steady
state temporal regime (¢ < L*) We found that the equal time correlator has the
same scaling form with L replaced by £(t), which is typical of a system undergoing
domain coarsening. Scaling arguments suggest that L£(t) ~ 1Y% where 2 is the dy-
namical exponent for the surface Auctuations. For (2+41) dimensional KPZ and EW
surfaces, we found that this argument is in excellent agreement with simulations.

This result also agrees with a previous work on (1+1) dimensional surfaces[44],

1.3 A Note on Format

Each chapter in this thesis starts with an introduction, followed by a detailed analysis
of the problem. We have tried to present all the details of calculations, as far as
possible. For compactness and ease of reading, some calculations have been shifted
to appendices at the end of each chapter. Each chapter ends with a summary of

results and bibliography.

1.4 Appendix A

I The dynamics of a thermodynamic system, ie., its transitions from ome thermady-

namic state to another, may be expressed through the following master equation:




ﬂp =P Wiy — p,t) = Pult)W(u = v,1) (1.24)

Le

where P,(t) is the probability of finding the system in a state with energy [, at
time ¢t and W (v — 1) is the transition probability between states p and » at time
t. There is no general method to determine these transition probabilities and it is
difficult to determine them unambiguously. The only guiding principle here is that,
in thermodynamic equilibrium, all the quantities in the master equation becomes
time-independent and P, o e#5+, the Boltzmann-Gibbs distribution. This leads
to the condition of detailed balance:

Wip —v) _Pu_ e—BlE~E,) (1.25)

Wig—=v) P,

We now restrict ourselves to the case of the Ising ferromagnet with Hamiltonian

involving only nearest neighbour exchange interaction between spins,

:—Jz.ss‘,—hz.st (1.26)

{i7)

To implement a dynamical scheme for this system, consistent with detailed bal-
ance, the simplest way is to consider only those transitions where the final state
differs from the initial one by the flip of a single spin. Even with this simplification,
is no unique choice for the transition rates, and the choice is often a matter of time-
efficiency of the algorithm in a particular situation. The most common choice used

is the Metropolis algorithm, where the transition rates are chosen as

Plpu—sv)=ePB-E) . p < g
=1; E,<E, (1.27)

Another popular choice is the Heat Bath algorithm:

=Bl Ev=E,)

Pt d) =g

(1.28)

At T =0, both Metropolis and Heat Bath algorithms behave identically.
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Plu=sv)=0; E, > 2 Al (1.29)
1
= E : Er.-' = EP
=1 4 <8,

This is called Glauber dynamics. We note that both the algorithms are consis-
tent with the condition of detailed balance, and both lead to the Gibbs-Boltzmann

distribution in equilibrium.

In a system that is far from equilibrium, all quantities including the transition
probabilities may be expected to depend on time. In such situations, however,
it is conceivable that local equilibrium is established over small (but still macro-
scopic) regions in the system, where we may use the above results. In practice, both
Metropolis and Heat Bath algorithms have been successfully used in Non-equilibrium

simulations[45].
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Chapter 2

Spatial correlations in Persistence

y =1

2.1 Introduction

In this chapter, we study the spatio-temporal evolution of the persistent region
in a simple one-dimensional model. The model we choose is the one-dimensional
g-state Potts-Glauber model. It is well-known that the dynamics of this model
may be represented by the the reaction-diffusion model A + A = B where the
product B = @ with probability -7 and B = A with probability =%, The diffusing
‘reactant’ particles A actually represent domain walls in the system, and persistent
spins are the sites which are unvisited by any diffusing particle. We study the
spatial correlations in the distribution of the persistent sites in these models. For
concretleness, we present our formalism in the context of the g = 2 Potts model,
which is simply the Ising model, We also briefly discuss about the extension of the

techniques to general g-state Potts model.

Our approach here is two-fold:

o The study the distribution of the separations between nearest nej ghhour pairs

A of persistent sites. We call this the Empty Interval Distribution nik, 1), defined

as the number of occurrences where consecutive persistent sites are separated

Jh“
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by distance k at time 1.

o The pair correlation function C(r,t), defined as the probability of finding a

persistent site at a distance r from another persistent site.

Both the quantities are good probes of the spatial correlations in the system.
While the Empty Interval distribution proved to be more analvtically tractable
(in one dimension), the pair correlation function has the advantage of being easily
generalisable to higher dimensions. In d = 1, we show that it is possible to relate
the two quantities under an Independent Interval Approximation (IIA). We support

our results with numerical simulations[1].

2.2 The Empty Interval Distribution

In this section, we study the time evolution of the size distribution n(k,t) of these
Empty Intervals. Persistence decay is identified with the irreversible coalescence af
these intervals. The paper is organised as follows. In the next section we write a
rate equation for the coalescence of these intervals under the approximation that
the lengths of adjacent intervals are uncorrelated (ITIA). We give phenomenclogical
arguments about the asymptotically relevant dynamical length scale as well as the
coalescence probability. These arguments, combined with the rate equation gives the
dynamic scaling behaviour of n(k, t) at late times ¢. We compare our predictions with
numerical results. In section 3, we use the ITA to predict the two-point correlations
in the distribution of persistent sites. The predictions are found to be in agreement

with recent numerical results, showing that the TIA is valid,

In the A+ A — 0 model, a set of particles are distributed at random on the lattice
with average density ng. Over one time step, all the particles make an attempted
jump to either of the neighbouring sites with some probability D. If two particles
meet each other, both disappear from the lattice. In one dimension, the density
of particles decay with time as n(t) ~ (87 D1)"% as t — xa[2]. Persistent sites in
A+ A — 0 model at any time ¢ are defined as the sites which remained unvisited

by any diffusing particle throughout the time interval [0 : ¢]. Empty Intervals
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(which we will call ‘Interval’ for simplicity henceforth) are defined as the separations
between two consecutive persistent sites. By definition, an Interval cannot contain
a persistent site, although it may contain one or more diffusing particles A. The
total number (per site) of Intervals of length k at time ? is denoted by n{k,t) and is
called the Empty Interval Distribution.

To start with, the the particles are put randomly on the lattice so that n{k, ¢ =
0) = nd(1 —ng)* ~ e=** where A = —log(1 —ng). With time, the particles diffuse on
the lattice, making the sites non-persistent. n(k,t) evolves satisfying the following
normalisation conditions. If In(t) = Tek™n(k,t) & [Pn(s,t)s™ds is the m-th

moment of the distribution, then

Lit)=P(t)~t™" | L{t)y=1 L(t)=s(t) (2.1)

The first condition follows from the definition of n(k,t), the second one implies
length conservation and the third condition gives the mean interval size s(t). The
probability distribution of interval lengths is p(k,1) = Z-L%J—] = P(t) 'n(k,t) so
that 3=, p(k,t) = 1.

Two neighbouring Intervals can coalesce when the persistent site between them
15 destroyed by a diffusing particle at the boundary of either of the Intervals. Note
that this coalescence process is irreversible. For simplicity, we consider only binary
coalescence in a single time step where two adjacent Intervals of lengths k, and k,,
separated by a persistent site, coalesce and form a new Interval of length &y + ks
when the persistent site is ‘killed’ by a particle (Fig. 2.1). To study this process
analytically, we invoke a mean-field approximation — the lengths of adjacent Intervals
are treated as uncorrelated random variables with probability distribution p(k,¢).
This is the Independent Interval Approximation (I1A), which has been used to study

a variety of problems in one dimension[3, 4].

2.2.1 Rate Equation for Interval coalescence

Assuming that ITA is valid, the time evolution of n{k, ¢} is given by the rate equation




oA *——éﬁ‘ o—aA g
1 2 3 4
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Figure 2.1: In the picture, white circles are persistent. sites (numbered 1, 2, 3..)
and dark triangles are diffusing particles. Two Empty Intervals Eyy and £y are
shown to merge together to give a new Interval E,s when the persistent site 2 at the
boundary is killed by a diffusing particle.
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where K'{my,mg,t) is the probability that two adjacent Intervals of lengths m,
and my coalesce at time ¢. The first term in Eq.2.2 represents the increase in number
of Intervals of size k through coalescence of smaller intervals, while the second term

is the loss term representing the decrease in number when Intervals of size k merge

with other Intervals.

To solve the above equation for n(k, t), one need to know the form of the reaction
kernel K (my, mo, t). The process of coalescence of Intervals involves the destruction
of the persistent site in between them by a particle, which can come {rom either of

the Intervals. So, quite generally,

‘r{{?nhmi?”:Q{mht}'i_gim%” {23}

where Q(m, t) is the fraction of intervals of size m which is destroyed at time {.
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Q(m, t) satisfies the following condition by definition.

_ OP(t) ¢
gn[mthQEmJJ — "? = !_P[”

where we have made use of the fact that P(t) ~ ¢~°.

The form of Q(m,t) can be argued for in the following way. An Interval of length

m at time ¢ can contain a particle anywhere inside it only if the interval length is at
least of the order of the diffusive scale Vv Dt. That is, Q(m,t) ~ 0 for m < VDL It
is also known that the particle distribution is correlated over length scales r < /D,

whereas it is completely random over r 3 v/ Dt[4]. So we expect that for m = Dt,
@(m,t) = a(t), independent of m. These physical considerations leads us to suggest

the following dynamic scaling form for Q(m,1).

m

Qmt) = e(t)B(—2=)

where the function 9(z) is expected to have a sigmoidal form, ie., Blzx) =0 for

r < 1and §{(z) = 1 for z > 1. The function a(t) will be determined later.

(2.5)

2.2.2 Dynamic scaling

We assume that at asymptotic times, the distribution n(k,t) is characterised by a
single dynamic length scale s(t). We note that there are two relevant length scales

in the problem. The first is the diffusive scale Lp(t) ~ VDt entering the scaling
form Eq.2.5 for the coalescence probability. On the other hand, the inverse of the

persistent fraction P(t) is also a length scale, which we shall call the persistence scale,
denoted by £,(t) ~ t¥. The asymptotic behaviour is expected to be dominated by

the larger of the two, ie., the diffusive scale Lp(t) in the present case (since # < 1/2).

We now invoke the dynamic scaling ansatz, ie., n(k,t) f[i—‘] with

s gl 2 =2 (2.6)

From the length conservation condition given by the second part of Fq. 2.1 it
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follows that the prefactor is ~ 52, Thus, the scaling solution for n(k,t) is written

in the form

n(k,t) = s(t)7*f (%) (2.7)

Substituting Eq, 2.7 and Eq. 2.5 in Eq. 2.4, we find alt).

a(t) = gs{t:;}{t} (2.8)

where B = [* 8(z) f(z)dz. Substituting Eq.2.7 in the normalisation conditions
Eq.2.1, we find the following conditions on the scaling function.

_[:Dl flz)de = sP(t) ; j;m flzizdz =1 (2.9)

In the first integral, the lower limit is set as s(t)~! to take care of any possible

small argument divergence.

Substituting Eq.2.5, 2.6, 2.7,and 2.8 in Eq. 2.2, we find the following equation
for the scaling function f (z).

| gg;:: - _% J;}'l ffz}f[q —z)[B(z) + B(n — z)jdz —
2 i~ %s(f]F{ﬂ}ﬁ{nJ fn) (2.10)

where the scaling variable i = ,—;-%]-
Case I: 5 < 1.

For n « 1, all B(x) ~ 0 for = < 5. This case corresponds to small Intervals, ie.
those which are not large enough to contain a diffusing particle till time ¢. In this
case, the equation reduces to qgn = —(2—260) f(n) which has the solution f(n) ~ 4=~

‘where the new exponent T is related to 8 through the scaling relation

1

T=2—20 (2.11)
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From Eq. 2.7 this implies that for k < s, n(k,t) ~ t7%k~7, For the model under
consideration here, # is known exactly to be 3/8 [5] which gives 7 = 5/4.

Case II: n > 1.

For general values of n, 8(n) is non-zero, and because + > 1, the first integral
diverges near ¢ = 0 as 27{"~Y), There is another divergence in the last term, of the
form ¢'/+=%_ It can be shown that this term can be exactly cancelled by the divergent
part of the first integral. After carrying out this ‘regularisation’ (details to be found

in Appendix A) and putting z = 2 in Eq.2.10 the equation for the scaling function
f(n) stands as

L =2 [ re)ftn =160 + 80n - 2) — s -

580 [ 50 - 2) - ol -

[1 0~ 280 L fmdm] f)(212)

A general solution of this equation requires the knowledge of the detailed form
of the scaling function 3(n). However, for large values of n where 3(5) =~ 1, one can
simplify this equation. We define the point " sufficiently large such that for 5 > 5",
f{z) = 1 within the limits of accuracy required. Without any loss of generality, one

can put 77" = 1 by rescaling the length scale s(t) accordingly. For n > 1, we define
f(n) = hly), whose equation is

n dh
2dn

9 12 [* hioh @)k h(n))d
=5 |2 heWhn 2z + [ (e — o) = b -
(1—-20)h(n) (2.13)
This equation has a solution of the form h(n) = Ge=*" as can be shown by direct

substitution. The constants G and A are related through the relations

AB =20G
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and

0
A420 =1+ 2F()) (2.15)

where F() = [§ f(2) [*(1 + B(z)) — 1] dz and
B = .[n] flz)B(z)dz + %e_}' (2.16)

by definition. Eq.2.14-2.16 formally gives the constants A and (3. However, the
actual evaluation of these constants requires the knowledge of the function flz)
in the entire range [0:1] (and not just near ¢ = 0, where f(x) ~ 27}, which, in
turn, is possible only if the detailed form of B(z) is known. Hence we will restrict
ourselves to showing that the parameter A > 0, which is required for the solution to

be physically reasonable.

In Eq. 2.16, we note that B > % e~ depending on how sharply 3(z) rises near
z = 1. The equality holds for the step function B(z) = Oz — 1) where ©(z) = 0 for
z<0and ©(z) =1 for r > 0. After using this inequality in Eq.2.14, we find that
A 2 —log(28). Since § < 1/2, it follows that A > 0.

The formalism may be easily extended to the general g-state Potts model. From
the general arguments about the competition between the Persistence scale L,(t) ~
t°9) and the diffusive scale Lp(t) ~ t3, we may conclude that the above results will
bLold true for all 8(q) < 3. When 8(q) > %, the mean separation between persistent
sites grows faster than the correlation length for the random walkers. As a result,
the disappearance of persistent sites may be expected to become uncorrelated at
asymptotic times. This result is formally recovered from the rate equation, as we

shall see helow.

Since L,(1) dominates over the diffusive scale, we may formally put s(t) =
L/P(t) ~ %) g0 that the dynamical exponent = = 1/8(g). Thus, the scaling solu-
tion for n(k,t) has the form n(k,t) ~ =200 £k /199N and the scaling variable is
n=k/t"%). The reaction probability Q(k, ¢) may be expressed in terms of this new

scaling variable as Q(k,t) = a(t)B(nt®l0=7). Ast — o, the argument of the scaling
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Figure 2.2: The length scale s(1) is plotted as a function of time t. The straight line
is a fit, with slope 1/2,

function is driven to oo, so that for any value of i, Q(m,t) — a(t) at asymptotic
times. The equation for the scaling function f (1) now becomes

] 3 ' ?
15 =L [ f@)1(0 - a)de - = [ 1@ —2) = sz -

[1—1“ f f(z) dr] fln)  (217)

We note that this equation is similar to Eq.2.13, and so the solution is expo-

nential, f(n) ~ €™*", where ) is a constant. This scaling form is supported by

simulations done by other authors|6).

' 2.2.3 Numerical Results

- We determine the distribution n(k, t) numerically by simulating A+ 4 — @ mode
‘one dimensional lattice of size N = 10° with periodic boundary condition. Particles
\are initially distributed at random on the lattice with some average density g,

and
their positions are sequentially updated— each particle is made to move one step

in either direction with probability D = 1/2. When two particles meet each other,
both are removed from the lattice. The time evolution is observed up to 10° Monte-

Carlo steps (1 MC step is counted after all the particles in the lattice were touched
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Figure 2.3: The effective exponent %’ﬁ is plotted against 1/logt for four values of
starting density. For ng = 0.5, the exponent value is close to 0.5, expected from the

scaling arguments. For other values of ng, systematic deviations away from 0.5 is

ohserved.

once). The simulation is repeated for several random starting configurations of the
particles for any particular initial density and we repeat the entire simulation for
four different initial density no. For any ng, we determine the number of intervals

of length k (per site) at time ¢,

To compute the mean interval size s(t), we ran the simulation up to ¢ = 10° time
sfeps, and averaged the results over 100 starting distributions of particles, with the
same initial density. In Fig. 2.2, we plot s(¢) vs ¢ for four different values of Tg—
0.2, 0.5, 0.8 and 0.95. For ng = 1/2, we find that s(t) ~ at'/* with = ~ 1.97(1) and
a =~ 5.96. But for other values of ng, we find that the observed value of = is different
from 2. In Fig. 2.3, the running exponent d(logs)/d(logt) is plotted with 1/(logt)
‘and the results show the systematic deviation away from the value 1 /2 expected
from the scaling picture presented in the previous section. We will discuss about

i;ﬁhe possible origin of this deviation later.

In Fig. 2.4 we plot the scaling function f(x) = s(t)%n(k, ¢) against the scaling

variable r = k/s{t) for { = 10" and 3.10%. To get the nature of the scaling function
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Figure 2.4: The scaling function f(n) = s(t)?n(k, t) is plotted against the scaling
variable = &/s(t) on a logarithmic scale. There is a power-law divergence at
small n and exponential decay at large 1, as predicted by the 1A calculation. The

observed value of v for ny = 0.8 is seen to be appreciably different from that for
ther ng.
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Figure 2.5: The difference As(t) = |[$(t) —s1/2(¢)| is plotted against ¢ for ny = 0.2,0.8
and 0.95. The straight line is a fit with slope 3/8.
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rtg:;re. 2.6: In the figure, we plot the observed s(t) (points) with the proposed fitting
m at'/? + bi? (lines) for ng = 0.2,0.5,0.8 and 0.95 (bottom to top). We have used
= 3.96 and the b values taken from Table 1.
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one needs to average over lots of configurations. This has restricted us to smaller
time steps and data for three values of initial density, np = 0.2,0.5 and 0.8 averaged
over 500, 1000 and 1500 different initial distribution of particles respectively. For all
ng, we find that the scaling function f(z) ~ =" forz << 1 and decays exponentially
for higher values of z. For ny = 0.5, we find + = 1.25(1) in accordance with the
scaling relation Eq 2.11. For ng = 0.2, we find 7 ~ 1.32(2) while for ng = 0.8, the
observed value of 7 is 1.13(2). For all ng, T satisfies the scaling relation Eq. 2.11 if

z is replaced by its effective value.

Fer general values of ng, we find that the numerical values of s(t) supports the

following form (within the time range studied)

Sug(2) ~ at"/* 4 b{ng)t?. (2.18)

The non-universal constant b is <;=or >0 for ng <, =or > 0.5. To compute
the prefactor b and the exponent ¢, we plot the difference Aspg(t) = |sny(t)— 517208
vs 1, for ng = 0.2,0.8 and 0.95 (Fig. 2.5). The exponent ¢ is numerically found to
be close to the persistence exponent # = 0.375 (Table 2.1). In Fig. 2.6, we show the
simulation data together with the fitting form Eq.2.18 using the estimated numerical
values of @ and b, We find that as ng —+ 1, the constant b undergoes a sharp rise
50 that the effective dynamical exponent of s(t) is numerically close to ¢ for an
appreciable range in time (Fig. 2.3). At the same time, we note that only the first

term in Eq.2.18 is asymptotically relevant since ¢ < 1.

The two terms in Eq.2.18 can have their origin from the two dynamical length
scales in the problem, the diffusive scale £p(t) ~ t'/2 and the persistence scale
L,(t) ~ t*. For large ng, the typical interval length between two consecutive persis-
tent sites is determined by the decay of persistence only, rather than the diffusion
of the particles. So, it is understandable that the dynamical behaviour of 5(t) coin-

ides with that of £,(t) at least at the initial times. However at late times, when the
particle density falls down as a result of annihilation, the situation becomes same

5 that of starting with low ng and the decisive scale is Lp(t). However, the precise

lorm and behaviour of the prefactor b(ng) with ny remains to be understood.
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2.3 Two-point correlations

A good picture of the spatial distribution of the persistent sites and the presence of
any possible correlation in their distribution is obtained from the two-point corre-
lation C(r,t), which is defined as the probability that site x-r is persistent, given

that site X is persistent (averaged over x).

C(r,t) = (p(x,8)) ™ (p(x, t)p(x + 1, 1)) (2.19)

where the brackets denote average over the entire lattice and p(x,t) is the density
of persistent sites: ie., p(x,t) = 1 if site x is persistent at time ¢, and 0 otherwise.
Clearly, (p(x,t)) = P(t) by definition.

Within the IIA, the relation between C(r,t) and n(r,t) (We consider r > 1, so

that the discreteness of the underlying lattice can be ignored) can be written as the

[ollowing infinite series;

Clryt) = P(t)"n(r,t) + P(t)"2 jl "dz n(z, n(r —z,8) +
P(:;-Sfl' dz n(z, t) f_x dyn(y,)n(r —z —y,t) + ... (2.20)
1
The first term corresponds to the case where there is no other persistent site

the range [0 : r], ie., a single Interval of length r. The second term gives the
probability that the range is split into two Intervals of length # and r — & by the

W

"_'msence of a persistent site at z, the third term gives the probability for three
i__il_‘t}e'rva,ls and so on.

The above series can be rewritten as the following self-consistent equation for
rit):

G(

P(t)C(r,t) = n(rt) + j;rn[:r,tjﬂ[r —x,)dx (2.21)

In terms of the Laplace transforms C(p,t) = K Crit)e Pdr and a(p,t) =
s t)e7*ds Eq. 2.21 becomes
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Ct) = 7 L)

n
= et VS 2,29
PO - p1) HE)
From Eq.2.7, we find

A(p, 1) = s~ f(ps) (2.23)

where f(g) = [:Z: f(n)e™"dn. which can be written in the following regularised
form, using Eq.2.9.

fla) = s(t)P(t) — filq) (2.24)

where

fila) = [ Fn)lt — ey, (2:25)

Substituting Eq.2.23, 2.24 and Eq.2.25 into Eq.2.22 we find that

Cip,1) = s(e)P(t) )

—_—

. filps) ha:20)

The second term in RHS can be neglected at late times, since s(t)P(t) diverges
as t1/2=?, 1t follows that in this limit, C(r,t) has the dynamic scaling form

C(r,t) = P(t)g (?”t}) (2.27)
where
i) = —— (2.28)
filg)

is the Laplace transform of g(z): 9(q) = [ g(z)e=dx.

‘The preceding expressions can be used to deduce the limiting behaviour of the

ing function g(n) for the cases n < 1 and 7 = 1, without needing to solve
2.20 or 2.21 explicitly.

Casel: p > 1.
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To find the asymptotic behaviour of g(n}, we note that f,(q) vanishes near g=10

as fi(g) ~ g. Thus g(q) ~ a5 ¢ = 0 from Eq.2.28. By standard results in the
theory of Laplace transforms 7], this implies that g(n)~1 as n = oco.

Case II: n < 1.

To analyse this case, consider the real-space relation Eq.2.20. For n < 1, or
equivalently, r < s, we have shown that n(ryt) ~ P(t)r~7. It is clear that in this
range, the RHS of Eq.2.20 is time independent, so C(r,t) in the LHS should also
be time independent. From the dynamic scaling form Eq.2.97, we find that this is
possible only if the scaling function is a power-law near the origin: g(5) ~ 5™° as

1=+ 0. After substituting in Eq.2.27 and requiring the resulting expression to be
time independent, we find

a = zf (2.29)

We find C(r,t) ~ 72 for r < s and C{r,t) =~ P(t) for r > s. The power law
decay at small distances is expected, because the RHS of Eq.2.20 contains only scale
mvariant terms in this limit, hence the LHS also should be likewise. In Appendix

B, we show that this is also consistent with Eq.2.21.

We see that in the IIA calculation, the length scale s(t) demarcates the corre-
lated and uncorrelated regions for € (r,t). In the correlated region (r < s(t)), the
persistent sites form a fractal with fractal dimension d ;=d—a=1 with the cor-
relation length s(t) increasing with time as s ~ ¢1/2, The IIA results agree very well

with that of numerical simulations [8], showing the validity of the approximation.

é'.S.I Numerical Results

In Fig. 2.7, the scaling function f(z) = C(r,t)/ P(t) is plotted against the scaled
tance & = r/t'/* for two values of time separated by a decade. The initial density

sng = 0.5. Excellent data collapse is obtained for z = 2, and the measured value

f the spatial exponent & = 3/4 is entirely in accordance with the scaling relation,
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E'igure 2.7: The scaling function for two-point correlation f (z) = C(r,t)/ P(t) plot-
ted against the scaling variable 2 = r/t'/* on log-scale for two values of time ¢ = 10°
and 10%. The starting density of particles is ng = 0.5. The data for different times
are seen to collapse into the same curve if scaling is done with z = 2.0. The observed

a > (.75 is in agreement with the proposed scaling relation (2).

SR

‘The observed power-law decay of C'(r,t) with r has a wider significance, apart

from showing the strong spatial correlations in the distribution. It implies that,

This is most easily seen with the ‘box-counting’ procedure [9]. We divide the entire

3:: ice into boxes of size l, at time {. After discarding ‘empty’ boxes, ie., those

M(Lt) ~ 72 | s(1) (2.30)

M(Lt) =1P(t) > s(t) (2:31)

which can be summarised in the scaling form

ML) = LP(t)h(l/s(t)) (2.32)

ﬂxth the scaling function h(z) ~ 27 for ¢ < 1 and h(z) >~ 1 for £ > 1. We see
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Figure 2.8: The average number of persistent sites M ([, 1) in a box of size { at time ¢ is
plotted against the box size [ for t = 10%, 10% and 10°. The initial density of particles
‘s ng = 0.5. The crossover from fractal (dimension d; ~ 1 /4) to homogeneous
[dy = d =1) distribution is clear from the figure.

that over small enough length-scales | < s(1), the set of persistent sites form a self-

similar fractal with fractal dimension d ¢ =1—a, with a crossover to homogeneous

behaviour at larger length scales. This crossover is illustrated in Fig.2.8, where we
have M(l,t) (measured from box-counting) plotted against the box size ! for three
values of time. The initial density here is ng = 0.5, and we find dy ~ 0.25 in

agreement with our result from study of the two-point correlation C'(r ).

In Fig. 2.9, we compare the results from box-counting for different starting
gn_sities. For ng = 0.2, we see that the fractal region appears much later compared
to higher values. This is presumably due to the large inter-particle separation at
%z"-fl, and the consequent delay in reaching the scaling regime. For higher densities,
the fractal dimension is seen to decrease continuously with ng, approaching zero in
the limit no — 1. We notice that although s(t) ~ 10° in terms of the lattice spacing,

if i still much less than the lattice size NV, so as to rule out finite-size effects.

In Fig. 2.10, we plot the scaling function h(n) = M(Lt) /L P(t) against the scaling
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Figure 2.9: Same as Fig.2.8, for four starting densities ny = 0.2,0.5,0.8 and 0.95.
All plots correspond to ¢ = 10%. For ny = 0.2, the fractal region is reached late, but
the asymptotic value is seen to be the same as that for ng = 0.5. For higher ny, d;

fng;creaSEs continuously, approaching zero in the limit ng — 1.
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ed against the scaling variable § = r/t'/* for two values of time { = 104, 10°

and two starting densities ng = 0.8 and 0.95. The observed data collapse has heen
obtained with 1/z = 0.45(no = 0.8) and 1/z = 0.39(no = 0.95), The corresponding
lues for o are ~ 0.83 and 0.95. For comparison, a straight line with slope 0.75 is
shown.




al

variable n = [/#* for two values of time separated by a decade. We have displayed
results for ng = 0.8 and 0.95. For ng = 0.8 the best data collapse is obtained with
1 = 0.45, whereas for ng = 0.95, the corresponding value is 1 ~ (.39

@, measured from the small argument divergence of hin), also shows similar changes.

. The exponent

In Table 1.2, we have summarised our exponent values for four initial densities.
All measurements were made using the data for the mass-distribution M(1, ) rather
than the correlator C(r,t) on account of lesser statistical fluctuations. For the

dynamical exponent z, we chose the value which gave the best collapse of data under

dynamic scaling. Although it is difficult to measure the exponent very accurately

using this method, we have verified by visual inspection that the error invelved js

less than the reported changes in the exponent values at least by a factor of two.

We have omitted the case ng = 0.2 because no single value of z was found to give
good scaling behaviour in the time range studied,

Our numerical results are strongly suggestive of non-universal behaviour of ex-

ponents a and z. The non-unjversal exponent values have been observed to be

valid over at least three decades of MC time (up to 10° time steps). We note that

there are two length scales at work here. For low ng, the dynamics is dominated by

ﬂiﬂﬁis;ve motion of isolated particles, ‘eating into' clusters of persistent sites. Due
to annihilation, their average density decays as n(t) = (87 Dt)~'2 [10] and hence
the average separation is the diffusive scale Lp(t) ~ tY2 On the other hand, for
fig =+ 1, the initial separation of persistent sites ~ /(1 —ng) 3 1. The short time
‘behaviour is now dominated by persistent — non-persistent conversion of isolated

s With characteristic length scale £,(t) ~ ¢3/5. Tt is possible that the observed

universal behaviour results from competition between these two scales. Accord-
0 this picture, one should see a crossover to diffusion dominated regime at later

es, but we are yet to see any signature of that. Further nu merical work, at least
few orders of magnitude greater than what is reported here, would be required to

ablish conclusively the possibility of a temporal crossover.
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Tig b in
0.20 | —6.621 | 0.34372(11)
0.50 | ~0 —

0.80 | 15.701 | 0.35495(5)
0.95 | 84.672 | 0.36572(4)

Table 2.1: Results for the prefactor b and exponent ¢ as measured from simulations.
The numerical value of ¢ is found to be close to the persistence exponent § whose

exact value is 0.375. The figures in brackets represent statistical error in the last
decimal place. Note the sharp rise in b as ng — 1.

2.4 Conclusion

Persistent sites are shown to have strong correlations in their spatial distribution.
In one dimensional A + A — 0 reaction-diffusion system, we show that there is a
length scale s(t), diverging with time as s(t) ~ t1/*, which demarcates the correlated
region from the uncorrelated one. We argue that z = 2 at large ¢ . Persistent sites
_’_éfg.-pa.ratecl by distance k < s(t) are highly unlikely to have a particle A4 between
them and so retains their persistent character, Ouly persistent sites separated by

distance > s(t) take part in the decay of persistence at subsequent times.

We find that if k is the distance of separation between any two consecutive
persistent sites, then for k < s(t), the distribution of k is scale-free and decays
i]gﬁbralca;,lly as k77 with 7 = 2 — 2. We show this using the IIA (Independent
iﬁt‘ervﬁl Approximation), which assumes no correlation in the lengths of any two
"I'ja.cent intervals. We have verified our results by numerical simulations which
_‘;_:ggests the validity of the IIA, Under the IIA, our calculation for the two-point
correlation shows that over length scales r <« 5(t), the persistent site distribution

er the lattice is a fractal with dimension dy = 7 — 1. This prediction is verified
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0.50 | 0.7342(8) [ 0.50 |  0.27
0.80 [ 0.8204(5) | 0.45 |  0.18
0.95 | 0.9517(3) [ 0.30 |  0.05

Table 2.2: Observed values of exponent o as measured from box-counting method
(details in text), for four values of initial density ny. The quoted value of dynamical

exponent z is the one which gave the best data collapse over three decades of time,
t=10%10 and 105,

2.5 Appendix IT A

The divergence in the first integral in Eq. 2.10 can be separated out as follows.

We write f(n —2) = f(n) + A:f(n) and B(n—z) = B(n) + AB(n). so that
'Ilﬂlz—m .ﬂ:.f{f?] = liIn:r—H} ﬂ:.ﬁ{?] =0.

- After substituting for f( — z) and B(n — ), the divergent part of the integral
separates into the following terms.

Jyos F@V (0 = 2501~ 2)dz = f(m)(n) [, fe)dz +
5o [ 1@)-B0r)da +
B [ @At tde + [} F0)A .80 de

The first term is divergent near the origin, while all other terms are finite by

onstruction. Now we rewrite the first term using the equality Sito-1 f(z)dz =

-i}'PH). After some simplifications, the integral becomes

fj}_, [(@)f(n—2)8(n — z)dz = f(n)B(n)s(t)P(t) +
jj flz)fln —2)[B(n — z) — B(n)] dr +
.[}E Hz)[F(n = =) — f(n)] - B{n)fin) _/ﬂm flz)dz
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The first term is the divergent part of the integral, which exactly cancels the last
term in Eg. 2.10, to give the regularised Eq. 2.12.

2.6 AppendixII B

For r > 1, it is reasonable to assume that the higher order terms in the RHS of
Eq.2.20 will contribute more than the first term, ie., the range [0 : r| is more likely
to be covered with more than one Interval than a single one of length r. After using
this approximation, and substituting n(r,t) = (r—1)P(t)r=" in the continuum limit,
Eq. 2.21 is simplified to

r—1
C{r,f]’::{'r—ljf (r=z)7"Clz,t)dz
1
Our purpose is to see if the equation
r—1
P~ (1 — 1) f 2~r — z)""dz (2.33)
1

is consistent for @ = 20 =2 — 1 (Eq.2.11) at r > 1.

The integral [ = [[~" 277(r — £)~*dz can be transformed by change of variables

into the more standard form|[11]

ren l=a
J; (L+y)7"[r=1—y]™dy ~ -;TaF{l,T;E —a;—r) for a<1 and r> 1.

where F(a,bjc;z) is the Gauss Hyper-geometric function. For b = €,

:;{:a,_b; bjz) = (1 — z)™* exactly, independent of b[12]. Thus, for & = 2 — T we

(r =11 =r~2[1 +o(1)]

which is consistent with Eq. 2.33, at » > 1.
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Chapter 3

Spatial correlations in Persistence
d>1

3.1 Introduction

In the present chapter, we study the problem of spatial correlations associated with
Persistence in various coarsening systems in higher spatial dimensions. As we had
noted in the introductory chapter, the characteristic features of coarsening in spatial

dimension d > 1 are very different from that in d = 1. For example, in d = 1 kinetic
Ising model, domain walls are zero dimensional objects which diffuse and annihilate

upon contact, while in d > 1, domain walls are spatially extended objects and their
motion is curvature-driven,

In the last chapter, we had shown that in d = | Ising model, there is strong
spatial correlation in the distribution of persistent sites. For length scales < 17,
the set of persistent sites was found to form a stationary structure, with power-
lﬁw spatial correlations. The stationarity of the distribution was attributed to the
muuhllatmn process of the random walkers, which make them drift farther and
!j:_;;t-_h&r away from each other, so that their average separation grows like ~ 7. This
s simply the domain growth process in d = 1, and it is natural to enquire whether
essential part of this argument could be carried forward to higher dimensions

In the next section, we use finite size scaling arguments to obtain insights into
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this problem.

3.2 Finite Size Scaling

Let us consider the Ising model in a d-dimensional geometry of linear size L. We start
from an initial random configuration and quench the system, say, to the tempera-
ture T = 0. As a result, the spins evolve in time following the Glauber dynamics,
lowering the total energy of the configuration in the process. In course of time,
domains of positive and negative spins form, with characteristic length scale L(1)
growing as a power-law in time ie., £(t) ~ t1/*, where = is the dynamical exponent
for the coarsening process[l]. The fraction of persistent spins decays as power of
time : P(t,L) ~t* as long as t < t* ~ L*. Over time scales t ~ t*, the domain
egmwth is interrupted by the finite system size, and the system is expected to reach
the symmetry-broken equilibrium state. For zero temperature dynamics, this im-
p]ms that the persistence probability stops decaying beyond this point, attaining a
“hmltmg value P(oo, L) ~ L=*%. This happens as long as

z0
F il (31}
For 20 > d, persistence probability will decay to zero for sufficiently large lattice

size L. The above behaviour of the persistent fraction P(t, L) for finite lattice sizes

can be summarised in the following dynamical scaling form|2].

P(t,L) = L™ f(t/L7) (3.2)

‘where the scaling function f(z) ~ 2~? for z < 1 and f(z) — constant at large
. Similar finite size scaling ideas have been used in a previous work in the context

of global persistence exponent for nonequilibrium critical dynamies|[3].

Recent Monte Carlo studies in kinetic Ising model[4] indicate that in d =
c is a finite probability for the system to end up in a metastable “stripe’ state

(8 opposed to a symmetry broken state), which is infinitely long-lived at 7' = (.
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At T > 0, however, the stripe state is unstable and the system undergoes a slow
relaxation to the true equilibrium state over much larger time scales. Thus the
_proposed F'SS form holds for T = 0 Glauber dynamics, but at 7" > 0 coarsening,

non-trivial corrections are required. We will discuss this point in Section 3.3 of this

chapter.
The I'SS5 form for persistence is a very useful technique for the following reasons.
o The FSS form provides better estimates of the persistence exponent, especially
in higher dimensions, where the system sizes are severely limited.

® The validity of the scaling form also guarantees the existence of scale-invariant
spatial correlations in the distribution of persistent sites, This is especially

useful in higher dimensions where direct computation of the pair correlation

is tedious.

3.2.1 Pair correlation function from FSS

‘The finite-size scaling form given by Eq.3.2 implies the presence of scale-invariant
‘spatial correlations in the system, characteristic of fractals. To show this, we consider
the two-point correlation function C(r,t), which we define as the probability of
aﬁlding a persistent spin at a distance r from another persistent spin. For a d-
dimensional system, C(r,t) satisfies the normalisation condition JL (e t)dir =
[4P(t,L). After substituting £q.3.2, this becomnes

fnL Clryt)r?=tdr ~ L0 f(1/L7) (3.3)

Let us rewrite this equation in terms of a new function F(a,b) = a**(’(a,b) and

dimensionless variables = r/L and 7 = {/L*,

f F(Lz, LPr)a® ' "y ~ f(7) (3.4)
{

Since the RHS of the equation has no explicit L-dependence, LHS should also
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be likewise. This is possible only if F(a, b) = g(ba=%), where g(7) is given by the
integral relation

it ,[TW n®~ 0+ g(n)dy ~ = f(r) (3.5)

Using the above equation, the limiting behaviour of the function g(n) for small
‘and large values of the argument could be deduced from the known behaviour of
fthe function f(r). Consider 7 > 1, where f(7) is constant, From Eq. 3.5, this
?in;pﬁ_es that g(n) is constant for large 7. In the other extreme of + < 1, flr)~ 178,
- We split the integral in Eq. 3.5 as J7° = [7+ I and note that g(n) is constant in
the second integral for sufficiently large a. The second integral vanishes as 5% as
7 —+ 0, whereas the RHS diverges as 7. This can be consistent only if the first
integral diverges as 7=% which would imply that g(n) ~ n=? as 5 — 0. This leads
to the following dynamical scaling form for Cir,t).

Clryt) = r7g( L) (3:6)

rZ

For small separations r < ¢1/*, this scaling form implies scale-free correlations,
e, C(r,t) ~ r=*%, characteristic of a fractal with fractal dimension df =d—z8. On

_,'ﬂ_'g.gther hand, over larger length scales, Cr,t) ~ =% which is indicative of the

gy change AE < 0, never flipped if AE > 0, and flipped with probability & Lif

AE = 0. One MC time step was counted after every spin in the lattice was updated
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Figure 3.1: (A)The persistence probability P(t, L) is plotted against time ¢ (mea-
sured in MC steps) for three different lattice sizes L in d = 2 Glauber Ising model.
(B) Same as Fig. 1, except that the scaling function flz) = L¥P(t, L) is plotted
against the dimensionless scaling variable z = ¢/L*. The data for different L values

were found fo collapse well to a single curve for # = 0.21 and z = 2.12 + 0.05.

- once. The persistence probability at any time ¢ was determined as the fraction of
spins that did not flip even once till time { since the time evolution started. The
data is averaged typically over 1000 starting random configurations for small [ and
low d and over 50 starting configurations for large L and high d.

For T = 0 Glauber dynamics of Ising model, the persistence exponent # is
exactly known to be 3/8 in d = 1[7]. In higher dimensions, simulations predict
0~0.22(d = 2)[8, 9, 10] and § =~ 0.16(d = 3) [8]. In our finite size scaling analysis

of the simulation data, we adopt the following procedure, From the asymptotic

fraction P(t — oo,L) ~ L™ we estimate the exponent a = z6. The scaling
fﬁmntion is then computed as f(z) = LeP(t, L), and is plotted against the scaling
variable r = /L% (Fig. 3.1 to 3.3). The value of the dynamical exponent = is then

adjusted for the best data collapse. The exponent # could then be computed as

QF 2. In Table 3.1, we have reported our results for the Glauber-Ising model in
spatial dimension d = 2 to 4. In all cases, we find 2 which is the accepted
jfﬁlpe of the coarsening exponent for non-conserved scalar models(1]. (Ind = 3

Slauber dynamics, a slower ¢'/% coarsening has been observed before[11]. This is

~ 2
g 1

presumably due to lattice effects, but we have not seen any signature of this effect

in our simulations). In d = 4, we find that =

i
-

2, o = 0.24 gives reasonably
good data collapse over the time scales and system sizes studied. Fig. 3.3 shows
the scaled data in d = 4. It may be mentioned that in d = 4, earlier simulations

o |

%
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Figure 3.2: The scaling function flz) = L¥*P(t,L) is plotted against the dimen-
sionless scaled time z = ¢/L* for three L-values in d = 3 Glauber [sing model. The
observed data collapse has been obtained for z = 2.05 and § = 0.166.

dimension | « z |[8=2 |df=d—a
=1 0.45 | 2.12 | 0.21 1.55
== 3 0.32 | 2.05 | 0.1561 2.68
d=4 0.24 | 2.0 | 0.12 3.76

Table 3.1: A table of results for the FSS analysis in kinetic Ising model at 7' = 0.

had suggested that the persistence decay might be slower than a power-law, and
perhaps logarithmic[8]. However, the agreement of our data with the scaling form
E;;;E-E.E suggests that persistence follows a power-law decay in d = 4 also. For d > 4,
iiiﬁcking of spins has been shown to lead to a limiting value of P(t, L) as ¢ — oo,
which is independent of L[8]. We could simulate only small lattice sizes for d = &

Eﬁom which we cannot make any conclusive remark at this stage.

2.3 The TDGL model

Veniow turn to a discussion on the continuum kinetic Ising model, which is deseribed
y the TDGL equation.

a‘i}gx't—”” =Vi—o+6" 1 {8(x.006(x,0)) = §(x — x') 3:1)
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gives the best collapse pf data, so that 8 = 0.12 + 0.02

To simulate Eq. 3.7 numerically, we use the finite difference Euler discretization

scheme on cubic lattices of L sites [13, 14].

G(x, ¢+ At) = (x,t) + a |3 ¢(x', 1) — 2d(x, )| + Atfe(x, 1) — ¢*(x,8)] (3.8)
=
where a = ﬁ;. The TDGL model in d = 1 coarsens only logarithmically, and
hence the F'SS form does not hold in this case. We checked the FSS form numerically
atial dimension d = 2 to 4. In d = 2, we find that the best scaling collapse is
ined for 20 = 0.375 and z = 1.94 (Fig. 3.4), which gives § = 0.19, in agreement
with previously known results[12]. In d = 3, we find 20 =~ 0.49 and = ~ 2.02, which
es § 7 0.25. This value is higher than the corresponding lsing model value at
0, perhaps because the lattice effects which impede domain growth in Glauber
imics are absent here. This value also agrees with the high temperature value
in Ising model, as we shall see later in this chapter. Similatly, in d = 4, we
rve ff ~ 0.27 (Fig. 3.5), again much higher than the corresponding lsing value

'=0. A more detailed discussion of this point will be made in Section 3.3.



l[i_r ||‘ ¥ ill T I1I’ LI

L=

R
[=32—]

g - 64
slope = [}}E ........... .

fla)

i

PHN S (AR S0 i<}

1 1 I
le-05  0.0001 0.001 0.01 0.1 1 10 100
(L

YO T R AT Y

::_'_igure 3.4: The figure shows the scaled probability plotted against the dimensionless
scaled time in d = 2 TDGL model. The data collapse is obtained for z6 = 0.375,
- z=1.94 which gives § a2 0.19.

10 7 LE | T LR
.,‘“‘“.I- “"ﬁ\‘.
E .‘1‘.‘_\.. -::“
H.-‘ T
Ir
L | I p gl 1
0.0001 0.001 0.01

z={fL*

Figure 3.5: The figure shows the scaled probability plotted against the dimensionless

s

scaled time in d = 4 TDGL model. The data collapse is obtained for = = 0.54,
z=2.0 which gives # ~ 0.27.

:il'r_ju ension | o z |0=2|dy=d-a

P d=2 Josr[1ea] 010 | 163
d=3 |049|205| 025 2.48

S d=4 [054] 20 | 027 3.46

Table 3.2: A table of results for the FSS analvsis in TDGL model.
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3.2.4 The Diffusion Equation

In the diffusion problem, we have a scalar field #(x,t) evolving according to the

diffusion equation. The initial values ¢(x,0) are taken to be independent random

variables with zero mean.

0 = x,0) 5 (0(x,0)0(x,0)) = 8%0x — x) (3.9)
For this problem, it has been shown using approximate analytic theories[13,
i’é, 15]that P(t) ~ ¢=7 in all dimensions. The predicted exponent values in low
dimensions were in good agreement with simulation results. The exponent was
ﬁ:'_:uud to increase with dimension, and has been suggested to have the asymptotic
_ir:qlue 0(d) ~ av/d as,d —+ co. The constant @ has been estimated to be ~ 0.14[13, 14]
and =~ (.18[15] by different authors. For d = 1,2 and 3, the exponent values are
;ﬁ'und to be 8 ~ 0.12,0.18 and 0.23 respectively.

To simulate Eq. 3.9 numerically, we use the finite difference Euler discretization

scheme on cubic lattices of L sites [13, 14].

P(x,t+ At) = g(x,t) + a |3 $(x, 1) — 2dg(x, t) (3.10)

- where x' runs over all the 2d nearest neighbour lattice sites of x in the cubic
lattice and a = [Tf}_z < E-I; for stability of the discretization scheme. We have taken
a = 4 in our simulations as this value has been observed to provide the fastest

approach to the asymptotic regime[13].

For the diffusion problem, simple scaling arguments suggest that the dynamical
nent z = 2 in all dimensions. In all dimensions studied, we found excellent
scaling collapse with z ~ 2 and the # values quoted above. Upon substitution of
xponent values into Eq. 3.1, it can be easily seen that the condition for fractal
mation is satisfied for d = 1,2 and 3. For d = 1, this has already been confirmed

by an earlier numerical study[16]. Our results for the persistence probability and

the scaling function for three different lattice sizes in d = 2 is displayed in Fig.3.6.
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Figure 3.6: The scaling function f(z) = L**P(t, L) for the 2D diffusion problem is
plotted against the dimensionless scaling variable z = {/L*. The data for different [

values were found to collapse well to a single curve for # = 0.186 and = = 2.0540.04,

It is also possible to extrapolate these results to the d — oo limit using the
asymptotic form suggested for 8. We see that in this limit, the LHS of Eq. 3.1 van-

shes as ;%E'* leading us to conjecture that fractal formation persists in all dimensions
for the diffusion problem.

This result is also significant for the TDGL (and Ising) model. Consider the
0JK approximation(17] to phase ordering where we define an auxiliary field m(x, t)
Emugh the nonlinear transformation ¢ = sgn(rn). It was shown that in the limit
‘--—-a-' 00, m(x,t) obeys the simple diffusion equation and thus, in this limit, Per-
sistence properties of both the models are identical. We thus conclude that fractal

m’[atiun in the Ising model is present in all spatial dimension d ( at least at suf-
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due to thermal fluctuations inside a domain. If one computes the fraction of persis-

tent spins naively, the random therral spin flips make P(t) to decay faster than a
power-law, almost exponentially.

Derrida suggested a scheme([18] that gets around this problem in a simple manner.
Hisidea is to consider two identical systems, one at a disordered initial configuration
(system A)and another at a completely ordered initial configuration (system B), both
“subject to the same realization of thermal noise. If a spin flips in A, and not in B,
‘one concludes that the thermal noise is not strong enough to disturb spins inside
‘a domain, and this flip is associated with the domain growth process. Such spin
ﬂi s are counted when computing the persistent fraction. On the other hand, il a

spin flips in both A and B simultaneously, one may safely conclude that it is due to
i:hennal noise and need not be counted.

Derrida and later Stauffer[19], showed that with this modification, P(t) decays
a5 power-law in the entire subcritical range of temperatures in d = 2 Ising model.

The exponent § was also found to be independent of temperature, as long as T < T..

i

This was also confirmed by block scaling studies done by Sire et.al. The situation is,

1

i

owever, different in three dimensions. In this case, the implementation of Derrida’s
;_eme again leads to a power-law decay of P(t) for0 < T < T.. However, while # at
T'=0is nearly 0.16, 0 crosses over to a larger value, = 0.26 at higher temperatures.
The latter value also agrees with the corresponding value in d = 3 TDGL model.
ely, these observations seem to suggest that the exponent § varies with tem-
perature and is non-universal. Similar discrepancy is also present in d = 4, where

0= 0.12 in the Ising model, while 87pgr =~ 0.28 in d = 4.

Majumdar and Sire[10] argued that the problem could be resolved and unjver-
ality restored, if P(t) is expressed in terms of the characteristic length scale of

nains, L(t). In general, L(t) ~ 175 where we denote by zp the dynamical ex-
onent associated with domain growth, and we expect zp = 2 from Allen-Kahn
ments. However, it is known that for T = 0 dynamics of Ising model in d = 3,
namical exponent of domain growth is closer to 0.35 than 1/2[11], presumably
lattice effects, which trap the system in certain configurations. We confirmed

endently through simulations that this is indeed so, and also found that in
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d =4, the domain growth is even slower, with L{t) ~ %2 (Fig. 3.7). Thus it is
perhaps not surprising that the numerical value of 4 in Ising model at T = 0 is lower
than that for the corresponding continuum models, where such effects are absent.
;&.Iso, the lattice effects might be overcome at sufficiently high temperature, so for

large enough T', 6 for Ising model approaches its continuum counterpart.

The argument of MS is that if we express P(t) ~ L(t)~?, then § ~0.48 in d = 3
and § = 0.57 in d = 4. Now, let us conjecture that 7 is universal, and is the same

for discrete and continuum models. Since L(t) ~ t7 for continuum TDGL model in

Br_pz
Orpor = Orso = T; 2 (3.11)

~ Substitution of numerical values in the RHS give frper ~ 0.24 in d = 3 and

2 0.28 in d = 4 in reasonable agreement with independent numerical estimates.

Before concluding this section, we would like to remark that several questions
iain unanswered in this problem. The argument about the universality of 8, as
"*1' to 0 is supported by numerical data, but needs to be Justified with physical
uments. Also, for Glauber dynamics in d = 3 and d = 4, the correlation length
distribution of persistent sites appears to have a different time dependence from
‘mean domain size. We have seen that while E(t) ~ t7 in all dimensions studied,
exponent of L(t) seems to be affected by the lattice severely in d > 3. Thus the
sistence correlation length £() seems to be a more robust length scale than the
domiain size,

_....'_Et_"JJ.ii}w present our numerical studies on pair correlation for persistent spins in
model at T' > (. As we had explained in a previous section, one cannot use the
:-;-ba:._t_ialysis here on account of the occurence of slowly relaxing metastable states
' E 2. Hence, we did a direct computation of the two-point correlation, which
ricted our system sizes to L = 100 in d = 2 and L = 50 in d = 3. This also
ricted our studies to low temperatures (T/T, < 0.25). At higher temperatures,
takes a long time to reach the power-law regime, and the interval between

‘onset of this regime and the saturation time (~ L?) was too small to make
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Figure 3.7: The figure shows the characteristic length scale L(t) as a function of

time ¢ for 7' = 0 Glauber dynamics in the Ising model in spatial dimension d = 2

to 4. We observe that except for d = 2, the slope is appreciably different from 1 /2.

measurements of time dependent correlations.

Qur principal results are outlined here. In the temperature and time ranges

lica B)starting configurations. The original system and the replicas were then
ject to the same realisation of thermal noise at all times. In simulation, we im-
plemented this by using the same initial seed for updates in all systems. Further,
all the systems were updated sequentially.

We measured the Persistence probability as follows. Let us denote the spins in the
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o(x,t) will be regarded as persistent upto time t, if the product
Hyceo(x,t)oa(x,t') > 0
For — spins, the analogous condition is

Mpeo(x,t')op(x,t') > 0

The Persistence probability is thus given by the expression

P[t} R e 1 +O’(}Eg i}Ht'ELU{X, t’]a',q{x, t:} +
x 2’
) Z(x'ﬂl'luga{x,t’)aa(x,i'} (3.12)

To compute the pair correlation C(r,1), we defined the persistence density index

n(x,1), such that n{x,1) = 1 if the spin at x is persistent at time ¢, and 0 otherwise.
Then,

C(r,t) = [L4P(t)]7 Y n(x, t)n(x + r,t) (3.13)
*,12

where, {1 in the RHS represents angular averaging.
d=2

In Fig. 3.8, we show the numerical results for C(r,1) in d = 2 Ising model evolved
using heat bath dynamics at a temperature T' = 0.257.. We found that C(r 1) is
very well described by the dynamical scaling form

Clr,t) =t~ h(r/t'/?) (3.14)

where # =~ 0.21, which agrees with previous numerical estimates. For r < /2,

we find that C(r,t) ~ =%, which is characteristic of fractal structure.
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Figure 3.8: The figure shows the scaled two-point correlation function for persistent

spins in d = 2 Ising model at T/T, = 0.25. The scaling collapse was obtained for
2200,

d=3

In Fig. 3.9, we show the numerical results for C[r, t)in d = 3 Ising model evolved
using heat bath dynamics at a temperature T = 0.22T,.. We found that C{r,¢) is
very well described by the dynamical scaling form

C(ryt) = t~%h(r/t"/7) (3.15)

where ¢ = 0.18 and z =~ 2.13. The value of 8 is slightly higher than previous
estimates for zero temperature, but much lower than the continuum value = 0.26. It

is possible that for small non-zero temperatures, # exhibits a a slow crossover from
0.16 to 0.26.
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Figure 3.9: The figure shows the scaled two-point correlation function for persistent

spins in d = 3 Ising model at T/T, = 0.22. The scaling collapse was obtained for
7213,

3.4 Conclusion

In this chapter, we proposed a finite size scaling ansatz for the persistence probability
in a coarsening system. The scaling form corresponds to the fractal structure and
dynamic scaling characterising the spatio-temporal evolution of the persistent set.
We checked the scaling form numerically for Glauber-Ising model, TDGL model and
for the diffusion problem. Finite size scaling enabled us to study persistence reliably
111 higher dimensions. Our results agree with the known values of § in the case of
Ising model(from d = 1 to 3) and in the diffusion problem (we have checked upto
d=3). For d = 4 Ising model, we find the signature of algebraic decay of persistence
with 6 >~ 0.12, in contrast with what had been reported earlier[8]. We also verified
by direct computation of pair correlation that the fractal formation is also present

at non-zero temperatures, below the critical temperature.
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Chapter 4

Phase separation in fluctuating

Interfaces

4.1 Introduction

t[‘he problem that we address in this chapter is somewhat different from that in
the previous chapters, where we had investigated the spatial structure of the per-
sistent region in various coarsening systems. In this chapter, on the other hand,
we study fluctuating interfaces, which are not coarsening systems in a conventional
sense. However, fluctuating interfaces do exhibit power-law decay of Persistence
probability, as we had briefly discussed in the introductory chapter. In coarsening
';_';ystems, we have seen that Persistence decay is intimately connected to the under-
ing domain growth, and the interplay of these effects causes strong correlations to
develop in the spatial distribution of persistent regions. Our idea is to explore this
connection further and see whether an interface with power-law persistence may be

viewed as a coarsening system, evolving towards a phase separated steady state.

It is useful to recall some basic phenomenology associated with surface growth
fo obtain an insight to the problem. Let us consider a surface described by a single
valued height function A(r,t), whose time evolution over large length and time scales
18 described an equation of the form Eq. 1.7. In general, the unequal time height

correlation of the surface assumes the scaling form[1] ([R(0,t) — h{r.t + T4 =
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rix f (;T;) where f(z) ~ 2® for ¢ < 1 and f(z) — constant for * > 1. The
exponent 3 is related to y and z as z = y. The dynamical exponent z and
roughness exponent y depends on the mechanism of growth and relaxation of the
surface and the correlations in the noise term. In a finite system of linear dimension
L, the steady state is reached over a time scale 7 ~ L. In this state, the correlation

becomes time-independent and the surface is self-affine over all length scales.

Is it possible to view such an interface, evolving towards its self-affine steady
state, as a coarsening system ? To answer this question, let us now characterise the
height fluctuations of the surface in terms of a coarse-grained Ising-like variable s(r)
defined as follows: At a given instant in time, all points on the surface where the
~ height is below a certain reference level hg is assigned a spin s = —1, and the others

are assigned s = +1.

s(r) = sgn [h(r) — hq] (4.1)

These spins will be referred to as Coarse-grained Depth (CD) spins henceforth,
‘and the description of an interface in terms of these spins shall be called a CD
model. Since the RMS width of the surface is w ~ LX, it makes sense to consider
“only reference levels hg ~ (h)(t, L) + aL* where (h)(t) is the instantaneous mean
height and @ ~ O(1). In the present work, we shall only deal with the case a = 0.
The effects of changing the reference level are currently under investigation, and will

be reported elsewhere.

Before we start our detailed study, we try to give a very simple picture of the
coarsening properties of an interface. When an interface starts growing from a
‘flat'(uncorrelated) initial condition, in course of time, self-affine height correlations
appear over length scales £4(t) ~ t'/%. The self-affine scaling of height fluctuations
leads to the occurrence of valleys on the surface, which are simply connected clusters
f positive spins. In course of time, a valley will be overiurned to become a hill,
hich is a connected cluster of — spins. The survival time scale of a valley = ~ £
vhere ¢ is the average linear extension of the valley. Thus, the longest valley that

s overturned at time ¢t has typical size ~ t'/%, and this defines the characteristic
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length scale for coarsening in the problem. Therefore the interface ‘coarsens’, and
in the steady state, the correlation length of height fluctuations £4(t) approaches
the system size L. In this state, the interface ‘phase separates’, and the size of the

largest valley is of the order of the system size.

In this chapter, we focus mostly on steady state properties (of interfaces), unlike
earlier chapters where we were almost exclusively concerned with time-dependent
phenomena. This choice is motivated by the possibility of making analytical pre-
dictions, which could be done most directly in the steady state on account to the
self-affine scaling of height fluctuations over all length scales. However, most of
the results that we derive here could be easily extended to the coarsening regime
also by the standard method of replacing the finite-size cut-off with the dynamical

correlation length.

In this chapter, we will be mostly concerned with (2+41) dimensional interfaces.
The problem of ‘domain growth' in (1+41)-dimensional surfaces was studied earlier
by Kim, Bray and Moore[2] and more recently by Das, Barma and Majumdar[4]. In
general, it was shown that the equal time pair correlation for spins satisfies dynam-
ical scaling, (s(x,t)s(x +r,t)} = f(r/t}/*) where z is the dynamical exponent for
inferface fluctuations. The dynamical scaling form is characteristic of a coarsening
system, evolving towards a phase sc-:p.a.ra.ted state, and is consistent with the general
arguments in the preceding paragraph. However, unlike the conventional coarsening
systems discussed in Chapter 1, the mean domain length scales differently from the
correlation length, which resulted in a cusp in the correlation function (as opposed
fo linear decay in conventional systems) and the consequent breakdown of Porod
Law (see Sec. 1.2.2). This feature is a direct consequence of the power-law dis-
_Eﬂbution ol domain sizes, which was shown to be closely related to the self-affine
scaling of height fluctuations, Further, the order parameter in the phase separated
steady state was found to experience strong fluctuations, with a finite variance in
the thermodynamic limit. This is again unlike typical Equilibrium systems, where

the variance in the order parameter vanishes in the thermodynamic limit.

It is natural to ask whether similar ‘fluctuation dominated’ phase separated state

xists in higher dimensions also. In the present paper we show that 241 dimensional




rough surfaces indeed show features very similar to what was found in 141 dimen-
sions. In particular, the power-law decay of the cluster size distribution, the cusp in
the pair-correlation and the finite width of the order parameter distribution in the
thermodynamic limit are, in general, present in two dimensions also. However, there
are also additional features, for example, the cluster size distribution, in addition to
the power-law part, may also have a distinct infinite cluster (Sec. 4.3), which might

even be ‘dominant’ compared to the power-law sector.

The rest of this chapter is arranged as follows. In the next section, we present
an overview of the basic phenomenology of the steady state of rough interfaces.
This section forms the theoretical background of most of the material discussed in
this paper. We consider the steady state of a rough interface, characterised by a
cerfain roughness exponent y. For Gaussian surfaces, we show exactly that the
pair correlation of CD spins shows finite size scaling, which is indicative of phase
segregation of 4+ and — spins. For non-Gaussian surfaces like the KPZ surface,
'_'this result is again shown to be true within an approximation. We further argue
that the largest spin cluster in the system has typically ~ L? spins. These results
‘are supported by extensive numerical simulations, which we present in Section 4.3,
‘where we introduce the specific models we study here and the numerical procedure

followed. We show that the study of two-point correlations and size distribution of

particle clusters provide unambiguous evidence for phase separation of CD spins in
rough surfaces. In order to characterize the ordered state, we define an appropriate
order parameter and study its probability distribution. We find that similar to
{1+1)-dimensional surfaces, the probability distribution appears to remain broad in
the thermodynamic limit (Section 4.4). We argue that this feature arises from large
luctuations in the size of the extremal spin clusters. In Section 4.5, we conclude

he chapter with a summary of our results.
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4.2 Phase separation in (241) dimensional inter-

faces in steady state

4.2.1 Long Valleys in a Rough Surface

We start our analysis by considering a 2 dimensional surface in steady state, inter-
sected by an imaginary horizontal plane at height hy as discussed in the introduc-
tion of this chapter. In order to assign a domain structure to the surface, we define
Ising-like spin variables on the surface, relative to this reference height, Following
the convention in DB, we shall call the new spin variables Coarse-grained Depth
(CD) spins. The intersection of a rough surface with a horizontal plane forms a set
of non-intersecting contour lines on the surface (Fig. 4.1). It can be shown from
scaling arguments that for a self-affine rough surface, these contour lines have a
fractal distribution on the surface, with fractal dimension D = 2 — y[7, 8] (Also see
Appendix 4A for a detailed analysis). In spin language, these contours are identified
as the interfaces between clusters of s = 41 and s = —1. The area enclosed by a
contour is called an ‘island’, which typically contains one spin domain and several
smaller islands. The perimeter of any single island is itself a fractal, and scales with
the enclosed area A as P ~ A% [6] where the fractal dimension D, < D. The size

distribution of ‘islands’ formed by contours can be shown to follow a scale invariant
distribution[8, 9]:

N(m) ~Tym™™ (4.2)

where

Th=2-—

b | ot

(4.3)

and mn is the area of the island and I'y is the total number of islands. To find

[z, we use the normalisation condition for the perimeter lengths of all islands :




(A) (B)

Figure 4.1: Typical CD spin configurations for KPZ surface (A) and EW surface
(B) in the steady state. The white part represent regions where & < (k) and the
dark part regions are where A > (h).

f & N(m)mP<%dm ~ M(L) (4.4)

where M(L) is the total perimeter of all islands (the total contour length) dis-
cussed in Appendix A. The upper limit is taken to be proportional to the total area,
since the island sizes are limited only by the finite system size. Clearly, if D, < D,
the integral converges to a constant, and we have [';, ~ M(L). On the other hand,

if D. = D, the integral diverges logarithmically and 'z ~ M(L)/loglL.

Kondev et.al has recently suggested that D, = (3 — x)/2[10]. If true, this result
would mean that D. < Dforall 0 < y < 1and D, = D for x = 1. Using these
results, we find [y, ~ L*X for 0 < x < 1. In the marginal case of logarithmic
roughness (y = 0), 'y ~ LE[EﬂgL]‘% whereas for x = 1, the logarithmic factors

cancel out and we find 'y ~ L.

We now proceed to find the typical area of the largest island in the system.
For this purpose, we use an approximate argument concerning the statistics of ex-
tremal values in a given power-law distribution. It can be shown using extremal
statistics arguments that in an ensemble of NV variables X,...Xy randomly drawn

from a power-law probability distribution p(X) ~ X—U%%) the typical value of the

maximum of X scales as X, .. ~ NY2 (see Appendix B for details), If we make
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the approximate replacement of N by 'z, we find that the typical size of the largest
island is ~ L* for ¥ > 0 and ~ Lz[lugL]‘% for y = 0.

[t is also of interest to study the total area covered by all the islands in the system,

which we denote by A'. Since islands are typically found inside larger islands, it is

clear that A" is bound by the following inequality.

6L
Al j N(m)mdm (4.5)

For xy > 0, it is straightforward to show that A ~ L2, Thus the total area
covered by all islands is at most a finite fraction of the system size. Since the over-
all island distribution is self-similar, it is reasonable to assume that this property is
true for each individual island also, ie., the total area covered by smaller islands is a
finite fraction of the total island area (This assertion, however, needs to be proven
rigorously). Since each island typically consists of one lake (which is a connected
cluster of CD spins) and several small islands, it follows that the lake also occupies
a finite fraction of the total area of the island. Since the area of the largest island is
~ L*, this implies the presence of at least one domain with size ~ L?, & characteristic

of phase separation.

For x = 0, logarithmic corrections to the power-law in Eq.4.2 have to be taken
into account, and the calculation gives A ~ L%logl. This result is identical to an
exact result for the corresponding quantity in critical 2D Ising model[11] and the
extra logarithmic factor is indicative of the dense distribution of contour loops in
this case. From the general arguments presented above, we conclude that the size

of the largest CD spin domain scales as ~ L?, with possible logarithmic corrections.

Having established the existence of an infinite cluster, and thus the existence of
' Pha,se separation in CD spin model using scaling arguments, we now proceed to the
I'jjt_ur.i],r of two-point functions. For Gaussian rough surfaces, we compute exactly the
(wo-point spin correlations in the steady state. For general non-Gaussian surfaces,
there is no analogous result, but we use an approximation that is expected to hold
good at least in the vicinity of y = % Both the approaches predict finite size scaling

nf the two-point correlation function, another characteristic of phase ordered state.



4.2.2 Steady State Correlations in CD models

The two-point spin correlator for CD spins is defined as follows:

C(r, L) = (s(x)s(x +r)) (4.6)

where the average is taken over an ensemble of steady state configurations. The
remaining part of this section is devoted to the evaluation of C(r, L) analytically for
different surfaces, characterised by the roughness exponent y. In the first subsection,
we show that for a Gaussian rough surface with 0 < x < 1 in 2+1 dimensions,
C(r,L) = ®(%) and 1 — ®(z) ~ z*+ higher order terms. In Appendix 4C, we show
that this result is valid also for 141 dimensional surfaces, in agreement with [4].
It is tempting to conjecture that this result might in fact be super-universal for
Gaussian surfaces, However, we have not been able to compute C(r, L) for general
d dimensions, except for the special (marginal) values x = 0 and 1. In these cases,

we find logarithmic corrections to the above results.

Gaussian rough surfaces

‘We consider a Gaussian rough surface in the steady state with probability distribu-

tion

Pl ~ eap (- 540 hehg (47)
q

where x is the roughness exponent for the surface and hq = L™ [ d*xh(x)e™ 19>,

For finite lattices, h(r) is defined relative to the instantaneous mean value (h) =

L2 [ h(x)dx.

Consider the two-point height correlator G(r, L) = (h(x)h(x + r)) and its Fourier
Transform Z(k, L) = {hxh_x). For the Gaussian probability distribution Eq. 4.7, it

s clear that

El:k, L} s B31FX) I:-'J.b'}
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so that

G(r, L) ~ f; dkk=0+2 1 () (4.9)

where Jo(z) is the zeroth order Bessel function and a is a microscopic sut-off
length scale. For x > 0, there is a continuum limit and the constant a can be
effectively put to zero for large enough L. (See Appendix 4C for a discussion on
this point). We consider this case first. After making this simplification, we express

Eq.4.9 in terms of the scaled variable £ = 271 /L.

G(r, L) ~ L [% - c:“f{zf)l (4.10)

where

1(6) = jq_ ~ dzfl — Jo())e 0+ (4.11)

After expanding I(£) in powers of £ near £ = 0[18] and substituting, we find that

L2
G(r, L) = = (1-agx+...) (4.12)
where :
—eX =
AT —x)

xI(x)

For Gaussian surfaces, G(r, L) and C(r, L) are related through the equation[19]
:{alsu. Appendix 4D)

C(r,L)= %arc&in lgﬁ;’ EH (4.13)

After substituting for G(r) and expanding arcsin(l —z) = § — V2z(1 4+ ....) near
‘z = 0[20], we find

Clr,L) =1—A"€*+ ... (4.14)
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where A’ = l'iiﬁ. . After doing the Fourier transform, we find the Structure

Factor:

S(k, L) ~ £=3+x) (4.15)

If x = 0, there is no continuum limit and we need a non-zero length scale a.

After proceeding with the calculation, the final result is

2v/2 | In(xr/a)

Clr L) =1 - In(L/2a)

+ ... (4.16)

for £ < 1, where x = €” and v = 0.5772.. is Eulers constant. Eq.4.16 is valid
for all dimensions. The details of the calculation may be found in Appendix C.

The Independent Interval Approximation

Due to the isotropy of the problem, the two-point correlator C(r, L) is expected to
depend only on the magnitude of r and not on its direction. So the computation
of C(r, L) is essentially a one-dimensional problem, one need to compute the two-
point spin correlation only along an arbitrary linear cut on the surface. The vertical
cross-section of the surface along such a linear cut is effectively a 141 dimensional

~surface, with the same roughness exponent as the original 241 dimensional surface,

It can be shown from scaling arguments that the separations between consecutive
zero crossings (ie., its intersections with any reference level, like the mean height
(h}) of this 141 dimensional surface follow a power-law distribution. Let Qr(l) be
the average number of consecutive zero crossings separated by a distance [, along an
arbitrary linear cut along the surface. Since the average number of zero-crossings

along a linear cut scales as L'~%, we have the equation

L
f dlQ (1) ~ L= (4.17)

(8

together with the normalisation f:’ diQ (1) = L. To solve, we use the scal-

i’ng ansatz Qr(I) = L' f(I/L) where [}dzf(z)z = 1 from normalisation. Upon
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substitution into Eq. 4.17, we find f:fL dz f(z) ~ L%, This condition implies a
small-argument divergence of the scaling function: f(z) ~ z=#%) near # = 0. Thus
Qr(l) ~ L'=x1==X) for | « L. Let P(l) be the probability that two consecutive

zero-crossings are separated by a distance [ along the linear cut, then

-ﬂﬂ=f%§%~rﬁ (4.18)

with ¢ = 2 — x. In the spin language, this is the size distribution of domains of

+ and — CD spins along any linear cut on the surface.

A particularly interesting case is when the roughness exponent x = 1, so that any
vertical cross-section of the surface has the statistics of a one dimensional Brownian
random walk, which is a Markovian process. For a random walk in one dimension.
the intervals between successive zero crossings are independent random variables. In
this case, it can be shown that C(r, L) = 1 —a($)*~? for r < L[4]. After substituting
for 1, we find

c@m):1-ﬂ%ﬁ+un (4.19)

where a is a constant of order unity. In Fourier space, this implies that S(k, L) ~

k24 in 2 dimensions.

For general x # 1, the analog of random walk is a fractional Brownian
-motion(fBm)[7, 12]. Unlike the Random walk, an {Bm is non-Markovian, ie., past
and future increments are correlated. In this case, it is not a priori clear whether
sucCessive zero crossings can be treated as independent random variables. However,
near y = % one may use [iq.4.19 as an approximation. (The Independent Interval
Approximation, or ITA, which is exact for random walk). For example, the KPZ
;I__l;lffﬂﬁﬂ in 2+1 dimensions is rough with x =~ 0.4, not very far from the Brownian
value £, In this case, we find that the IIA prediction is in very good agreement with

ults form simulations.
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4.3 Numerical Simulations

In this section, we present our numerical results on phase separation in SP and CD
problems for two different models of surface fluctuations: the Edwards-Wilkinson

model[13] and Kardar-Parisi-Zhang [14] model, whose evolution equations are re-

spectively

s vV*h + (e, t) (4.20)

gt
dh

o= vV h — AMVA)® 4 (e, t) (4.21)

We briefly summarize some of the properties of the models. The EW surface
describes symmetric surface fluctuations while the KPZ surface grows in one of the
perpendicular directions, and hence breaks the h — —h symmetry. The height
fluctuations in EW surface has a steady state probability distribution that remains
Gaussian in all dimensions, whereas for KPZ surface this holds only in d = 1. It is
fairly well-established that the KPZ surface is rough in (241) dimensions, and the
mean square width of the surface w?(L) = (h?) — (h)?* ~ L** where y = 0.4 from

simulations. For the linear EW surface, d = 2 is the upper critical dimension, and
w?(L) ~log(L/a)[21].

4.3.1 The single-step algorithm

We simulated a single-step 8OS model of the surface on a square lattice of L?
sites[6]. The initial configuration was constructed as follows. Let the ordered pair
(k,m) represent the points on the lattice, with k,m = 1,2,..L. Then h(k,m)=11if
k+4m is odd and zero if even. Thus it is ensured that all ‘columns’ of height 1 have

four nearest neighbours with height 0 and vice-versa.

The dynamics of growth of the surface is as follows. In each move, one site of
the lattice is selected at random. The height of the column is increased by 2 with

probability py if all four nearest neighbours are at greater height, and decreased by

2 with probability p_ if all four nearest neighbours are at lower height. If either of
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these conditions is not satisfied, the column is undisturbed. The former corresponds
to deposition of particles on the surface followed by adsorption, whereas the latter

corresponds to desorption and evaporation of particles from the surface.

The dynamics ensures that the height difference between any two nearest neigh-
bour columns stays at +1. One Monte Carlo time step is counted after L? such
moves, so that every site in the lattice is counted once, on an average, in each step.
If ps = p_, the surface has no net growth in either direction (in the limit [ — o0,
and the large distance-long time properties of the model are identical to those of
2-dimensional Edwards-Wilkinson equation[13]. On the other hand if p, > p_ (or
vice-versa), the surface grows in z-direction, and the asymptotic properties fall in
the KPZ universality class[14] with X o (py — p_)[1]. The noise 5 has zero mean
and short range correlations in space and time. In our simulations we have chosen
p- = 0 and py =1 for KPZ dynamics, ie., we have simulated a KPZ surface growing

against gravity. For EW dynamics, we fixed py = p_ = L.

4.3.2 The steady state measurements

We studied both the time evolution of the system as well as the steady state. For
the surface, the steady state regime is identified by studying the time evolution of its
mean-square width w(L,1) = -\/{hﬁ(r, t)) = (h(r,t))?. For a self-affine rough surface,
it is known that w(L,t) ~ t? for t « L7 and w(L,t) ~ LX at large times. Here = is
the dynamic exponent, x is the roughness exponent and z3 = y, This behaviour is

summarised in the following scaling form[1].

w(L,t) = LXf(t/L7) (4.22)

where f(z) ~ 2 for <« 1 and f(z) — constant for = > 1.

We measured the exponents z and y for KPZ surface independently by computing
w(L,t) numerically for three system sizes, L = 32,64 and 128. The data was fitied
into the scaling form Eq.4.22, and the exponents giving the best data collapse were

selected. We found that the best values were v o~ 0.37 and z =~ 1.65, which are
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reasonably close to the accepted values, ~ 0.4 and 1.6[15, 10]. From the data the
width of the surface was found to saturate by a time of about = ~ 10/*. Accordingly,
in our simulations, we fixed the equilibration time =, for the surface configurations
to be ~ 107. These time scales were found to be sufficient for reaching steady
state. For a given starting configuration the steady state measurements were made

at equally spaced points in time, with an interval of about .17,

For the EW surface, the dynamical exponent z = 2 in all dimensions from simple
scaling. Since 2 is the upper critical dimension, the width w(L,t) ~/TogL in the
long time limit ¢ 3> L? and w(L,t) ~ v/Togt for t < L2[1].

4.3.3 Two-point correlations

We start our study of coarsening in Sliding Particle model with two-point spin

correlations in the coarsening regime (¢ < L?).

C(r,t) = (o(x, t)o(x +r,1)) (4.23)

where the average is taken over all lattice points x and over all starting config-
urations. Also, on account of the isotropy in space, the set of all vectors r differing
“only in direction give identical results. The direction averaged two point correlation
funetion C(r,t) is well represented by the dynamical scaling form (Fig.4.2) in the
scaling limit (r > 1,1 > 1).

Clr,t) = f (E%) (4.24)

This scaling form is characteristic of systems undergoing domain coarsening,
where L(t) ~ t!/* is the dynamic correlation length[3]. The data collapses best with
27 1.6 for KPZ surface and = ~ 2.0 for EW surface. This is in accordance with our

ents in the introductory section.

For ¢ 3> L*, we observe finite-size scaling in the correlations.
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Figure 4.2: The figures show the two-point spin correlation as a function of the
scaled variable r/t'/* for a (A) KPZ surface and (B) EW surface in a lattice of

linear size I, = 256. The data represents an average over 100 different realisations

of the noise distribution in time. The data collapse was obtained for z = 1.6 in KP7Z

surface and z = 2 in EW surface. The time scales of measurements are { = 200 % o
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Figure 4.3: C(r, L) for CD spins is plotted against the scaled variable r/L for KPZ
:;_{tup, steep) and EW (bottom, flat) surfaces. The cuspy behaviour of the correlations

15 evident from the plots.
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c(:-,ﬁ:,r(%) 1 (4.25)

The finite-size scaling points to the ordered nature of the steady state. Analogous

to equilibrium systems[16], we define the steady state spontaneous magnetisation m,
in the CD model.

mf = limyyoolimpClr, L) = limeqaf(2) = co (4.26)

In Iig.4.2 and Fig.4.3, upon extrapolation to the origin, it is seen that
limzwo f(2) = e < 1. The measured values (see Sec. III B)give ¢y =~ 0.8 for
KPZ surface and ¢y = 0.5 for EW surface. This feature shows that the ordered
phase is not very homogeneous, but contains droplets of the other species also. This

15 similar to the equilibrium state of d = 2 Ising model, at temperatures 0 < T' < T..

The dynamic and finite-size scaling forms Eq.4.24 and Eq.4.25 describe the be-
haviour of the correlations in the regime r 3> £, t > tg, where the microscopic length
and time scales £ and {y define the scaling limit. In general, there is a short-range

analytic part in C(r, L).

C(r,L)=g (g) +f G) (4.27)

Since C(0, L) = 1 trivially, the short range function may be approximated by a
d-function: g{r/€) = (1 — ¢)d*(r) in the limit % —+ 0, so that

Clr, L) = [1 — eg)6*(x) + f (%) (4.28)
where §*(r) is the 2-dimensional Dirac delta function on the lattice.

We observe that both C'(r,t) and C(r, L) are nonlinear for the entire range of the
relevant scaling variable. This is quite unlike conventional phase ordering svstems
where C'(r,t) =~ 1—r/L(t) for r < L(t), ie., the fall of the correlation with distance

is linear over small r[3](see chapter 1). The latter result, more correctly, its Fourier

transformed version is well-known as the Porod Law[17], which holds true if the
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Figure 4.4: (A) The structure factor S(k, L) for EW (top) and KPZ (bottom) is
plotted against k in the (1,0) direction. The KPZ plot have been shifted upwards
by a factor of 10 for clarity. (B) The direction averaged structure factor after
subtraction of the flat part for KPZ (top) and EW (bottom) surfaces.

average domain size is of the same order as the correlation length. The observed
deviation from this law mean that although the correlations extends over the entire
system, the domains are not compact, but are ridden with holes, In order to quantify

this deviation, it is helpful to study the structure factor at small wavelengths.

4.3.4 The Structure Factor

The structure factor is defined as

S(k,L) = fn * PrC(r, L)e (4.29)

We computed S(k, L) along (1,0), (0,1), (1,1) and (1,-1) directions. No significant
direction dependence was observed, which also reflects the isotropy of C(r, L). From

Eq.4.28 S(k, L) has the following scaling form.

S(k,L) = 1—co+ L¥*g(kL) (4.30)
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where

ola) = [ dyf(w)olaly

and Jy(y) is the zeroth order Bessel function. For a fully phase separated system
with sharp domain walls, f(z) = 1 — ez for = « 1[3]. In Fourier space, this would

meat that g(g) ~ ¢~ as ¢ — o[17] in two dimensions.

Due to the presence of the non-scaling factor 1 — ¢y in Eq.4.30, the structure
factor does not vanish at large k, but approaches a constant value 1 — ¢ (Fig.
4.4A). The value of ¢y can be thus measured from the flat part of the structure
factor. The observed values are ¢y ~ 0.8 for KPZ surface and = 0.5 for EW surface,
To find the short wavelength behaviour of g(q), we first subtract the flat part from
S(k, L) and then do the finite size scaling. In Fig. 4.4B, we have plotted S(k, L)
after subtraction of the flat part. The power-law decay at large k is expressed in

terms of the scaling function as

g(q) ~ g~**) (4.31)

with & ~ 0.38 for KPZ-CD spins. For EW surface, we find that g(q) ~ ¢7(
Fig.4.4B).

For & > 0, Eq.4.31 implies a cusp in real space for C(r, L) at small arguments:

flz) =2 p—cz™ + ... (4.32)

at © < 1. We observe that for KPZ surface, a is numerically close to x, in
agreement with the analytical prediction based on IIA (Sec. 4.3.2). For @ = 0 (EW
surface), we expect logarithmic corrections to appear near the origin, which also

agrees with our exact results for Gaussian surfaces.

4.3.5 Domain size distribution of CD spins

To find the size distribution of CD spin domains, one can extend the ideas in Section

II A to make analytic predictions.
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Let us recall the CD spin distribution inside a typical island, In general, it
consists of a lake and smaller islands (which might have still smaller islands inside
them). A lake is just a CD spin domain. In section 4.2.1, we argued that since the
island structure is expected to be self-similar, the total area covered by the small
islands inside an island (and hence the area of the large lake) is a finite fraction of

the total area of the island.

We denote by Ny(s) the number of domains of + and — CD spins respectively,

which is bound by the following normalisation conditions:
L2
j dsNs(s)s = py[*

L!
f Y s Ny (8)sPe/ ~ L2 (4.33)

where ps is the area ratio of + and — CD spins (the ratio of the area covered
by CD spins to the total system area, which, we assume to be well-defined numbers
with zero variance in the thermodynamic limit). In addition, since the total number

of islands follow a power-law distribution given by Eq. 4.2, we have

Ny(s)+ N_(s) ~ s~ (4.34)

where 7° is given by Eq. 4.3. This, of course, implies that at least one of the
distributions Ni(s) has to have the form in the RHS for large s. In general, let us

assume the power-law forms Ny(s) ~ LP% s+, Then clearly

Pr S2—x ; maz(By,B-)=2—x

o R VT P e P (4.35)

It remains to predict the values of 1 and 74 from the above normalisation con-
ditions. In general, Ni(s) may have a well-separated infinite peak of the form
exd(s — axL?). If the infinite peak is not dominant (say, for — spins) ie., if
limpyoc€-r- < p_, then the non-infinite part of N_(s) satisfies Eq. 4.33 separately.

In this case, one can show from simple scaling arguments that N_(s) ~ L*~¥s~7"[4].

On the other hand, it is possible that the distribution for one of the spins (say,

+ spins) has a dominant infinite cluster, ie., limg yaeras = py. In this case, the
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total area covered by the non-infinite part of the distribution is sub-dominant n
comparison to L*, in the thermodynamic limit. After combining this condition with

Eq. 4.33, we arrive at the following set of equations.

By=2-x ; T¢>T (4.36)

We observe that these conditions are consistent with Eq. 4.35.

We now proceed to numerical results. In Fig. 4.5A, we show the size distribution
of domains of CD spins for KPZ surface. The size distributions follow power-law
decay, as expected. The exponents for + and — spins, 74 and 7_ have different values
with 7, > 7_, indicating the presence of a dominant infinite cluster in + spins (This
property is more a manifestation of the reference level chosen for the definition of
CD spins, than any fundamental characteristic of the surface. A detailed study of
the effect of a change in reference level will be given elsewhere). Note that an infinite
cluster also occurs for — spins, but it is not distinct from the power-law part and
it is not dominant. These features are consistent with the theoretical predictions
based on island-size distribution. The asymmetry in the distribution of hills and
valleys is due to the breaking of h — —h symmetry in KPZ growth. For EW surface
(Fig. 4.5B), both the exponents are nearly the same within numerical errors, and
very close to 7 & 2. This is reasonable because EW surface has symmetric surface

fAuctuations,

We recall the CD spin configurations for KPZ and EW surfaces shown in the
last section (Fig. 4.1). For KPZ surface, there is a distinct asymmetry between
+ and — spins. For — spins (denoted by white in the picture}, clusters appear in
all sizes, and the largest cluster is a compact object which seems to occupy a finite
fraction of the system area. The features point to a broad distribution of cluster sizes
which continues upto the system size. For + spins, on the other hand, we observe
an ocean which percolates through the system and a few small lakes scattered here
and there. The percolating ocean is the dominant infinite cluster discussed in the

previous section. For EW surface, there is visible symmetry between + and — spins.
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Figure 4.5: The figure shows the normalized size distribution of domains for (A) —
(valley) and +(hill) spins for KPZ-CD model and (B) for + spins in EW model. For
KPZ, the exponents are different, with values ~ 1.83 and 2.13 respectively. There
is a distinct infinite cluster appearing in the distribution of + spins, which is absent
for — spins. For EW spins, the distributions are identical for both kinds of sping
and the exponent is = 2.

4,3.6 Extremal statistics of cluster sizes in CD models

We studied the statistics of the size of the extremal clusters numerically for models
in KPZ and EW surfaces. For CD models, we studied hill (s = +1) and valley

(s = —1) clusters separately. In general, the distributions were found to be different
for KPZ surface, but identical for EW surface.

For KPZ and EW CD models, we find that the normalised distribution for both

particles and holes fits well into the following scaling form:

{Sm}

In Fig. 4.6A, we plot the mean extremal cluster size (s,,}(L) for particles and

P(sa, L) = {sm}"lg( . ) (4.37)

holes in KPZ surface, for three system sizes. It is seen that (s,,) ~ L? for KPZ
surface, indicating that the extremal cluster appearing outside the power-law dis-
tribution actually has size s* ~ L% For EW, the mean size (s,,) ~ L* (Fig. 4.6B)
with an effective exponent = < 2, which presumably is an indication of the presence

of logarithmic corrections.
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Figure 4.6: The figure shows mean size of the extremal cluster for s
s = —1 CD spins for (A) KPZ surface and (B) EW surface.

+1 and

Unlike the EW-CD model, the corresponding CD model in the case of KPZ sur-
face shows a great deal of difference between s = +1 and s = —1. This difference
was discussed in the previous section, where it was shown that for s = +1 (the
valley regions), in the thermodynamic limit, all the spins form part of an infinite
cluster that percolates through the system. Consequently, the scaled probability
distribution for the size of the maximal cluster narrows down with increase in sys-
tem size (Fig. 4.7), and may be expected to approach a é-function form in the
thermodynamic limit: limy..g-(z) = §(z — p_). For s = —1, on the other hand,
there is no dominant infinite cluster, and the scaling function is well-defined in the

thermodynamic limit (Fig. 4.8A).

For EW surface, the scaling function is similar for s = 41 and s = —1, and is
much broader compared to KPZ surface. This is natural because the width of the
EW surface scales only as ~ /TogL, and hence the cluster sizes are very sensitive
to (configuration-wise ) fluctuations in (k). The maximal cluster size for EW CD
model scales as ~ L¥ where the effective exponent y ~ 1.85, indicating logarithmic
corrections to L? (Fig. 4.6B).
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Figure 4.7: The scaled probability distribution for the extremal cluster size of s = +1
spins in KPZ-CD model.
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Figure 4.8: The scaled probability distribution for the extremal cluster size of s = —1
spins in (A) KPZ-CD model and (B) EW-CD model.
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4.4 The Order Parameter Distribution

In this section, we explore various definitions of a suitable order parameter to char-
acterise the ordered state in CD models. We recall that in the CD maodels that
we have used so far, the spins are defined with respect to a fixed reference height
(in this case, the instantaneous mean height). In this definition, the magnetisation
m = L7*§7,s(r) is not conserved by default. In conventional ordered states in
thermal equilibrium, (m) remains finite and the variance (m?) vanishes in the ther-
modynamic limit for the ordered state (For the disordered state, {m) = (m?*) = D).
In general terms, we would expect that a good order parameter should satisfy both
these requirements. However, we shall see that while the former requirement is, in
general, satisfied in the problems that we studied, the latter is not. A comprehensive
discussion of these issues may be found in [4], in the context of (1+1)-dimensional
surfaces. In conserved models where the global magnetisation m is strictly con-
served, we have to choose a suitable quantity to monitor the degree of phase sepa-
ration. One such quantity that is commonly used is the magnitude of the longest

wavelength Fourier component of the density field.

4.4.1 Probability distribution of CD magnetisation

In Fig.4.9A, we have shown the probability distribution of CD spin magnetisation
over several steady state configurations in a KPZ surface. We observe that the
distribution peaks close to the origin, although one cannot rule out the possibility
of having a finite (m) in the L — oo limit, since the KPZ surface breaks h — —h

symmetry. For L = 128, we find {(m) ~ —0.06 with a variance =~ 0.101.

For EW surface (Figd.9B), the convergence of the distribution is slower com-
pared to the KPZ surface. In this case also, we observe a small non-zero value for
the mean magnetisation, (m) = 0.021, with variance =~ 0.18 for [ = 128. For EW
surface, the symmetric nature of the height fluctuations rule out the possibility of a
non-zero value of (m) in the L — oo limit, so we may safely conclude that the ob-
served non-zero values are only statistical fluctuations. However, the situation is less

clear regarding the variance (m?), and in general, the behaviour of the probability
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Figure 4.9: The probability distribution of CD spin magnetisation for three lattice
sizes for in (A) KPZ surface and (B) EW surface.

distribution P(m) in the thermodynamic limit. From the numerical data, it is not
convineingly clear that this distribution narrows down in the thermodynamic limit,
and it has been shown that for Gaussian rough surfaces (like EW), the variance

remains finite in this limit[9].

4.4.2 Order Parameter for the CD models

For a system with conserved magnetisation, an appropriate quantity to characterise
the ordered state is the steady state average of the magnitude of the Fourier com-

ponents of the density, defined as follows:

Qk)={|L™? Z n(r)e 7)) (4.38)

Here, n(r) is the discrete density variable defined as n(r) = l—t-;-m and r runs
over all the sites in the lattice. The wave vectors k are quantised in the lattice in

the usual way: k = 2Z(n.,n,) and |k| < .

In Fig.4.10A and B, we plot Q(k) along the (1,0) direction for three different

lattice sizes. It is seen that for any fixed k, Q(k = n2n /L) vanishes in the thermo-
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Figure 4.10: Q(k) is plotted against wave vector k for three lattice sizes for (A) KPZ
surface and (B) EW surface.

dynamic limit, (except at k — 0), which is an indication that the system is in phase
separated state. However, for fixed small values of n, Q(k) approaches a non-zero
constant value in this limit. Thus a suitable order parameter in this case would be
Q" = Q(F,0) (Another equally good choice would be Q(%,2%). In general, any

L*L
2+ - . ,
Q23 27 is a valid choice, as long as n.,n, < L).

In Fig.4.11A, we present the probability distribution for Q= for a KPZ surface.
The distribution seems to remain broad in the limit L — oo, with (Q") =~ 0.11 and
variance = (.02. The non-vanishing of the RMS fluctuation in the order parameter
in the thermodynamic limit is in contrast with most conventional phase separating

systems, and this phenomenon was named Fluctuation-Dominated Phase QOrder-
ing(I'DPO) by DBM[4].

Although we do not yet have a sound theoretical understanding of FDPOQ, the
following arguments appear plausible. Consider the SP or CD model in a rough
surface. We found that in steady state, spin domains appear in all sizes, following
a power-law distribution, with one (maybe a few) very large clusters of size ~ L2,
These clusters predominantly give a non-zero contribution to the Fourier sum in
", with the other smaller clusters contributing nearly zero. However, the actual
size of the largest cluster(s) also fluctuates (with RMS fluctuation ~ L?), and these
fluctuations get reflected in the broadness of the probability distribution.

[t is interesting to see whether FDPO exists also in EW surface, which is only
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Figure 4.11: The probability distribution of the order parameter ()" for three lattice
sizes for the CD problem on a (A) KPZ surface and (B) EW surface.

model T a (Sm)
KPZ-CD (IIA)
(Theory) 22—x/2 | ~037|~L?
KPZ-CD |7, = 1.83(4)
(Simulation) | 7_ = 2.13(8) | 0.38(1) | ~ L?

Table 4.1: A summary of properties of KPZ-CD model,

logarithmically rough. In this case, the logarithmic corrections to the size of the
extremal cluster seems to produce a slow shift of (Q*) (and its variance) towards

zero in the large L limit (Fig.4.11B).

4.5 Conclusion

In this chapter, we showed that a two-dimensional fluctuating rough interface arow-
ing from a flat initial condition may be mapped to a coarsening system, characterised
by the same dynamical exponent. For concreteness, we have considered two types

of surface fluctuations, KPZ surface which is rough in steady state and EW surface
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model T o oy
EW-CD ¥
(Theory) Z2—x/2 | O(log) |~ L*/(lagL)*
EW-CD 74+ = L.98(6)
(Simulation) | 7_ = 1.90(4) | -0.03(2) ~ [15

Table 4.2: A summary of properties of EW-CD model.

which is only logarithmically rough. The roughness properties of the surface are
found to be crucial in phase separation, which is complete for KP7 surface and
marginal for EW surface. The ordered state is characterised by some very distinct
features. The bulk magnetisation is less than its maximum value and the two-point
correlation has a cusp at small arguments. The size distribution of domains follows
a power-law decay. All these features indicate that the ordered phase is not very

homogeneous, but has a non-compact structure.

In Tables 4.1 and 4.2, we have listed the properties of EW and KPZ CD spin
models in the steady state. From the typical size of the extremal cluster, we see
that there is complete phase separation in KPZ surface, wheras phase separation is
marginal for EW surface. The size distribution of spin domains follows power-law
decay in both models, with different exponents for 4+ and — spins in KPZ surface.
We also observed that in case of KPZ surface, most of the — spins actually form
part of an infinite (ie., a cluster with ~ L? spins) percolating cluster, and the rest of
the spins are present in much smaller clusters which follow a power-law distribution.
In the case of 4 spins, however, the infinite cluster appears as part of the power-law
distribution, and it is not distinct. This is also true for EW surface, irrespective of
the sign of spin. In this case, the size of the largest cluster appears to scale with L
with an effective exponent y < 2. We argued that this is indicative of logarithmic

corrections,

The pair correlation for CD spins in both models showed finite size scaling. How-
ever, the scaling function did not decay linearly near the origin, as in conventional
coarsening models like the kinetic Ising model. Instead, the scaling function had

a cusp near the origin, f(r) = s — ez® + .... We showed that for surfaces whose
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steady state probability distribution for height fluctuations is Gaussian, the cusp ex-
ponent o is exactly equal to the roughness exponent y. For more general surfaces,
we arrived at the same conclusion under the Independent Interval Approximation,
which is expected to hold good in the vicinity of x = §. These predictions were in

good agreement with observations for both EW and KPZ surfaces.

To characterise the ordered state of the system, we used an appropriate order
parameter. For KPZ surface, the order parameter has a non-zero mean value in the
ordered state, but its variance appears to remain finite in the thermodynamic limit.
We argued that this feature could be attributed to large fluctuations in the size of
extremal spin clusters. For EW surface, the mean value was observed to slowly shift
towards zero in the L — oo limit, perhaps because of logarithmic corrections. A

more thorough study of these features is currently in progress.

4.6 Appendix IV A

We essentially follow the arguments of Matsushita ef. al[8] in this section. Consider

a (2+1) Gaussian surface with probability distribution
Plh] ~ exp (—Zqﬂlﬂ}hqh-q) (4.39)
q

where x is the roughness exponent for the surface. We measure the height of
the surface relative to a reference level hy. Along an arbitrary linear cut on the
surface, let @x(z) be the probability that A(X) = z, where the origin is any one of
the points where h = 0. Then Qx(z) = %;- where

g = f Dhi[h(X) — h(0) — 2]P[k]
and
Zo= [ DAP(H)

The integrals are straightforward to do, and the result is
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2

Qx(z) ~ EEIP[*E—Z}

where

1 — cos(q.X)
2
L § qz{l+x}

For x > 0, £ ~ X and for x = 0, €* ~In(X/a), where @ is a microscopic length
scale.

For general non-Gaussian surfaces, it is difficult to derive an exact form for

(2 x(z). However, it is reasonable to think that in general, @ x(z) has a scaling form

Q@) %f (g)

By analogy with the case of Gaussian surfaces, we argne that f(z) remains finite
in the limit £ — 0. The probability of return to origin at X is Py(X) = Qx(0) ~ £
Thus Po(X) ~ X% for x > 0 and Py(X) ~ [log(X/a)]"7 for x = 0.

The average number of returns to origin up-to X is

No(X) = f Y Ay Py(Y)

and No(X) ~ X% for 0 < x < 1. For x = 0, No(X) ~ X[log(X/a)]~F while
for x =1, Ng(X) ~log(X/a). For x > 1, No(X) is a constant, independent of X.

It follows that along any arbitrary linear cut on the surface, the surface will
touch a chosen reference level ~ L'~* times on an average, if ¥ < 1 and a constant
number of times if y > 1, with logarithmic corrections at y = 0 and y = 1. Since
this is true for each linear cut, and since one may have ~ [ independent linear
cuts on the surface, the total length of the contour lines, which forms the boundary
between regions where h < hg and h > hg, scales as M(L) ~ L* ¥ for 0 < y < |
and M(L) ~ L for x > 1. For x = 0, M(L) ~ L*logl]"% and for y = I,
M(L) ~ LlogL.



4.7 Appendix IV B

Consider a continuous variable X which can take values in the range [a : b], with
probability distribution p(X). We would like to compute the probability Ly (Y )dY
that the maximum value of X in an ensemble of N randomly selected samples from
[a : b] lies between ¥ and Y + dY.

The probability p»(Y) that X, <Y is the probability of randomly picking N
variables, all less than Y. Thus

ps(¥) = [ [ pcxwxr (440)

It follows that the required probability

_dps(Y)
Lu(Y) = % (4.41)
As a special case, let us consider the power-law distribution p{X) ~ X—{l+e)

where a > 0. It is easy to show that

o

LN(Y] = N]_Jf“

= Heepp(—27°) (4.42)

where r = h%; The distribution peaks around Y™ ~ NY® which gives the

typical value of X, .-.

4.8 Appendix IV C

We start from the expression for the two-point height correlator in the steady state

of a d + 1 dimensional rough surface, with roughness exponent y.

(151

d
G(r, L) = j; ! %cos{kmﬁ[k} (4.43)

Here a is some microscopic length scale, below which the continuum descriptions

Eq.4.21 and 4.21 do not apply.
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We substitute (k) ~ k=42 and d?k — k%'dkd(), and then carry out the

angular integration using the formula[21]

d
j cos(k.r)df = D(5)Jg_y (kr) (kr)' 4 (4.44)
where J,(n) is the n-the order Bessel function. The result is

wr

G(r,L) ~ sz‘sﬂx -/;T q_{zx-i-,!}Jg_l{ﬂ]dq (4.45)

where the scaling variable £ = 2wr/L. The Bessel function J,(n) ~ n* near
n = 0[20]. For finite £ and % — 00, the integral is dominated by the lower limit if
x = 0. Thus the lattice constant e can be effectively put to zero for ¥ > 0 in any
dimension. For x = 0 on the other hand, the integral diverges as log® for a < L,

and there is no effective continuum description.

In the remaining part of this section, we evaluate G(r,L)ind=1for 0 < y < 1
(The d = 2 case for 0 < x < 1 has been treated in the text). We also compute

G(r, L) explicitly for the marginal cases y = 0 and y = 1 in general d dimensions.
d=1:

We use the relation J_;_(n] = ,,I%cusr}[ﬂf}]. After substituting in the above
expression and putting the upper limit at infinity, we find for £ < 1[22]

Lﬁx Ix .
G(r L) ~ - [1— aye + Fle)] (4.46)

where a, = I'(1-2x)sin[F(1-2x)]if x < 3, Zif x = 1 and TL_;F(E‘“ZY:'CUS[?TU—-
X)Nif x > 4. F(€) ~ O(€) for x < & and O(€?) for x = L.

Using similar arguments as in Sec. IV A, we find that in d = 1 and € < 1,

ClryL) ~ 1 — a X 4 higher order terms (4.47)

for 0 < x < 1, where @/, = ﬂﬂx. The cusp exponent for CI} spin correlation

"

a = y for any Gaussian surface in d = | also, identical to what we found in two



107

dimensions.
x=0:

The integral can be done for general d dimensions in this case. For finite £ and
7 —+ 0, the result is[18]

G(r, L) ~ boin(3) = 1+ O(€") (4.48)

where by = m and ¥(z) = £Inl(z). To compute C(r, L) from Eq.4.26,
we define G(0,L) =lims_0G(a,L). In this limit, G(0,L) ~ —bln(L/a). After
substituting in Eq.4.26, we arrive at Eq.4.29 for £ < 1.

¥y=1:

A similar calculation as above gives

G(r,L) ~ L*[1 — e;E%In€ + O] (4.49)

and

2/2

E[?", L} ~ ] - TC[E i-rﬂrf o {45{”
for In > 1, where
LT
YT aTELYy

In this case, the Porod law behaviour is recovered, with logarithmic corrections.

4.9 Appendix IV D

Consider two coupled stochastic variables z; and r,, with Gaussian probability

distribuiion of the form

1 1 ;
Plzy, ) = ﬁemp (—Etaz? + azrl — 2,{5'.1*1:17-;}) (4.51)



108

where a = (1) = (z}), B = (z122) and D = a® — % > 0.

We are interested in finding the correlator €' = (X, X;) for the ‘clipped’ variables
Xy = sgn(z;) and X; = sgn(z,). Clearly,

where O(z) is the Heaviside step function.

Let us now introduce the linear transformations

3= _{r}_( ih + U2 )
: 2 \Va+8 Va-43
_ |l'_£_} _ ¢ 4=

After substitution, we find

1 i m
(O(x1)0(xq)) = Efdyldyﬁe (v’rj+ 3 + \;,j_ ,'3) x

Wi Y2 1 2 2 -
SN - = (__ -+ ) 4 54
( Wt + + \ﬂ) exrp El:yl yi] [ J ]I
Since the probability distribution is isotropic in y-space, we find after some sim-

plifications that (©(z,)0(z,)) = £, where @ is the angle enclosed by the unit vectors

u =V%_a(—\fa+ﬁ,\/a—ﬁ)
u2=7,;_;(Ja+ﬁ,Ja—ﬁ) (4.55)

Clearly, cos(f) = (82 = £ 50 that 8 = cos™!(—F/a) = Z4sin7!(F/a).

uy [fuz|

After substitution, we arrive at the final result

= E.-;'r'.n_' (E) (4.56)
w a
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Chapter 5

Summary

In this thesis, we have studied the interplay between Persistence and coarsening
in two diflerent classes of Non-equilibrium systems. In the first part of the thesis
covered by Chapters 2 and 3, we studied the scale invariant spatial structure of the
persistent region in several coarsening systems in different spatial dimensions. In
the second part, we investigated the analogue of phase separation in a fluctuating

rough surface, with focus on (2+41) dimensional surfaces.

The first model we studied is the well-known A+ A — () reaction-diffusion model
in d = 1, whose dynamics is identical to that of the 1D Ising model with Glauber
dynamics. In this model, a set of particles with random initial distribution diffuse
all over the lattice, and annihilate each other when two of them meet. Persistent
sites at any time ¢ are the sites which remain unvisited by any diffusing particle

throughout the time interval [0 : #].

To moniter the growth of spatio-temporal correlations in the distribution of per-
sistent sites, we study the distribution n(k,t) of separations & between consecutive
persistent sites. To study this process analytically, we invoked an approximation,
where the lengths of adjacent intervals are treated as uncorrelated random variables
(The Independent Interval Approximation, or ITA). We constructed a rate equation
for the time evolution of n(k, ) based on this approximation, which was solved within
a dynamic scaling ansatz. The characteristic length scale was found to diverge with
1/2

time as s(t) ~ £*/%. Over length scales small compared to s(), the set of persistent

5 |
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sites has a stationary fractal structure with fractal dimension dy = d —20. Over
larger length scales, the distribution is homogeneous. These results are supported

by extensive numerical simulations.

We extended this analysis to the coarsening of ¢-state Potts model in one di-
mension and found that there are two distinct regimes appearing here. The IIA
calculation shows that if #(q) < 3, the persistent structure is a fractal over small
length scales and homogeneous over large length scales. If 8(g) > 1, the distribution

is homogeneous over all length scales. These predictions agreed with recent studies

done by other authors.

The study of spatio-temporal correlations associated with persistence was ex-
tended to higher dimensions in different models. We did both direct computation of
correlations as well as an indirect finite size scaling (FSS) analysis. For a coarsening
process in d dimensions characterised by dynamical exponent =, we showed that, if
zfl < d, the set of persistent sites forms a fractal structure over length scales < 1/
and will be randomly distributed beyond this length scale. In this case, persistent
fraction for finite lattices has the scaling form P(t, L) = L~ f (&) with f(z) ~ 2~
for z < 1 and f{z) ~ constant for z > 1. This scaling form was verified nurnerically

for a number of coarsening models, like Ising model, TDGL model and the simple

diffusion problem.

Recent analytical and numerical studies on Persistence in fluctuating interfaces
have discovered that for a large class of interfaces, Persistence follows a power-law
decay. For a fluctuating interface characterised by a height field hx,t), P(t) is the
probability that the height remains above or below its initial height h(x, ¢ = 0)
throughout the time interval [0,1] is defined as the Persistence probability. For an
almost flat initial configuration (h(x,t = 0) & 0), it has been shown that P(t)~t7°
with a non-trivial exponent #. The algebraic decay of persistence is very similar
to that in coarsening systems, and it is natural to investigate if such an interface
‘coarsens’ in some way, and if it does, how is it different from usual coarsening
systems. For this purpose we defined a discrete spin variable s(x,t) =sgn{h(x, {))
so that the persistence of interface fluctuations is now identified as the persistence

of these spin variables.
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We consider surfaces that are rough in the steady state ie., ((h(x,t) —
h(x+r,t))?) ~ r® for t 3 L*. For Gaussian surfaces in steady state, (eg. the
linear Edwards-Wilkinson surface), we showed analytically that the two-point spin
correlator in steady state C(r, L) = (s(x)s(x+r)) = f(£). This scaling is char-
acteristic of a phase separated system. In conventional phase separated systemns,
f(z) decays linearly near origin ie., 1 — f(z) ~ z. In the present case, however,
1 — f(z) ~ z* near = = 0. The cuspy nature of the correlator near r = 0 shows that
the ordered phase is not as homogeneous as in more conventional phase segregated
systems (eg. binary fluid). While the largest domain is always of size ~ L%, which
signifies phase segregation, the smaller clusters have a broad distribution, which is

reminiscent of critical systems.

For general non-Gaussian surfaces (eg. the Kardar-Parisi-Zhang surface in
d = 2), we showed that these conclusions are still valid within the [ndependent
Interval Approximation. We verified these predictions by numerical simulations of
the EW and KPZ surfaces, and the results were in very good agreement with the
analytical predictions. We also extended the simulations to explore the pre-steady
state temporal regime (i <« L*) We found that the equal time correlator has the
same scaling form with L replaced by £(¢), which is typical of a system undergoing
domain coarsening. Scaling arguments suggest that £(t) ~ tY/* where = is the dy-
namical exponent for the surface fluctuations. For (241) dimensional KPZ and EW
surfaces, we found that this argument is in excellent agreement with simulations.

This result also agrees with a previous work on (141) dimensional surfaces.

In conclusion, the study of spatial aspects of the Persistence problem has resulted
in the discovery of non-trivial spatial correlations associated with Persistence in
coarsening systems. We believe that more studies in this direction will go a long
way towards a better understanding of such First passage problems and non-trivial
exponents in Non-equilibrium stochastic processes. In particular, it would be very
interesting if the proposed fractal structure and dynamical scaling could be verified
experimentally, at least for simple processes like diffusion, where the Persistence

exponent has already been measured. The intimate connection between Persistence



114

and coarsening phenomena has also helped us to unearth new features in fluctuating

interfaces,



