
CONTROL AND SYNTHESISOF OPEN REACTIVE SYSTEMS
Thesis submitted inpartial ful�llment of theDegree of Do
tor of Philosophy (Ph.D)

byP. MadhusudanTheoreti
al Computer S
ien
e Group,Institute of Mathemati
al S
ien
es,Taramani, Chennai{600 113.
UNIVERSITY OF MADRASChennai 600 005

November 2001

Abstra
tThe topi
 of this thesis is the study of the problem of automated synthesis of
ontrollers and systems against formal spe
i�
ations. Our two
entral aims are tostudy these
ontrol problems for bran
hing-time spe
i�
ations and to study themto a
hieve distributed
ontrol.We start this study by
onsidering the
ontrol synthesis problem for simulationsand bisimulations. We show that one
an solve this in polynomial time. Moreover,whenever a
ontroller exists, we show how to automati
ally synthesize a polynomial-state
ontroller in polynomial time.We then study the
ontrol synthesis problem for asyn
hronous simulations andshow the surprising result that it is unde
idable. In fa
t, we show that even theasso
iated veri�
ation problem is unde
idable in this setting. The unde
idabilityresults extend even to very simple
lasses of
on
urrent systems.The
ontrol and realizability problems for the bran
hing-time temporal logi
sCTL and CTL? are studied next. It turns out that one
an study the problem in twosettings | one where the environment is stati
 and universal, the other where it is re-a
tive. The
ontrol problem for universal environments redu
es to module-
he
kingand hen
e is, for CTL and CTL?, EXPTIME-
omplete and 2-EXPTIME-
omplete,respe
tively [KV96℄. We show that the
omplexities of these problems in rea
tiveenvironments be
ome exponentially harder | they are 2-EXPTIME-
omplete forCTL and 3-EXPTIME-
omplete for CTL?.We also investigate the
ontrol-synthesis problem in a distributed setting, wherethe pro
esses
ommuni
ate with ea
h other in a syn
hronous fashion and also in-tera
t with their lo
al environments a

ording to an ar
hite
ture. This model isthe one studied in [PR90℄, and from the results therein it follows that for globalspe
i�
ations, the only de
idable ar
hite
tures are the singly-
anked pipelines. Westudy the
ontrol problem for lo
al spe
i�
ations and show that the
lass of de
idablear
hite
tures (mildly) in
reases. We
hara
terize the exa
t
lass of ar
hite
tures forwhi
h the
ontrol problem is de
idable for lo
al spe
i�
ations | this is the
lassof ar
hite
tures where ea
h
onne
ted
omponent is a sub-ar
hite
ture of a doubly-
anked pipeline.

A
knowledgementsI would like to thank P.S. Thiagarajan for his guidan
e and en
ouragementthrough the last six years. All the work presented herein have been done with him,and in doing so I have learnt a lot from him. He has in
ul
ated in me the importan
eof rigour for whi
h I will be forever grateful.I would like to thank R. Ramanujam for his unfailing support, en
ouragementand advi
e. Dis
ussions with him in matters a
ademi
 and otherwise have alwayshad the e�e
t of making me think afresh of things I had prejudged without seriousthought.My father was the main reason why I joined a
ademi
s and mathemati
s, inparti
ular. He was a wonderful sour
e of inspiration and he indu
ed a fas
ina-tion for mathemati
s in me early in
hildhood. His en
ouragement led me to joinMats
ien
e, whi
h has
hanged my life so mu
h. I thank him heartily for his
aringearly guidan
e.The theoreti
al
omputer s
ien
e groups at Mats
ien
e and CMI were absolutelywonderful in the way they wel
omed me into their
ommunity and taught me allthat I know in
omputer s
ien
e. The subje
ts of dis
ourse were extremely wide-spread and the tea
hing impe

able. I am very grateful to them | Meena Mahajan,V. Arvind, P. S. Thiagarajan, Manindra Agrawal, Kamal Lodaya, Venkatesh Raman,R. Ramanujam, Madhavan Mukund, Anil Seth, K. V. Subrahmanyam, NarayanKumar, and Srinivasa Raghavan.Any student who joins these people gets an in-depth view into the various �eldsof resear
h | I haven't seen this range and depth in any other pla
e. The more Idis
over groups a
ross the world working in TCS, the more I realize what a superbedu
ation these people have given me. I thank them for this.Appa, amma and Hrishi have been a
onstant support to me and have beenextremely indulgent with the various strange moods I have subje
ted them to.Radhika Vathsan has been a
lose friend through the years | I
herish herfriendship and the memories of those deep dis
ussions from stars to life to philosophywe had in my earlier days at Mats
ien
e.Deepak D'Souza has been a friend and a
olleague from when we joined for Ph.D.together. It has been fun to pi
k threads together and work our way through the
ourse-work and later resear
h. His
lear mind and his love for rigour have many

iiia time mellowed my wild leaps, while his gentle nature is wonderful to have in afriend.Meenakshi has also be
ome a
lose friend in the last
ouple of years. Workingwith her (in topi
s not related to this work) has been pleasant and rewarding.I spent a memorable nine months at Aa
hen under Wolfgang Thomas. He wasthe perfe
t host and the warmth he extended made me feel
ompletely at home. Ilearnt a lot from his in
redible knowledge during my stay there and I am gratefulto him for hosting me and making my stay so rewarding.The stay at Aa
hen was extremely pleasant due to other friends there as well |Christof L�oding, Dietmar and Andreea Berwanger, and Jens V�oge. I thank Christofespe
ially for the gruelling proofs I made him listen to in my desperate attempts tosolve the distributed
ontrol problem. He was patient, bore all the vague argumentsI threw at him and was very helpful in his remarks and observations. Olivier Cartonand Elizabeth Gon�
alves were
harming and I have pleasant memories of touringthe
ountry-side with them, exploring the foreign land we found ourselves in.I thank Orna Kupferman and Moshe Vardi with whom part of the work here wasdone in
ollaboration with.My thesis writing was many a time, so to speak, \snarked". The
omputers
ien
e group showed extreme patien
e and at the same time prodded me to �nishit. I would like to thank R. Balasubramanian, Dire
tor, IMS
, for allowing me tostay beyond my term and C.S. Seshadhri, Dire
tor, CMI, for supporting me for theperiod of thesis-writing after my term at Mats
ien
e.I thank Thiagarajan and Meenakshi heartily for proof-reading my thesis. Deepakand Hrishi also helped in reading drafts of
hapters.I have learnt a lot from several of my a
ademi

olleagues and fellow-students| apart from those mentioned above, these in
lude Barbara Spri
k, A. Srinivasan,Samik Sengupta, Swarup Kumar Mohalik, S.V. Nagaraj, N.V. Vinod
handran, Srini-vasa Rao, S. P. Suresh and Piyush P. Kurur.My stay at Mats
ien
e has been very pleasant. There were many people whomade this stay memorable | people I've spent those long evenings with, fromwhom I've learnt things or who have made a deep impa
t on me. I wish to re
allthem | Tabish Qureshi, Mary Selvadoray, Shubashree Desikan, Sharmila Bag
hi,A.R. Krishnan, Nandini Singh n�ee Chatterjee, Katya Balasubramaniam, SuneetaVaradarajan, K.R.S. Balaji, P. Jyoti, Gyan Prakash and Catriona Ma
lean.

Contents
1 Introdu
tion 12 Control-synthesis for simulations and bisimulations 112.1 Introdu
tion . 112.2 The model . 142.3 A good subgraph
hara
terization . 232.4 The synthesis pro
edure . 282.5 The bisimulation setting . 302.6 Con
lusions . 393 Asyn
hronous simulations 423.1 Introdu
tion . 423.2 The model . 434 Temporal logi
s, trees and automata 584.1 Linear-time temporal logi
 LTL . 594.2 Bran
hing-time temporal logi
s CTL and CTL? 604.3 Trees . 614.4 Automata on trees . 634.5 Alternating tree automata . 645 Synthesis and
ontrol for bran
hing-time logi
s 685.1 The problem setting . 715.2 Synthesis and
ontrol against the universal environment 775.3 Rea
tive environments: Upper bounds 795.4 Rea
tive environments: Lower bounds 845.5 Con
lusions . 976 Distributed Control 986.1 Introdu
tion . 986.2 Problem setting . 1026.3 Control synthesis against global spe
i�
ations 1086.4 Lo
al spe
i�
ations: De
idable ar
hite
tures 110iv

Contents v6.5 Lo
al spe
i�
ations: Unde
idable ar
hite
tures 1226.6 Con
lusions . 1317 Con
lusions 133Appendix 137Publi
ations 141Bibliography 142

Chapter 1
Introdu
tion

\Just the pla
e for a Snark!" the Bellman
ried,As he landed his
rew with
are;Supporting ea
h man on the top of the tideBy a �nger entwined in his hair.| The Hunting of the Snark, Lewis Caroll
The last �fty years have seen a tremendous in
ux of digital systems into our day-to-day lives | they are used in
ommuni
ations,
ontrol of industrial equipment,avioni
s, managing safety-
riti
al equipment su
h as rea
tors, in se
urity systemsand even in digital gadgets inside
ameras and washing ma
hines.One of the main
on
erns of the past three de
ades in
omputer s
ien
e hasbeen the development of
orre
t software. The most popular tool in the softwareengineering industry has been testing. Though very useful, it has been found in-adequate be
ause it
an give no guarantee of the
orre
tness of
ode. The failureof many systems due to bugs in
ode, espe
ially in safety-
riti
al software wheresu
h bugs
an result in tremendous losses to life and property, has led people tostudy the problem of formally verifying software. Mathemati
ians have over theyears studied this problem and have
ome up with various methods su
h as formaltheorem-proving where one gives formal semanti
s to programs and spe
i�
ations1

Chapter 1: Introdu
tion 2and proves that a program meets its spe
i�
ation by giving a proof very similar toproofs in mathemati
s [Hoa69℄.The last twenty years have seen a tremendous in
rease in the
omplexity of sys-tems built in the industry. Formally proving su
h programs
orre
t is too dauntinga task and
onsequently, has found few takers in the industry. However, there havebeen approa
hes to program veri�
ation via theorem-proving with the aid of ma-
hines. These theorem provers are built to �nd proofs, but, in most
ases seekhuman guidan
e (see [Fit96℄). They are not fully automated and hen
e are not verypopular in the industry.The
lassi
al notion of
omputation has been that of re
ursive fun
tions or theme
hanism of Turing ma
hines that
ompute fun
tions: they take an input, pro
essit, and output a result. However, there are many programs, su
h as resour
e s
hed-ulers in operating systems,
ommuni
ation proto
ols, et
., that do not behave thisway. They are usually simple systems that are
hara
terized by an ongoing inde�niteintera
tion with an environment. A resour
e s
heduler
ontinuously takes requestsand termination signals, and rea
ts to su
h input
ontinuously. These systems arenever meant to terminate in some bounded time and hen
e their behaviours are bestviewed as in�nite sequen
es of events. Su
h systems are termed rea
tive systems.While spe
ifying properties of
lassi
al programs is usually done through theme
hanism of �rst-order logi
 augmented with program
onstru
ts, for a long timeit was not
lear what a suitable spe
i�
ation me
hanism for rea
tive systems mightbe. However, the spe
i�
ation me
hanisms using temporal logi
s, proposed for su
hbehaviours in [Pnu77, GPSS80, MP81, HP85℄, have over the years emerged the mostpopular.A methodology that has been developed for su
h �nite-state rea
tive systemsis the automated veri�
ation of programs against their spe
i�
ations by state-spa
eexploration. These methods are best suited for �nite-state systems, or those that
an be abstra
ted so that they are �nite-state, and typi
ally in
lude hardware
ir-
uits,
ommuni
ation proto
ols, user-interfa
es for ma
hinery, et
. The spe
i�
a-tion me
hanisms usually handled are temporal logi
 spe
i�
ations, for whi
h thispro
ess
an indeed be
ompletely automated and requires no human intervention[LP85, SC85, Pnu85℄ (see [Eme90℄ for a survey). Su
h state-spa
e exploration me
h-anisms are termed \model-
he
kers" and
onstitute an important and useful
lassof methods for veri�
ation. Model-
he
king, though it had its beginnings in simple

Chapter 1: Introdu
tion 3state-spa
e exploration methods,
an be quite sophisti
ated | rather than thinkingof it as state-spa
e exploration, it is best viewed as any veri�
ation problem that isde
idable and
an be solved without human intervention.Of
ourse, digital systems are not the only systems we live with. Many sys-tems that we deal with are physi
al ma
hines that have analog
omponents thatevolve
ontinuously with time. S
ientists and engineers have worked together toharness natural phenomena and used them to make ma
hines work. The studyof building su
h physi
al systems in order to a
hieve a desired behaviour is
alled\
ontrol-theory" | this in
ludes most non-digital systems (e.g.: automobile ma-
hinery, industrial manufa
turing equipments, missile laun
hing me
hanisms,
ight
ontrol, audio and video playba
k gadgets, et
.)Sin
e su
h systems are usually modelled using
ontinuous variables su
h as dis-pla
ement, velo
ity, et
., the main tools to analyse and
ontrol them use the math-emati
s of ordinary and partial di�erential equations. However, with the in
reasedrole of
omputers and
omputer-
ontrolled devi
es, many
ontrol-me
hanisms haveto deal with systems modelled using dis
rete variables. For example,
ontrol of apart of a telephony equipment may only involve variables that re
ord the numberof telephone
alls a
tive in a region, the set of se
tors that are under repair, et
.and not the exa
t voltage running a
ross various lines. Another feature that theseappli
ations of
ontrol-theory possess is that they are driven by instantaneous eventsfrom the environment | e.g. the press of a keyboard key or a sensor turning on.Systems that possess these two properties above are
alled \dis
rete-event systems"and have been a topi
 of re
ent study (see [RW89, CL99℄). Most instan
es of
ontrolsystems that have some intera
tion with digital
omputers, su
h as
ommuni
ationnetworks, manufa
turing fa
ilities, software-
ontrolled hardware devi
es, et
.,
omeunder this
lass.In most of these appli
ations, the exa
t times at whi
h events o

ur are not veryimportant and there are enough interesting properties one would want to verifybased just on the order in whi
h the events o

ur.Dis
rete event systems (DES) form a small sub
lass of systems studied in
ontrol-theory. They are dynami
 systems (the behaviour of the system depends not onlyon the
urrent input to it but also on the history of past inputs), time-invariant(the behaviour does not depend on the exa
t times at whi
h events o

ur), have adis
rete state-spa
e model and are event-driven (they
hange state only when there

Chapter 1: Introdu
tion 4is an external instantaneous event) [CL99℄.While model-
he
king is a useful tool to both verify �nite-state systems in
om-puter s
ien
e (like hardware
ir
uits,
ommuni
ation proto
ols, et
.) and analyze�nite-state DES (like a
ontroller for a telephony equipment), a more ambitiousquestion is to ask whether we
an synthesize su
h systems. What we would liketo do is to �x a prototype of a model that des
ribes exa
tly how the system andenvironment intera
t, and given a spe
i�
ation of the desired behaviour of the sys-tem, ask whether one
an automati
ally
ome up with a system that satis�es thespe
i�
ation. This problem is also known as the realizability problem.This question was �rst posed by Chur
h in 1963 in the
ontext of synthesizingswit
hing
ir
uits against spe
i�
ations stated in restri
ted se
ond-order arithmeti
[Chu63℄. B�u
hi and Landweber in [BL69℄ showed that this realizability problem isde
idable, even for a more powerful
lass of spe
i�
ations (S1S). The realizabilityproblem
an be viewed as a game where the system and the environment playwith ea
h other by
hoosing event-labels (say alternately) and thereby build anin�nite sequen
e of events. The event-sequen
e is winning for the system in
asethis sequen
e is re
ognized as a desired behaviour a

ording to the spe
i�
ation. Ifnot, the environment wins the play. The realizability problem then boils down tode
iding whether the system has a winning strategy for this game, i.e. a strategysu
h that no matter how the environment plays, the system always wins. If thereis indeed a winning strategy, then �nding one that uses only a bounded memory ofthe past gives rise to �nite-state programs that realize the spe
i�
ation.The proof in [BL69℄ (see also [Tho95℄) indeed used game-theoreti
 te
hniques,but was very
omplex and Rabin's later proof of the same theorem was wel
ome[Rab72℄. Rabin's theorem used automata over trees and it is interesting to note that,though we are verifying only the sequential behaviours of systems, the realizabilityproblem leads us to work with trees. However, sin
e emptiness of tree-automata
anbe seen as a game over �nite graphs, the
onne
tion is, in retrospe
t, natural.The area met a revival in the eighties in the works of [MW80, EC82, MW84℄where the automated synthesis of �nite-state programs against temporal logi
 spe
-i�
ations was
onsidered. However, these papers dealt with programs that do nothave an environment to intera
t with | they are
losed systems where everythingthat happens to the system
an be
ontrolled. In fa
t, these papers solve the satis�-ability problem for temporal logi
s, show how to
ome up with a �nite-state witness

Chapter 1: Introdu
tion 5for satis�ability, and how to extra
t a �nite-state program from this. But the impor-tant aspe
t of rea
tive systems is that there is an intera
tion with an environmentwhi
h the system has no
ontrol over. Hen
e the interesting problem is to
omeup with a program that satis�es the spe
i�
ation no matter how the environmentbehaves (as in [BL69, Rab72℄). To reiterate the fa
t that su
h systems have no
ontrol over the environment, these systems are
alled open rea
tive systems and arethe main obje
ts of study in this thesis.The study of synthesis for open rea
tive systems was taken up later in [ALW89,PR89a℄; the emphasis of [PR89a℄ was on the
omplexity of synthesizing systemsagainst the linear-time temporal logi
 LTL using automata-theoreti
 te
hniques.Meanwhile, due to the interest in simplifying Rabin's theorem [Rab69℄,
onsiderablework simplifying the study of in�nite games on in�nite graphs had been developed[Tho95, Zie98℄. An o�shoot of this, whi
h is simpler, is the study of in�nite gamesplayed on �nite graphs [M
N93℄, whi
h turns out to be dire
tly
onne
ted with syn-thesis. In fa
t, this is probably the best setting to understand the synthesis and
ontrol results implied in [PR89a℄.A problem related to synthesis studied in the area of
ontrol-theory is that of
ontrol-synthesis. The general s
enario is that there is a system,
alled a plant inthis
ontext, whi
h intera
ts with an environment. The goal is to design a
ontrollerwhi
h will intera
t with the system, observing and
ontrolling it using its own inputsto it (thereby exerting dynami
 feedba
k
ontrol), in order to make the system behavein a desired way. For example, the
ontrol-me
hanism for a
ar might involve thesystem getting inputs from sensors of the a

elerator and brakes and the
ontrollermust ensure that the
ar behaves in the desired manner by issuing
ommands to theparts in the ma
hinery that
ontrol the engine power and brake me
hanisms. Su
h
ontrol is in many
ases a
ontinuous one, where the
ontroller's inputs may also be
ontinuous.In dis
rete-event systems, the
ontrol me
hanism is also dis
rete. The automati
generation of a
ontroller to meet a spe
i�
ation for su
h systems was initiated byRamadge and Wonham [RW89℄. For example,
onsider a lift me
hanism | it hastwo levels of
ontrol. One is the
ontinuous physi
al
ontroller that
ontrols thelifting of shafts, the power of motors, et
. in order to raise or lower the lift. Onthe other hand, there is also a high-level
ontroller, whi
h intera
ts with the user-panel, observes various sensor me
hanisms and
ontrols the behaviour of the lift.

Chapter 1: Introdu
tion 6This high-level
ontrol me
hanism works on an abstra
ted system whi
h is a DES,and simply issues
ommands su
h as ordering the
losing of a door, movement to aparti
ular
oor, et
. The underlying
ontinuous low-level
ontrol makes sure thatthe lift a
tually performs these tasks.The high-level
ontrol (also
alled supervisory
ontrol) is hen
e dis
rete in natureand is amenable to automated synthesis. The
ontrol-synthesis problem then is tosynthesize a
ontroller for a given plant modeled as a DES. In [RW89℄, this problemwas studied in an automata-theoreti
 framework and was shown to have reasonablesub-
lasses where the problem is de
idable.The supervisory
ontrol of DES has been fairly well studied in the re
ent past.The problems studied in this
ommunity usually fo
us on issues like partial ob-servability (where the
ontroller has only a limited power of observing the plant),supremal
ontrollers (
ontrollers that pose the least restri
tion on the system), de-
entralized
ontrol (where there are many
ontrollers, ea
h having a

ess and
ontrolof one part of the system), et
. [KG95, KGM91, KS95, KS97, WW96℄.The literature on supervisory
ontrol, however, seldom deals with spe
i�
ationsthat are given externally. The spe
i�
ation is usually stated in terms of the plantitself | for example, as
ertain states that must be rea
hed or must be avoidedwhen the plant is modelled as a transition system. The
ontrol-problem in these
ases redu
es to sear
hing for
ertain stru
tures in the state-spa
e, and are usuallyeasy to handle, give rise to minimally restri
tive
ontrollers and are solvable inpolynomial time. The
ontrol-problem where spe
i�
ations are given independentof the plant are
ertainly harder to handle and is the main fo
us in the
omputer-s
ien
e literature.Another di�eren
e in approa
h is that the
ontrol-theory
ommunity has fo-
ussed on various
lasses of simple problems where one
an obtain tra
table
ontrol-synthesis s
hemes, while in
omputer s
ien
e, people have asked more general ques-tions and proved many unde
idability and lower bound
omplexity-theoreti
 results.For example, while distributed
ontrol has been shown, in a general setting, to beunde
idable [PR90℄, a notion of \
o-observability" has been de�ned whi
h is a suf-�
ient
ondition under whi
h one
an a
hieve de
entralized
ontrol [CL99℄.The
ontrol-synthesis and the realizability problems are te
hni
ally very similar.While in the former one is given a plant whi
h has to be
ontrolled to meet a spe
i-�
ation, the latter is to
ome up with a program (whi
h
an be seen as
ontrolling a

Chapter 1: Introdu
tion 7plant whi
h allows all possible behaviours) that meets the spe
i�
ation. The themeof this thesis is the synthesis and
ontrol of open rea
tive systems (whi
h
ould bedis
rete-event systems) for various models and spe
i�
ations.Contributions of the thesisWe study the
ontrol and synthesis problems for �nite-state rea
tive systemsmodeled as dis
rete transition systems. We do not
onsider partial-observation |the
ontrollers in all
ases will have
omplete information of the system (or thepart of the system) that they
ontrol. The two main sub-themes are to study theseproblems for bran
hing-time spe
i�
ations and to study distributed
ontrol.The most
ommon kind of spe
i�
ation is one where the set of desired behavioursis des
ribed as the set of desired sequen
es of the plant. An alternative way of look-ing at the behaviour of a plant is to
onsider the tree representing the set of allsequential behaviours it
an exhibit. The behaviour of a program/plant is then asingle tree, the bran
hes of whi
h give its sequential (i.e. linear-time) behaviours.However, a spe
i�
ation of this tree
an be more expressive than one that des
ribesjust the sequential behaviours. A typi
al example that su
h a bran
hing-time spe
i-�
ation
an state, whi
h
annot be stated in the linear-time framework, is one whi
hdemands that no matter how the plant evolves, it must always be possible to ex-tend this behaviour to one that does a parti
ular a
tion. In fa
t, in [RW89℄, thesupervisory
ontrol problem is framed by using a set of marked states (that repre-sent
ompletion of tasks) and the spe
i�
ation demands that the
ontrolled plantmust, after any sequen
e of moves, be in a state su
h that a marked state is rea
h-able (this is
alled the \nonblo
king property"). This property is also inherently abran
hing-time property.A simple me
hanism to study bran
hing-time properties is through the notionof simulations. We start our study by
onsidering the problem of
ontrol wherethe spe
i�
ations are also given as transition systems, and we want to
ontrol theplant su
h that the spe
i�
ation
an simulate the
ontrolled plant. We show thatthis problem is de
idable in time polynomial in the sizes of the �nite plants andspe
i�
ations. Simulations allow us to
apture simple safety properties and theresults regarding this form the �rst half of Chapter 2.An important aspe
t of the
ontrol-synthesis problem that we
onsider is thatthe
ontroller
an use an unbounded amount of information of past intera
tions with

Chapter 1: Introdu
tion 8the environment in order to
ontrol moves. The
lass of
ontrollers amongst whi
hwe sear
h is hen
e an in�nite
olle
tion, and hen
e the de
idability problem is nottrivial.We also study the
ontrol problem for bisimulations in Chapter 2, whi
h is astronger notion than that of simulations: two systems are bisimilar if they
an sim-ulate ea
h other in a tight fashion. We study the problem of
ontrol-synthesis wherewe are given a plant and a spe
i�
ation, both modelled as �nite-state transitionsystems and are asked whether there is a
ontroller for the plant su
h that the
ontrolled plant is bisimilar to the spe
i�
ation. Again, we show that the
ontrolproblem is de
idable in polynomial time. In both settings we show that when a
ontroller exists, we
an synthesize a
ontroller of polynomial size as well.In Chapter 3, we
onsider a
on
urrent variant of the
ontrol problem for sim-ulations. We use asyn
hronous transition systems, whi
h are transition systemsaugmented with
on
urren
y information, and
onsider a natural notion of simu-lation between them. Given a plant and a spe
i�
ation, both modelled as �niteasyn
hronous transition systems, the problem is to
ome up with a
ontroller forthe plant su
h that there is an asyn
hronous simulation from the
ontrolled plantto the spe
i�
ation. Surprisingly, it turns out that the
ontrol-synthesis problemin this simple setting is unde
idable. In fa
t, we show that even the
orrespondingmodel-
he
king problem | given two asyn
hronous transition systems, the prob-lem of verifying if there is an asyn
hronous simulation from one to the other |is unde
idable. We show that these results hold for even very restri
ted
lasses ofasyn
hronous transition systems. These results show how
omplex any notion ofdistributed
ontrol
an be
ome.In Chapter 4, we introdu
e the various temporal logi
s we will need in later
hapters (namely LTL, CTL and CTL?), and also the notions of trees, and nonde-terministi
 and alternating automata working on them. While it is true that the
ontroller-synthesis and realizability problems in a non-distributed setting is perhapsbest understood in terms of in�nite games on �nite graphs [M
N93, Tho95, Zie98℄,automata over trees allow
ombining strategies by suitable operations on automatathat des
ribe them. Alternating automata has been a very important tool in
on-trol and synthesis [KV96, KV97a, KV99a, KV00, KV01℄ and is the main tool in ourte
hni
al arsenal.In Chapter 5 we turn to the design of programs and
ontrollers for systems against

Chapter 1: Introdu
tion 9the bran
hing-time temporal logi
s CTL and CTL?. In this bran
hing-time setting,it turns out that one
an study the problems in two s
enarios | one where theenvironment is stati
 and universal and o�ers all possible moves at every point (thisdoes not mean that the system is not open) and the other where the environment
ano�er di�erent subsets of moves at di�erent stages. The environments of the formers
enario are
alled universal or non-rea
tive environments while those of the latterare termed rea
tive environments. Sin
e bran
hing-time spe
i�
ations
an spe
ifypossibility requirements (like \it must always be possible that a
tion 'a' o

urs"), aprogram whi
h satis�es a requirement when intera
ting with a universal environmentneed not satisfy it in the
ontext of a rea
tive environment. In fa
t, we show thatthe problem under rea
tive environments is a harder one to solve.It turns out that the
ontrol and realizability problems of systems in universalenvironments te
hni
ally redu
es to the module-
he
king problem studied by Kupfer-man and Vardi in [KV96, KV97a℄. From the results on module-
he
king, it followsthat these problems for CTL and CTL? are EXPTIME-
omplete and 2-EXPTIME-
omplete respe
tively. (In [KV00℄, the authors extend this to the �-
al
ulus aswell.)Our main result is that the
ontrol and realizability problems in the
ontext ofrea
tive environments is solvable for CTL and CTL?, and are 2-EXPTIME-
ompleteand 3-EXPTIME-
omplete, respe
tively. We show that when
ontrollers exist, one
an synthesize
ontrollers whose sizes mat
h the above time-bounds. The upperbounds are proved using automata-theoreti
 te
hniques and interestingly, use thefa
t that the
lass of languages a

epted by tree automata are
losed under
om-plement. Our lower bound results justify this
ostly step of
omplementation andperhaps suggest that this is where the study of
ontrol-synthesis in terms of gameson �nite-graphs breaks down.We then turn to the problems of distributed
ontrol synthesis and distributedrealizability for linear-time spe
i�
ations in Chapter 6. The most relevant paperthat addresses this problem is [PR90℄, where the authors study the distributedrealizability problem in a setting where pro
esses
ommuni
ate with ea
h other,work syn
hronously and have possible lo
al environments that they intera
t with.Pnueli and Rosner show that the realizability problem is unde
idable for almostall ar
hite
tures and from their results it follows that the only ar
hite
tures forwhi
h the
ontrol problem is de
idable are the singly-
anked pipelines. Singly-

Chapter 1: Introdu
tion 10
anked pipeline are ar
hite
tures where the pro
esses are
onne
ted along a linewith internal
hannels, and the �rst pro
ess in the line is the only one that intera
tswith the environment.The main departure of our work from that of [PR90℄ is that we
onsider lo
alspe
i�
ations instead of global ones. We show that lo
al spe
i�
ations do in
reasethe
lass of ar
hite
tures for whi
h the
ontrol-problem is de
idable, but that this isonly mild. We
hara
terize the exa
t
lass of de
idable ar
hite
tures | the
ontrolproblem for an ar
hite
ture is de
idable i� ea
h
onne
ted
omponent of it is asub-ar
hite
ture of a doubly-
anked pipeline (a doubly
anked pipeline is like thesingly-
anked pipeline as des
ribed above with the only di�eren
e being that thepro
esses at both ends of the pipeline
an intera
t with the environment).The resear
h that this thesis is based on was done mainly in
ooperation withP.S. Thiagarajan and partly in
ooperation with Orna Kupferman and Moshe Vardi.The work on simulations and the unde
idability results for asyn
hronous simulationswere �rst published in CONCUR'98 [MT98a℄. The journal version of the abovewill appear in Theoreti
al Computer S
ien
e [MT01a℄ and in
ludes the results onbisimulations. Results on the
ontrol and realizability problems against rea
tiveenvironments for bran
hing-time logi
s appeared in CONCUR'00 [KMTV00a℄. Theresults on distributed
ontrol for lo
al spe
i�
ations were published in ICALP'01[MT01b℄. Te
hni
al reports written on these works are [MT98b℄ and [KMTV00b℄.

Chapter 2
Control-synthesis for simulationsand bisimulations

They sought it with thimbles, they sought it with
are;They pursued it with forks and hope;They threatened its life with a railway-share;They
harmed it with smiles and soap.| The Hunting of the Snark, Lewis Caroll
2.1 Introdu
tionIn this
hapter, we study the problem of synthesizing
ontrollers for dis
rete eventsystems by
onsidering the bran
hing-time spe
i�
ation me
hanisms of simulationsand bisimulations.First, let us re
all the general problem of
ontrol synthesis. In informal terms, oneis given an open dis
rete event system
alled a plant whi
h
onsists of a system andits environment. One then spe
i�es the desired patterns of intera
tion between thesystem and its environment. The problem is to �nd a
ontroller whi
h will restri
t11

Chapter 2: Control-synthesis for simulations and bisimulations 12the behaviour of the plant in su
h a way that the
ontrolled behaviour meets thespe
i�
ation. A
hara
teristi
 feature of the
ontroller is that it is allowed to restri
tonly the a
tions of the system (and not those of the environment). Typi
al questionsthat arise are:� Given �nite des
riptions of the plant and the spe
i�
ation is it de
idable thatthere exists a
ontroller ?� In
ase there is a
ontroller is it always the
ase that there is a �nite
ontroller?� How big need the
ontroller be | in
ase it exists | relative to the sizes ofthe plant and the spe
i�
ation?A substantial amount of knowledge is available about this problem in the lineartime framework, i.e. when the spe
i�
ation des
ribes properties of the sequen
esgenerated by the plant. In this
hapter, the key point of departure is that we studythe
ontroller synthesis problem in a bran
hing time setting. We uniformly de-s
ribe both plants and spe
i�
ations as
ertain kinds of labelled transition systems.We then advo
ate the use of simulations and bisimulations to
apture the require-ment that the plant-
ontroller
ombination meets its spe
i�
ation. As a result,behavioural properties that
an only be stated in a bran
hing time setting be
omeavailable as spe
i�
ations (see [LV95℄). Though simulations are a weak way of spe
-ifying the required behaviours of a system, it is a good starting point for the studyof bran
hing-time spe
i�
ations and allows us to state simple safety properties.In this
hapter, we show that the problem of
he
king for the existen
e of a
ontroller, for spe
i�
ations formulated using simulations and bisimulations,
an besolved in polynomial time. Moreover, if a
ontroller exists, we show that a
ontrollerof polynomial size
an be synthesized in polynomial time.In the next se
tion we formulate the model for the plant using transition systemswith two layers of labelling on the transitions. This turns out to be a
onvenientway of
apturing the usual two-person game asso
iated with the plant as well asthe plant-
ontroller intera
tion. We use the same
lass of transition systems to
apture spe
i�
ations. We then de�ne simulations, whi
h are behaviour preservinghomomorphisms, in the natural way. A
ontroller is then required to restri
t thesystem's a
tions so that the restri
ted behaviour of the plant
an be related to thespe
i�
ation via a simulation.

Chapter 2: Control-synthesis for simulations and bisimulations 13An important lesson derived from existing literature is that a ri
her
lass of
ontrollers
an be obtained by allowing the
ontroller to make use of memory of thepast to a
hieve its goal. The
ontrollers we
onsider are also transition systems andwork in tandem with the plant, restri
ting its moves in various ways. The
ontroller
an have arbitrarily large state-spa
es. Hen
e it
an pres
ribe di�erent moves at thesame state of the plant if the history of moves exe
uted so far are di�erent. Clearlythe set of
ontrollers for a plant is an in�nite
olle
tion even when both the plantand spe
i�
ation are �nite obje
ts. Consequently the task of de
iding the existen
eof a
ontroller is not trivial.In Se
tions 2.3 and 2.4 we show that the problem of de
iding if a pair of �nitesystems (a plant and a spe
i�
ation) admits a
ontroller is de
idable in time whi
his polynomial in the sizes of the plant and spe
i�
ation. We also show that thesize of the
ontroller, whenever one exists,
an be bounded from above by a similarpolynomial. A point worth noting here is our transition systems are deterministi
with respe
t to an alphabet of events. But the events will have an additional layerof a
tion labels and the simulations are required to preserve only a
tion labels.Consequently the domain of a simulation relative to the a
tion labels will be, in allnon-trivial instan
es, non-deterministi
.In Se
tion 2.5 we extend the te
hniques of the previous two se
tions to ta
kle the
ase of bisimulations. To our knowledge, bisimulations have never been
onsideredas a spe
i�
ation me
hanism in the supervisory
ontrol problem, though it hasbeen used as a te
hnique to solve the
lassi
al
ontroller synthesis problem [BL97℄.Surprisingly, the time
omplexity and the size of the
ontroller (when one exists)still have polynomial upper bounds. It turns out that a
ru
ial
omputational stepin the de
ision pro
edure
an be eÆ
iently redu
ed to a maximal mat
hing problemwhi
h is known to be solvable in polynomial time [EK70, CLR92℄.The proofs of results regarding simulations, though they are simple, are presentedin good detail in order to give a gentle introdu
tion to the problem. As we go on, forexample when dealing with bisimulations, we give proofs in fair detail but obviousdetails have been left out so that the
ow of the arguments is not a�e
ted.

Chapter 2: Control-synthesis for simulations and bisimulations 142.2 The modelIt will be
onvenient to work with deterministi
 transition systems that have anadditional layer of labelling. Through the rest of this
hapter we �x a �nite set ofa
tions (or labels) � and let a; b range over �.De�nition 2.1 A �-labelled deterministi
 transition system is a stru
ture TS =(Q;E; T; qin; ') where:� Q is a (possibly in�nite) set of states.� E is a �nite set of events.� T � Q � E � Q is a deterministi
 transition relation. In other words, if(q; e; q0) 2 T and (q; e; q00) 2 T then q0 = q00.� qin 2 Q is the initial state.� ' : E �! � is a labelling fun
tion. 2Let t = (q; e; q0) 2 T . We often write q e�! q0 instead of (q; e; q0) 2 T . Sometimeswe write q ea�! q0 to indi
ate further that '(e) = a. In all su
h
ases the
on
ernedtransition system will be
lear from the
ontext.Hen
eforth in this
hapter, we refer to �-labelled deterministi
 transition systemsas just transition systems.Let TS = (Q;E; T; qin; ') be a transition system. When viewed as the model ofa system{environment
ombination, E will represent the environment a
tions and �the a
tions of the system. The o

urren
e of the transition q ea�! q0 is to be viewedas the system o�ering to perform an a-a
tion and the environment
hoosing thespe
i�
 (a-labelled) event e as its mat
hing response. There
ould be more thanone a-labelled event enabled at q for the environment to
hoose from. We note alsothat it
ould be the
ase that q ea�! q0 and q e0b�! q0. Thus the environment
ould
hoose the same response | in terms of the
hange produ
ed in the global state |to two di�erent a
tions a and b of the system. This way of des
ribing the system-environment intera
tion is taken from [AMP95℄. In the present setting this will beeasier to work with than the usual one in whi
h the system moves and environmentmoves expli
itly alternate [Tho95℄.

Chapter 2: Control-synthesis for simulations and bisimulations 15Example 2.1 b1 ask askb2tea
o�eetea
o�eer r r rrestart
In the example above, the transition system depi
ts a vending ma
hine modelledin our framework. In the diagrams, events are written in bold while labels of eventsare written in itali
s. The events are fb1;b2; tea;
o�ee; r; restartg. The a
tionsare � = fask ; tea;
o�ee; r ; restartg. The labelling fun
tion maps the events b1 andb2 to ask and is the identity map on the other events. In its initial state, thema
hine reads whi
h button (b1 or b2) is pressed | it then de
ides to serve eithertea or
o�ee. At the initial state, or whenever it rea
hes that state, the plant
ano�er to read an input by enabling the a
tion ask . However, it has no
ontrol overwhether b1 or b2 will be exe
uted | the environment makes this
hoi
e.We model both plants and spe
i�
ations as transition systems. The
ontrolledbehaviour of a plant will be related to its spe
i�
ation by a simulation.De�nition 2.2 Let TS p = (Qp; Ep; Tp; qpin; 'p) and TS s = (Qs; Es; Ts; qsin; 's) bea pair of transition systems. Then a simulation f from TS p to TS s | denotedf : TS p �! TS s | is a map f : Qp [Tp �! Qs [Ts with f(Qp) � Qs andf(Tp) � Ts su
h that the following
onditions are satis�ed:(i) f(qpin) = qsin.(ii) Suppose t = (qp; e; q0p) 2 Tp and f(t) = (qs; e0; q0s). Then f(qp) = qs andf(q0p) = q0s and 'p(e) = 's(e0). 2Thus a simulation is just a stru
ture preserving homomorphism. Given twotransition systems TS 1 and TS 2 we say that TS 1 and TS 2 are isomorphi
 in
ase

Chapter 2: Control-synthesis for simulations and bisimulations 16
TS e1 e2f2f1 e1 e2f1e1 e2f1e1f1 e2f2 f2f1e1 e2

f2f1e1 e2f1e1 e2 f2f1

Uf(TS)

Figure 2.2: A transition system and its unfoldingthere is a simulation f : TS 1 �! TS 2 su
h that f : Q1[T1 �! Q2[T2 is a bije
tionwith Qi (Ti) being the set of states (transitions) of TS i for i = 1; 2.The notion of the
ontrolled behaviour of a plant meeting its spe
i�
ation via asimulation will be de�ned at the level of unfoldings. As we point out later this willpermit a larger
lass of
ontrollers.De�nition 2.3 Let TS = (Q;E; T; qin; ') be a transition system. Then Uf (TS),the unfolding of TS , is the stru
ture
TS = (bQ; bE; bT ; bqin; b') where bQ � Q � E�,bE � E and bT � bQ� bE � bQ are the least sets satisfying:(i) (qin; ") 2 bQ.(ii) Suppose (q; �) 2 bQ and (q; e; q0) 2 T . Then (q0; �e) 2 bQ, e 2 bE and((q; �); e; (q0; �e)) 2 bT .Further, bqin = (qin; ") and b' is ' restri
ted to bE. 2It is easy to
he
k that
TS is a deterministi
 �-labelled transition system. We
ould have de�ned bQ in terms of E� alone but the present formulation will be easierto work with. Figure 2.2 illustrates a transition system and its unfolding.Finally, the
ontrolled behaviour of a plant will be obtained by taking the (syn-
hronized) produ
t of the plant and a
ontroller.

Chapter 2: Control-synthesis for simulations and bisimulations 17De�nition 2.4 Let TS i = (Qi; Ei; Ti; qiin; 'i), i = 1; 2 be a pair of transition sys-tems su
h that 8e 2 E1 \ E2, '1(e) = '2(e). Then the produ
t of TS 1 and TS 2| denoted TS 1kTS 2 | is the stru
ture TS = (Q;E; T; qin; ') where Q � Q1 �Q2and E � E1 [E2, T � Q� E �Q are the least sets that satisfy:� (q1in; q2in) 2 Q� Suppose (q1; q2) 2 Q and (q1; e; q01) 2 T1 with e 62 E2. Then e 2 E, (q01; q2) 2 Qand ((q1; q2); e; (q01; q2)) 2 T .� Suppose (q1; q2) 2 Q and (q2; e; q02) 2 T2 with e 62 E1. Then e 2 E, (q1; q02) 2 Qand ((q1; q2); e; (q1; q02)) 2 T .� Suppose (q1; q2) 2 Q, e 2 E1 \ E2, (q1; e; q01) 2 T1 and (q2; e; q02) 2 T2. Thene 2 E, (q01; q02) 2 Q and ((q1; q2); e; (q01; q02)) 2 T .Further, qin = (q1in; q2in) and ' : E1 [E2 �! � is given by: '(e) = '1(e) if e 2 E1and '(e) = '2(e) if e 2 E2 n E1. 2Again it is easy to
he
k that TS 1kTS 2 is also a deterministi
 �-labelled tran-sition system. We are now ready to de�ne
ontrollers. As it will turn out, theplant-
ontroller intera
tion will be a mu
h tighter version of the produ
t operation.For a transition system TS = (Q;E; T; qin; ') we will say q 2 Q is rea
hable fromqin if q = qin or there exists a non-null sequen
e of states q0q1 : : : qn with q0 = qinand qn = q and for 0 � i < n, 9e 2 E : (qi; e; qi+1) 2 T . Note that for any pair oftransition systems TS 1 and TS 2, all states of TS 1kTS 2 are rea
hable.De�nition 2.5 Let TSx = (Qx; Ex; Tx; qxin; 'x), x 2 fp;
; sg be three transitionsystems. Then TS
 is a
ontroller for the pair (TS p;TS s) i� the following
onditionsare satis�ed: Let TS pkTS
 = (Q;E; T; qin; ').(CT1) E
 = Ep and '
 = 'p.(CT2) (non-restri
ting) Suppose (qp; q
) is in TS pkTS
 and ((qp; q
); e; (q0p; q0
)) 2 Tand (qp; e1; q00p) 2 Tp with 'p(e) = 'p(e1). Then there exists q00
 2 Q
 su
h that((qp; q
); e1; (q00p ; q00
)) 2 T (and hen
e (q
; e1; q00
) 2 T
).(CT3) (non-blo
king) Suppose (qp; q
) is in TS pkTS
 and (qp; e; q0p) 2 Tp. Thenthere exists e1 2 Ep, q00p 2 Qp and q00
 2 Q
 su
h that ((qp; q
); e1; (q00p ; q00
)) 2 T .

Chapter 2: Control-synthesis for simulations and bisimulations 18(CT4) There is a simulation from Uf(TS pkTS
) to Uf(TS s). 2The
ondition (CT1) demands that the plant and the
ontroller be tightly
ou-pled. There are no \autonomous" transitions either for the plant or for the
ontroller.Sin
e the plant is deterministi
 on events, the
ontroller observes everything thatthe plant does and
an determine the state of the plant by observing the sequen
e ofevents it has exe
uted. The
ondition (CT2) says that TS
 should restri
t only thesystem moves. If at a rea
hable state it permits one a-move then it should permit alla-moves. The
ondition (CT3) requires that the
ontroller should be non-blo
king.Stated di�erently, the
ontroller should not introdu
e any new deadlo
ks in the
onstrained plant behaviour. This
ondition also ensures that the problem does notdegenerate, as otherwise there is always a
ontroller whi
h restri
ts all system movesand satis�es the spe
i�
ation.The role of (CT4) should be
lear. It says that the spe
i�
ation must be ableto simulate the
ontrolled plant. This basi
ally means that we
an
ater for simplesafety properties where the spe
i�
ation des
ribes the tree of system moves allowed.We
ould have de�ned the simulation dire
tion the other way, i.e. demand that the
ontrolled plant must be able to simulate the spe
i�
ation. This will be a naturalway to
apture liveness properties. However, in the
ontroller synthesis problemfor su
h spe
i�
ations, the notion be
omes very weak be
ause the
ontroller willhave no useful role to play. It is easy to see that if the plant does not satisfy thespe
i�
ation then no pruning of its behaviour (by a
ontroller) will satisfy it.Note that the
ontroller need
ould have in�nitely many states, even though theplant and spe
i�
ation are �nite-state.In formulating (CT4), we
ould have used TS s instead of Uf (TS s). The
hoi
eof the latter is for the sake of uniformity.Proposition 2.1 Let TS 1 and TS 2 be two transition systems. If there is a simula-tion from TS 1 to Uf(TS 2), then there is a simulation from TS 1 to TS 2.Proof Let TS i = (Qi; Ei; Ti; qiin; 'i), where i = 1; 2. Let f : TS 1 ! Uf(TS 2)be a simulation. Then de�ne g : Q1 [T1 ! Q2 [T2 as follows: Let q1 2 Q1and f(q1) = (q2; �0) (where �0 2 E�2). Then g(q1) = q2. Also, for a transitiont = (q1; e; q01) in T1, let f(t) = ((q2; �); e0; (q02; �e0)). Then g(t) = (q2; e0; q02). It is easyto verify that g is a simulation from TS 1 to TS 2. 2

Chapter 2: Control-synthesis for simulations and bisimulations 19Also,Proposition 2.2 Let TS 1 and TS 2 be two transition systems. If there is a simula-tion from TS 1 to TS 2, then there is a simulation from Uf(TS 1) to Uf(TS 2).Proof Let TS i = (Qi; Ei; Ti; qiin; 'i), where i = 1; 2. Let f : TS 1 ! TS 2 be asimulation. Let TS 0i = Uf(TSi) = (Q0i; E 0i; T 0i ; qiin0; '0i), where i = 1; 2. We nowde�ne g : Q01 [T 01 ! Q02 [T 02. Formally, we de�ne, by indu
tion on j�j (where� 2 (E 01)�), the values of g((q; �)) and g((q; �0); e; (q1; �0e)) where �0e = �. We alsoindu
tively maintain the property that if g((q; �)) = (q0; �0), then f(q) = q0. Letg((q1in; ")) = (q2in; ") (note that f(q1in) = q2in). Now, let � 2 (E 01)� and (q; �) 2 Q01.Indu
tively assume that g has been de�ned on (q; �) and let g((q; �)) = (q0; �0). Lett = ((q; �); e; (q1; �e)) 2 T 01 and f((q; e; q1)) = (q00; e0; q01). But then f(q) = q00. Sin
eindu
tively, g((q; �)) = (q0; �0), f(q) = q0. So, q0 = q00 and f((q; e; q1)) = (q0; e0; q01).Set g(t) = ((q0; �0); e0; (q01; �0e0)) and g((q1; �e)) = (q01; �0e0). It is now straightforwardto verify that g is a simulation from Uf (TS1) to Uf(TS2). 2Lemma 2.3 Let TS1 and TS2 be two transition systems. Then there is a simulationfrom Uf(TS 1) to TS 2 i� there is a simulation from Uf(TS1) to Uf(TS2).Proof Follows dire
tly from the Proposition 2.1 and Proposition 2.2 above and thefa
t that Uf (Uf(TS1)) and Uf (TS1) are isomorphi
. 2Lemma 2.3 shows that we
ould have as well used TS s instead of Uf(TS s) in(CT4). However, in (CT4), we
annot instead demand that there is a simulationfrom TS pkTS
 to TS s, or to Uf(TSs) | doing so would admit a smaller
lass of
ontrollers as we illustrate below. But it will be
onvenient to identify this smaller
lass of
ontrollers as well:De�nition 2.6 Let TSx = (Qx; Ex; Tx; qxin; 'x), x 2 fp;
; sg be three transitionsystems. Then TS
 is a simple
ontroller for the pair (TS p;TS s) if it satis�es
onditions (CT1), (CT2) and (CT3) of De�nition 2.5 as well as:(CT40) There is a simulation from TS pkTS
 to TS s. 2A simple
ontroller, however, is a
ontroller as well:

Chapter 2: Control-synthesis for simulations and bisimulations 20Proposition 2.4 Let TS
 be a simple
ontroller for (TS p;TS s). Then TS
 is a
ontroller for (TS p;TS s).Proof Follows dire
tly from Proposition 2.2. 2We have de�ned the goal of the
ontroller to be able to restri
t the plant su
hthat there is a simulation fun
tion from the unfolding of the plant-
ontroller
om-bination to the unfolding of the spe
i�
ation. We
ould have instead required thatthere be simulation relation between the plant-
ontroller pair (not its unfolding)and the spe
i�
ation. Though this would have been the more
onventional route totake, we have
hosen to take the present route be
ause we feel that it is more trans-parent. Moreover, our notion extends naturally to the
on
urrent setting
onsideredin the next
hapter. In this extended setting the existen
e of a simulation fun
tionbetween the unfoldings of two transition systems does not imply the existen
e of a
orresponding simulation relation between the two transition systems.Let us now look at some examples:Example 2.3
bf
ea ae0 bf 0 ae bfTS 1p TS 1s TS 1
It is easy to see that TS 1
 is a
ontroller (as well as a simple
ontroller) for the pair(TS 1p;TS 1s) | in fa
t, TS 1pkTS 1
 is isomorphi
 to TS 1s. Note that the event names inthe spe
i�
ation play no role | we will hen
eforth not show them in the diagramsof spe
i�
ations. We will also not denote the labels of events in the
ontroller as itwill be the same as the labelling in the plant.

Chapter 2: Control-synthesis for simulations and bisimulations 21Example 2.4 ea aa e
TS 2p TS 2s TS 2
Again it is easy to see that TS 2
 is a \trivial"
ontroller for the pair (TS 2p;TS 2s)(trivial in the sense that TS 2pkTS 2
 is isomorphi
 to TS 2p). But note that that it isnot a simple
ontroller. In fa
t, it is easy to see that this plant-spe
i�
ation pairdoes not admit a simple
ontroller. Thus demanding a simulation map at the levelof unfoldings admits a larger
lass of
ontrollers in general.

Example 2.5 ae1 be2
f a
b
 e1fe2f
TS 3p TS 3s TS 3
In this example, note again that TS 3
 is a
ontroller for (TS 3p;TS 3s). Howeverthe
ontroller is not a zero-memory
ontroller in the sense that it does not simplypres
ribe a parti
ular move from a state of the plant but pres
ribes moves dependingon the history of intera
tion (it alternately s
hedules e1 and e2 from the same stateof the plant). In other words, the plant-
ontroller produ
t has more states than theplant. It is easy to see that there is no zero-memory
ontroller for (TS 3p;TS 3s).

Chapter 2: Control-synthesis for simulations and bisimulations 22Example 2.6
e1 a e1af1 b f2
 f1 b f2
f2
 f2
 f1 b f1 b

ab

 b
e1 e2f1 f2f2 f1TS 4p TS 4s TS 4
This example illustrates the fa
t that the
ontroller needs to observe the events(and not just the labels of the events) the plant exe
utes. The
ontroller in this
ase s
hedules the events f1 and f2 depending on whether e1 or e2 o

urred (notethat e1 and e2 have the same label). It is easy to see that there is no
ontroller for(TS 4p; TS4s) whi
h
an s
hedule events depending only on the sequen
e of labels ofa
tions that have been exe
uted (i.e. there is no
ontroller whi
h is deterministi
 onlabels).The following example will illustrate the bran
hing nature of the spe
i�
ation.The plant TS 5p is a vending ma
hine whi
h �rst asks the user to press a button b1or b2. Then it
an serve either tea or
o�ee, and reset (the event r) and restart.The events b1 and b2 are thus labelled with ask | the other events are pure plantmoves and they are labelled using the identity fun
tion. In the spe
i�
ation TS 5s,we show only the labels on the events | in this example, the spe
i�
ation demandsthat the button whi
h is pressed must determine whether
o�ee or tea is served. Itmust not be the
ase that after a button is pressed, there is a possibility of both
o�ee and tea being served. However, it
annot demand that the user
an get tea ifhe/she wants tea. We
an demand su
h a spe
i�
ation in the bisimulation setting,whi
h we will dis
uss in Se
tion 2.5.

Chapter 2: Control-synthesis for simulations and bisimulations 23Example 2.7 b1 ask askb2tea
o�eetea
o�eer r r rrestart
ask asktea
o�eer rrestartTS 5p TS 5sA valid
ontroller has to just disable either
o�ee or tea after b1 and b2. Notethat it
annot disable both tea and
o�ee nor
an it leave both enabled. But a
ontroller whi
h serves
o�ee on both button-presses is also a valid one. It is easyto see that there is no minimally restri
tive
ontroller, in the sense of one whi
hallows the maximum number of event sequen
es. This in fa
t also shows that su
hspe
i�
ations
annot be stated in the Ramadge{Wonham framework [RW89℄, as intheir setting minimally restri
tive
ontrollers always exist.We
on
lude this se
tion by stating one of the main results of this
hapter. Indoing so and elsewhere we will say that a transition system TS is �nite in
ase Q is�nite. In
ase TS is �nite, its size | denoted jTS j | is de�ned to be jQj+ jEj.Theorem 2.1 Let (TS p;TS s) be a pair of �nite transition systems and m =max(jTS pj; jTS sj). Then the question whether there exists a
ontroller for(TS p;TS s)
an be de
ided in time polynomial in m. Moreover, if a
ontroller exists,we
an
onstru
t one whose size is bounded by a polynomial in m. This
onstru
tionalso takes time bounded by a polynomial in m. 22.3 A good subgraph
hara
terizationOur goal here is to
hara
terize
ontrollers in terms of obje
ts
alled good sub-graphs, whi
h is a subgraph that satis�es some
losure properties. This will lead toa proof of Theorem 2.1. Given a pair of �nite transition systems (TS p;TS s) we form

Chapter 2: Control-synthesis for simulations and bisimulations 24an edge-labelled dire
ted graph Gps whi
h is a restri
ted produ
t of TS p and TS s.We then show that (TS p;TS s) admits a
ontroller i� Gps
ontains a good subgraph.Through the rest of the se
tion we �x a pair of �nite transition systems (TS p;TS s)with TS x = (Qx; Ex; Tx; qxin; 'x), x 2 fp; sg. Then the edge-labelled dire
ted graphGps = (X;!) is given by:� X = Qp �Qs� ! � X � (Ep � Es)�X is de�ned as:(qp; qs) (e;e0)�! (q0p; q0s) i� qp e�! q0p in TS p and qs e0�! q0s in TS s and 'p(e) = 's(e0).We say that G = (Y;)) is a subgraph of Gps i� Y � X and) � ! \ (Y � (Ep�Es)� Y).De�nition 2.7 Let G = (Y;)) be a subgraph of Gps = (X;!). Then G is said tobe good i� it satis�es the following
onditions.(G1) (qpin; qsin) 2 Y .(G2) Suppose (qp; qs) (e;e0)=) (q0p; q0s) and qp e1�! q1p in TS p with 'p(e) = 'p(e1). Then9e01 2 Es; q1s 2 Qs : (qp; qs) (e1;e01)=) (q1p; q1s) in G.(G3) Suppose (qp; qs) 2 Y and there exists qp e�! bqp in TS p. Then there existsq0p 2 Qp, q0s 2 Qs, e1 2 Ep, e01 2 Es su
h that (qp; qs) (e1;e01)=) (q0p; q0s) in G. 2Proposition 2.5 Let TS
 be a
ontroller for (TS p;TS s). Then Uf(TS
) is a simple
ontroller for (TS p;TS s).Proof We �rst show a simulation from TS pk Uf(TS
) to Uf (TS s). Let f :Uf (TS pkTS
) ! Uf (TS s) be a simulation. De�ne g : (TS p k Uf(TS
)) !Uf (TS s) as follows: Let (qp; (q
; �)) be a state in TS p k Uf(TS
). It is easyto see that then ((qp; q
); �) is a state of Uf(TS pkTS
). De�ne g((qp; (q
; �))) =f((qp; q
); �). Also, for a transition t = ((qp; (q
; �)); e; (q0p; (q0
; �e))) in TS p k Uf(TS
),the transition t0 = (((qp; q
); �); e; ((q0p; q0
); �e)) is in Uf(TS pkTS
). De�ne g(t) =f(t0). It is easy to verify that g is a simulation. By Proposition 2.1 it follows thatthere is a simulation from TS pk Uf(TS
) to TS s. 2

Chapter 2: Control-synthesis for simulations and bisimulations 25Lemma 2.6 Suppose TS
 is a simple
ontroller for (TS p;TS s). Then Gps
ontainsa good subgraph.Proof Let TS
 = (Q
; E
; T
; q
in; '
) and TS = TS pkTS
 = (Q;E; T; qin; '). Let fbe a simulation from TS to TS s. We now de�ne the subgraph (Y;)) of Gps indu
edby f as follows.� (qp; qs) 2 Y i� there exists (qp; q
) 2 Q su
h that f((qp; q
)) = qs for someq
 2 Q
.� (qp; qs) (e;e0)=) (q0p; q0s) i� there exists t = ((qp; q
); e; (q0p; q0
)) 2 T su
h that f(t) =(qs; e0; q0s) for some q
; q0
 2 Q
.We
laim that (Y;)) is a good subgraph of Gps. The property (G1) follows fromf((qpin; q
in)) = qsin whi
h in turn implies (qpin; qsin) 2 Y .To verify (G2), assume that (qp; qs) (e;e0)=) (q0p; q0s) and that qp e1�! q1p in TS pwith 'p(e) = 'p(e1). From the de�nition of), it follows that there exists t =((qp; q
); e; (q0p; q0
)) 2 T with f(t) = (qs; e0; q0s), for some q
; q0
 2 Q
. Sin
e TS
 is a
ontroller, by property (CT2), it follows that t1 = ((qp; q
); e1; (q1p; q1
)) is a transitionin TS for some q1
 in Q
. Let f(t1) = (qs; e01; q1s). Then by the de�nition of) weare assured that (qp; qs) (e1;e01)=) (q1p; q1s). This establishes (G2).Let us now prove (G3). Let (qp; qs) 2 Y and qp e�! bqp. Then 9q
 2Q
 : f((qp; q
)) = qs. By (CT3), there exists e1 2 Ep and q1p 2 Qp su
h that((qp; q
); e1; (q1p; q1
)) 2 T . Let f(t) = (qs; e01; q1s). Then (qp; qs) (e1;e01)=) (q1p; q1s). 2Lemma 2.7 Suppose TS
 is a
ontroller for (TS p;TS s). Then Gps
ontains a goodsubgraph.Proof If TS
 is a
ontroller for (TS p;TS s), then by Proposition 2.5, Uf (TS
) isa simple
ontroller for (TS p;TS s). From Lemma 2.6 it follows that Gps has a goodsubgraph. 2As a �rst step towards proving the
onverse of Lemma 2.7 we �rst show that ifGps
ontains a good subgraph then in fa
t it
ontains a good subgraph of a restri
tedkind.

Chapter 2: Control-synthesis for simulations and bisimulations 26Lemma 2.8 Suppose Gps
ontains a good subgraph. Then it
ontains a good sub-graph (Y;)) whi
h satis�es the following
ondition.Suppose (qp; qs) (e;e0)=) (q0p; q0s) and (qp; qs) (e;e00)=) (q0p; q00s). Then e0 = e00 and hen
eq0s = q00s .Proof Let (Y1;)1) be a good subgraph of Gps. Then we set Y = Y1 and �x alinear order < over Es. De�ne now) to be the least subset of)1 whi
h satis�es:Suppose ((qp; qs); (e; e0); (q0p; q0s)) 2)1 and there does not exist((qp; qs); (e; e00); (q0p; q00s)) 2)1 with e00 < e0. Then ((qp; qs)); (e; e0); (q0p; q0s)) 2).Hen
e, at any state, for an event e 2 Ep, we keep only one representative edge ofthe kind (e; e0) outgoing from the state. It is now easy to
he
k that (Y;)) is agood subgraph of Gps having the desired property. 2We will say that a good subgraph of Gps is s-deterministi
 (\simulation-deterministi
") in
ase it satis�es the
ondition spe
i�ed in the statement ofLemma 2.8.Let G = (Y;)) be an s-deterministi
 good subgraph of Gps. We now de�ne thestru
ture TSG
 = (Q
; E
; T
; q
in; '
) indu
ed by G as follows. It will turn out thatTSG
 is a
ontroller for (TS p;TS s).� Q
 = Y and E
 = Ep and '
 = 'p.� T
 = f((qp; qs); e; (q0p; q0s)) j 9e0 2 Es : (qp; qs) (e;e0)=) (q0p; q0s)g� q
in = (qpin; qsin).Lemma 2.9 TSG
 is a deterministi
 �-labelled transition system.Proof Suppose ((qp; qs); e; (q0p; q0s)) 2 T
 and ((qp; qs); e; (q00p ; q00s)) 2 T
. Then thereexist (qp; qs) (e;e0)=) (q0p; q0s) and (qp; qs) (e;e00)=) (q00p ; q00s) in G = (Y;)). Clearly q0p = q00pbe
ause TS p is a deterministi
 �-labelled transition system. On the other hand,e0 = e00 be
ause G is s-deterministi
 and hen
e q0s = q00s sin
e TS s is deterministi
.2

Chapter 2: Control-synthesis for simulations and bisimulations 27Proposition 2.10 Let (qp; (q0p; qs)) be a state of TS pkTSG
 with qp; q0p 2 Qp andqs 2 Qs. Then qp = q0p. 2Hen
e any state of TS pkTSG
 is of the form (qp; (qp; qs)).Lemma 2.11 TSG
 is a
ontroller for (TS p;TS s). Hen
e, if Gps
ontains a goodsubgraph then there is a
ontroller for (TS p;TS s).Proof We will in fa
t show that TSG
 is a simple
ontroller (and hen
e by Propo-sition 2.4, a
ontroller) for (TS p;TS s). Let TS = TS pkTSG
 . (CT1) holds byde�nition of TSG
 .Let us now show (CT2). Suppose (qp; (qp; qs)) is a state of TS and (qp; (qp; qs)) e�!(q0p; (q0p; q0s)) in TS . Suppose further that qp e1�! q1p in TS p with 'p(e) = 'p(e1). So(qp; qs) e�! (q0p; q0s) is in TSG
 whi
h means that there is an e0 2 Es su
h that(qp; qs) (e;e0)=) (q0p; q0s) in G, the good subgraph we started with. Sin
e qp e1�! q1p is inTS p, from property (G2) it follows that 9e01 2 Es su
h that (qp; qs) (e1;e01)=) (q1p; q1s) is inG. This implies that (qp; qs) e1�! (q1p; q1s) is in TSG
 and (qp; (qp; qs)) e1�! (q1p; (q1p; q1s))is in TS .To show (CT3), let (qp; (qp; qs)) be a state in TS and qp e�! q1p in TS p. Then(qp; qs) 2 Y and by property (G3), we know that there is an edge of the form(qp; qs) (e1;e01)=) (q0p; q0s) in G. Hen
e (qp; qs) e1�! (q0p; q0s) is in TSG
 and (qp; (qp; qs)) e1�!(q0p; (q0p; q0s)) is in TS .In order to show (CT40), let us exhibit a simulation from TS to TS s. Let f :TS ! TS s be de�ned as follows. For a state (qp; (qp; qs)), de�ne f((qp; (qp; qs))) = qs.Let t = ((qp; (qp; qs)); e; (q0p; (q0p; q0s))) be a transition in TS . Then there is an e0 2 Essu
h that (qp; qs) (e;e0)=) (q0p; q0s) in G (sin
e G is s-deterministi
, this e0 is unique).De�ne f(t) = (qs; e0; q0s). It now easily follows that f is a simulation from TS toTS s.Hen
e TSG
 is a simple
ontroller for (TS p;TS s). By Proposition 2.2, it is a
ontroller for (TS p;TS s) as well. 2Theorem 2.2 There is a
ontroller for (TS p;TS s) i� Gps has a good subgraph. 2

Chapter 2: Control-synthesis for simulations and bisimulations 282.4 The synthesis pro
edureWe develop here a proof of Theorem 2.1. We know from Theorem 2.2 thatde
iding whether the pair (TS p;TS s) admits a
ontroller boils down to de
idingwhether or not the graph Gps
ontains a good subgraph. We establish in two stepsthat good subgraphs
an be eÆ
iently found.Theorem 2.3 There is a uniform de
ision pro
edure whi
h takes as its input a pairof �nite transition systems (TS p;TS s) and de
ides whether or not the edge-labelleddire
ted graph Gps (as de�ned in the previous se
tion)
ontains a good subgraph.Proof We set G0 = Gps and
onstru
t a sequen
e of graphs G0; G1; : : : Gn up toa stage where Gn = Gn+1. For every i 2 f0; : : : ng, Gi+1 will be a subgraph of Gi.This pruning pro
edure will remove edges or verti
es whi
h eviden
e violations ofproperties (G2) or (G1) of a good subgraph. Then testing Gn for a simple prop-erty (whether (qpin; qsin) 2 Gn), we will de
ide whether or not Gps
ontains a goodsubgraph.Assume that G0; : : : ; Gi; i � 0 have been
onstru
ted. Let TSx =(Qx; Ex; Tx; qxin; 'x), x 2 fp; sg.Now, Gi+1 is obtained from Gi by applying one of the following pruning stepsto Gi. If neither of these two steps
an be applied to Gi then we set Gi+1 = Gi andstop.(i) Let Gi = (Xi;!i). Suppose (q1; q2) 2 Xi, (q1; e1; q001) is in Tp but there is no(e01; e02) 2 Ep � Es su
h that (q1; q2) (e01;e02)�! (q01; q02) in Gi. Then remove (q1; q2)from Xi and all edges
oming into (q1; q2). Let the resulting graph be Gi+1.(ii) Suppose (q1; q2) (e1;e2)�! (q01; q02) is an edge of Gi and (q1; e01; q001) is in Tp su
hthat 'p(e1) = 'p(e01). Further, suppose that there is no edge of the form(q1; q2) (e01;e02)�! (q001 ; q002) in Gi. Then remove the edge ((q1; q2); (e1; e2); (q01; q02))from Gi and let the resulting graph be Gi+1.Clearly Gi+1 = Gi (in whi
h
ase we stop) or Gi+1 is stri
tly smaller than Gi.Sin
e G0 is �nite this pruning pro
edure must stop after a �nite number of steps.Let n be the least integer su
h that Gn = Gn+1 and let Gn = (Xn;!n).Claim: Gps
ontains a good subgraph i� (qpin; qsin) 2 Xn.

Chapter 2: Control-synthesis for simulations and bisimulations 29To see that the
laim holds, suppose Gps
ontains a good subgraph G. Then,by indu
tion on n, is is easy to prove that Gn must also
ontain G as its subgraph.Thus (qpin; qsin) 2 Xn.Next suppose that (qpin; qsin) 2 Xn. From the fa
t that no pruning rule is appli-
able on Gn, it follows at on
e that Gn is a good subgraph of Gps. This establishesthe
laim and the theorem. 2Corollary 2.12 Let TS p = (Qp; Ep; Tp; qpin; 'p) and TS s = (Qs; Es; Ts; qsin; 's) be apair of �nite transition systems. Let jQpj = n1, jQsj = n2, jEpj = k1 and jEsj = k2.Let m = maxfn1; n2; k1; k2g. Then in time polynomial in m, one
an de
ide whetheror not (TS p;TS s) has a
ontroller.Proof Due to Theorem 2.2, it suÆ
es to prove that in time polynomial in m one
an
he
k whether or not Gps
ontains a good subgraph. Now
onsider the de
isionpro
edure developed in the proof of Theorem 2.3 for a
hieving this.G0 = Gps has at most n1 �n2 verti
es and n21 �n22 � k1 � k2 edges. One
an
omputeGi+1 from Gi in time whi
h is linear in the size of Gi. Ea
h Gi+1 is smaller than Gi.Hen
e the de
ision pro
edure will terminate in at most n21 � n22 � k1 � k2 steps. 2Corollary 2.13 Let TS p = (Qp; Ep; Tp; qpin; 'p) and TS s = (Qs; Es; Ts; qsin; 's) be apair of �nite transition systems. Let m be de�ned as in the previous
orollary.(i) If (TS p;TS s) has a
ontroller, then it has a �nite
ontroller of size at mostn21 � n22 � k1 � k2.(ii) Su
h a
ontroller, if it exists,
an be
omputed in time whi
h is polynomial inm.Proof Again referring to the proof of Theorem 2.3, let n be the least integer su
hthat Gn = Gn+1. Assume that Gn = (Xn;!n) and that (qpin; qsin) 2 Xn. We knowfrom the previous
orollary that Gn is of size at most n21 � n22 � k1 � k2 and that Gn
an be
omputed in time whi
h is polynomial in m.Now suppose Gn = (Xn;!n) has the property (qpin; qsin) 2 Xn. Then followingthe proof of Lemma 2.11 one
an extra
t a
ontroller TSG
 for (TS p;TS s) (see page26) in time whi
h is linear in the size of Gn. 2

Chapter 2: Control-synthesis for simulations and bisimulations 302.5 The bisimulation settingWe show in this se
tion that Theorem 2.1 goes through even if we repla
e sim-ulations by the stronger notion of bisimulations. Let us �rst de�ne bisimulations[Mil80℄.De�nition 2.8 Let TS i = (Qi; Ei; Ti; qiin; 'i), i = 1; 2, be a pair of (deterministi
�-labelled) transition systems. A bisimulation between TS 1 and TS 2 is a relationR � Q1 �Q2 whi
h satis�es:� (q1in; q2in) 2 R.� Suppose (q1; q2) 2 R and q1 e1a�! q01 is in TS 1. Then there exists a transitionq2 e2a�! q02 in TS 2 su
h that (q01; q02) 2 R.� Suppose (q1; q2) 2 R and q2 e2a�! q02 is in TS 2. Then there exists a transitionq1 e1a�! q01 in TS 1 su
h that (q01; q02) 2 R. 2We say that TS 1 and TS 2 are bisimilar in
ase there is a bisimulation betweenthem. Clearly, bisimilarity is an equivalen
e relation. In fa
t, we have:Proposition 2.14 Let TS i = (Qi; Ei; Ti; qiin; 'i), where i = 1; 2; 3 be three transi-tion systems. If R1 is a bisimulation between TS 1 and TS 2 and R2 is a bisimulationfrom TS 2 and TS 3, then R1 �R2 is a bisimulation between TS 1 and TS 3. 2In the above proposition, R1 � R2 stands for the
omposition of the relationsR1 and R2, i.e. (q1; q3) 2 R1 � R2 i� there is some q2 su
h that (q1; q2) 2 R1 and(q2; q3) 2 R2.It is also
lear that every transition system is bisimilar to its unfolding. Hen
e we
an work with bisimulations between transition systems rather than between theirunfoldings.De�nition 2.9 Let TSx, x 2 fp; s;
g be three transition systems. Then TS
 isa strong
ontroller for the pair (TS p;TS s) i� TS
 satis�es the
onditions (CT1),(CT2) of being a
ontroller (De�nition 2.5) and TS pkTS
 is bisimilar to TS s. 2Note that we have dropped the non-blo
king property (CT3). In the setting ofsimulations, we were
apturing safety properties only and thus required that the

Chapter 2: Control-synthesis for simulations and bisimulations 31
ontroller should not introdu
e any deadlo
ks. However, in the bisimulation setting,we
an
apture liveness properties as well. In parti
ular, the spe
i�
ation
oulddemand that the plant should halt at some spe
i�ed states.Consider Example 2.7 (page 22) and view this as a new example where the spe
-i�
ation intended as a bisimulation spe
i�
ation. The spe
i�
ation now demandsthat after a button is pressed, the possibility of serving both tea and
o�ee does notexist, as in the simulation setting. Further, it demands that there must be a way theuser
an get tea and a way in whi
h he
an get
o�ee. A
ontroller whi
h serves only
o�ee on pressing either button will satisfy the spe
i�
ation in the simulation settingbut not in the bisimulation setting. A
ontroller in this setting must enable
o�ee(only) on one input and tea (only) in the other. It is easy to see that a minimallyrestri
ting
ontroller does not exist in this setting as well.The synthesis problem now is the following: Given a pair of �nite transitionsystems (TS p;TS s), is there a strong
ontroller for this pair? It will be
onvenientto solve this problem while assuming that TS s is redu
ed with respe
t to bisimilarity:De�nition 2.10 Let TS = (Q;E; T; qin; ') be a transition system. Then TS issaid to be redu
ed (w.r.t bisimilarity) i� the following
onditions are satis�ed:(i) fR j R � Q�Q is a bisimulationg = fidQg where idQ = f(q; q) j q 2 Qg(ii) Suppose q e1a�! q0 and q e2a�! q0. Then e1 = e2. 2The next observation shows why it is
onvenient to work with redu
ed transitionsystems:Proposition 2.15 Let TS i = (Qi; Ei; Ti; qiin; 'i), i = 1; 2, be a pair of transitionsystems su
h that TS 2 is redu
ed. If � is a bisimulation between TS 1 and TS 2,then it must satisfy the following properties:(i) If q1 � q2 and q1 � q02, then q2 = q02.(ii) If q1 � q2 and q1 e1a�! q01, then there exists a unique e2 2 E2 : q2 e2a�! q02 andq01 � q02.Proof Consider �0= (��1 � �), the
omposition of the inverse relation of �with � . I.e., (q2; q02) 2�0 i� there is a q1 2 Q1 su
h that (q1; q2); (q1; q3) 2�. Theit is
lear that �0 is a bisimulation from TS 2 to itself. If q1 � q2 and q1 � q02,

Chapter 2: Control-synthesis for simulations and bisimulations 32then q2 �0 q02 whi
h implies that q2 = q02 (sin
e TS 2 is redu
ed). Now let q1 � q2,q1 e1a�! q01, q2 e2a�! q02, q2 e02a�! q002 and q01 � q02, q01 � q002 . By (i) we know that q02 = q002 .By de�nition of redu
ed transition systems, it follows that e2 = e02. 2Through the rest of this se
tion, we �x a pair of �nite transition systems (TS p;TS s)with TSx = (Qx; Ex; Tx; qxin; 'x), x 2 fp; sg. We re
all the de�nition of the edge-labelled dire
ted graph Gps and the asso
iated terminology developed in Se
tion 2.3.De�nition 2.11 Let Gps = (X;!) and G = (Y;)) be a subgraph of Gps. Then Gis a strong subgraph of Gps i� the following
onditions are satis�ed:(BS0) (qpin; qsin) 2 Y(BS1) Suppose (qp; qs) (e1;e01)=) (q0p; q0s) is in G and qp e2�! q00p is in TS p with 'p(e1) ='p(e2). Then there exists (qp; qs) (e2;e02)=) (q00p ; q00s) in G (for some e02 2 Es, q00s 2Qs).(BS2) Suppose (qp; qs) 2 Y and qs e01�! q0s is in TS s. Then there exists (qp; qs) (e1;e01)=)(q0p; q0s) in G (for some e1 2 Ep and q0p 2 Qp).(BS3) Let (qp; qs) 2 Y and Eqp;qs = f(e; e0) j 9(q0p; q0s) : (qp; qs) (e;e0)=) (q0p; q0s) is in Gg.Then there exists � � Eqp;qs satisfying:(i) If (e1; e01) 2 Eqp;qs, then there exists e2 2 Ep su
h that (e2; e01) 2 �.(ii) If (e1; e01) 2 Eqp;qs, then there exists e02 2 Es su
h that (e1; e02) 2 �.(iii) If (e1; e01); (e1; e02) 2 �, then e01 = e02. 2Our aim now is to show that (TS p;TS s) admits a strong
ontroller i� Gps
on-tains a strong subgraph.Lemma 2.16 If there is a strong
ontroller for the pair of �nite transition systems(TS p;TS s), where TS s is redu
ed, then Gps has a strong subgraph.Proof Let TS
 = (Q
; E
; T
; q
in; '
) be a strong
ontroller for (TS p;TS s). LetTS pkTS
 = TS = (Q;E; T; qin; '). Let � � Q�Qs be a bisimulation. Now, de�neG = (Y;)), a subgraph of Gps, as follows:� (qp; qs) 2 Y i� 9q
 2 Q
 : (qp; q
) � qs

Chapter 2: Control-synthesis for simulations and bisimulations 33� (qp; qs) (e1;e01)=) (q0p; q0s) i� 9q
; q0
 2 Q
 : (qp; q
) � qs, (qp; q
) e1�! (q0p; q0
) 2 T ,'p(e1) = 's(e01), qs e01�! q0s, and (q0p; q0
) � q0s.Claim G is a strong subgraph of Gps.Sin
e (qpin; q
in) � qsin, (qpin; qsin) 2 Y .Now suppose that (qp; qs) (e1;e01)=) (q0p; q0s) is in G and qp e2�! q00p is in TS p, with'p(e1) = 'p(e2). Then 9q
; q0
 2 Q
 : (qp; q
) � qs, (qp; q
) e1�! (q0p; q0
) is in TS ,(q0p; q0
) � q0s and qs e01�! q0s is in TS s. Sin
e TS
 is a
ontroller, (qp; q
) e2�! (q00p ; q00
)is in TS (by (CT2)). Sin
e � is a bisimulation, 9e02 : qs e02�! q00s , 's(e02) = 'p(e2)and (q00p ; q00
) � q00s . Hen
e (qp; qs) (e2;e02)=) (q00p ; q00s) is in G. This establishes (BS1).Now suppose (qp; qs) 2 Y and qs e01�! q0s is in TS s. Then 9q
 2 Q
 : (qp; q
) � qs.Hen
e 9e1 : (qp; q
) e1�! (q0p; q0
), (q0p; q0
) � q0s and 'p(e1) = 's(e01). So (qp; qs) (e1;e01)=)(q0p; q0s) is in G. This shows (BS2).To show (BS3), let (qp; qs) 2 Y and let Eqp;qs be as de�ned in the
ondition.Fix some q
 2 Q
 with (qp; q
) � qs. Then de�ne � = f(e1; e01) j 'p(e1) ='s(e01); (qp; q
) e1�! (q0p; q0
) in TS ; qs e01�! q0s in TS s and (q0p; q0
) � q0sg. Clearly� � Eqp;qs.If (e1; e01) 2 Eqp;qs, then qs e01�! q0s is in TS s (for some q0s 2 Qs). Sin
e (qp; q
) �qs, 9e2 : (qp; q
) e2�! (q0p; q0
), 'p(e2) = 's(e01), (q0p; q0
) � q0s. Hen
e (e2; e01) 2 �. Thisshows BS3(i).Let (e1; e01) 2 Eqp;qs. Then 9eq
; eq0
 : (qp; eq
) � qs, (qp; eq
) e1�! (q0p; eq0
) in TS ,qs e01�! q0s in TS s and (q0p; eq0
) � q0s. Sin
e (qp; q
) � qs, 9e2 : (qp; q
) e2�! (q00p ; q00
) inTS su
h that 'p(e2) = 's(e01) = 'p(e1) and (q00p ; q00
) � q0s. Sin
e TS
 is a
ontroller,qp e1�! q0p and 'p(e1) = 'p(e2), 9q0
 : (qp; q
) e1�! (q0p; q0
). Then 9e02 : qs e02�! q00s ,'p(e1) = 's(e02), (q0p; q0
) � q00s . Then (e1; e02) 2 �. This proves BS3(ii).Now let (e1; e01); (e1; e02) 2 �. Then there are transitions of the form (qp; q
) e1�!(q0p; q0
) in TS , qs e01�! q0s, qs e02�! q00s in TS s and 'p(e1) = 's(e01) = 's(e02),(q0p; q0
) � q0s, (q0p; q0
) � q00s . By Proposition 2.15, sin
e TS s is redu
ed, we knowthat e01 = e02. 2Lemma 2.17 Suppose (TS p;TS s) is su
h that TS s is redu
ed and Gps has a strongsubgraph. Then there exists a strong
ontroller for (TS p;TS s).

Chapter 2: Control-synthesis for simulations and bisimulations 34Proof Let G = (Y;)) be a strong subgraph of Gps. For ea
h (q; q0) 2 Y , let us�x a �q;q0 � Eq;q0 satisfying the
ondition (BS3). Consider the following transitionsystem: TS
 = (Q
; E
; T
; q
in; '
) given by:� Q
 = Y� E
 = Ep; '
 = 'p� ((qp; qs); e; (q0p; q0s)) 2 T
 i� 9e0 2 Es : (e; e0) 2 �qp;qs and (qp; qs) (e;e0)=) (q0p; q0s) inG.� q
in = (qpin; qsin).Let us now verify that TS
 is a strong
ontroller for the pair (TS p;TS s).If (qp; qs) e�! (q0p; q0s) and (qp; qs) e�! (q00p ; q00s) in TS
, then q0p = q00p (sin
e TS p isdeterministi
) and there exist e0; e00 2 Es su
h that (e; e0); (e; e00) 2 �qp;qs, (qp; qs) (e;e0)=)(q0p; q0s) and (qp; qs) (e;e00)=) (q0p; q00s). Sin
e TS s is deterministi
, q0s = q00s . Hen
e TS
 isdeterministi
. Also, (CT1) is true by de�nition of TS
.Let TS = TS pkTS
. First, it is easy to see that every state of TS pkTS
 isof the form (qp; (qp; qs)) where qp 2 Qp and qs 2 Qs. Let us verify (CT2). Let(qp; (qp; qs)) e�! (q0p; (q0p; q0s)) in TS . Let qp e1�! q00p in TS p with 'p(e) = 'p(e1).Then (qp; qs) (e;e0)=) (q0p; q0s) is in G (for some e0 2 Es). By (BS1), (qp; qs) (e1;e01)=) (q00p ; q00s)is in G (for some e01 2 Es, q00s 2 Qs). Hen
e (e1; e01) 2 Eqp;qs. By (BS3)(ii), 9e02 2 Es :(e1; e02) 2 �qp;qs. Hen
e (qp; qs) (e1;e02)=) (q0p; q2s) is in G for some q2s 2 Qs. By de�nitionof TS
, (qp; qs) e1�! (q0p; q2s) is in TS
. Hen
e (qp; (qp; qs)) e1�! (q0p; (q0p; q2s)) is in TS .All that remains is to show that TS is bisimilar to TS s. Let � be de�nedas follows: for every state (qp; (qp; qs)) in TS , let (qp; (qp; qs)) � qs. Let us showthat � is a bisimulation by verifying properties listed in De�nition 2.8. Clearly,(qpin; (qpin; qsin)) � qsin.Let (qp; (qp; qs)) � qs and (qp; (qp; qs)) e�! (q0p; (q0p; q0s)) be in TS . Then by(BS3)(ii), 9e0 2 Es : '(e) = '(e0), (e; e0) 2 �qp;qs and hen
e (qp; qs) (e;e0)=) (q0p; q0s). So,qs e0�! q0s is in TS s and (q0p; (q0p; q0s)) � q0s.Now let (qp; (qp; qs)) � qs and qs e0�! q0s. By (BS2), 9e 2 Ep; q0p 2 Qp :(qp; (qp; qs)) (e;e0)=) (q0p; q0s). Now by (BS3)(i), 9e2 2 Ep : (e2; e0) 2 �. Let (qp; qs) (e2;e0)=)(q00p ; q0s). Then (qp; (qp; qs)) e2�! (q00p ; (q00p ; q0s)) and (q00p ; (q00p ; q0s)) � q0s. 2

Chapter 2: Control-synthesis for simulations and bisimulations 35We now wish to show that the existen
e of a strong
ontroller
an be de
idedin polynomial time. As a �rst step we will observe that assuming the spe
i�
ationtransition system is redu
ed involves no loss in generality.Lemma 2.18 Let TS = (Q;E; T; qin; ') be a �nite transition system. Then intime polynomial in jTS j one
an
onstru
t a redu
ed transition system TS 0 whi
h isbisimilar to TS.Proof This observation follows easily from the polynomial time algorithm for
he
k-ing bisimilarity of two �nite transition systems due to [KS83℄.To be spe
i�
, we set R0 = Q � Q and
onstru
t a sequen
e of relationsR0; R1; : : : Rn till Rn = Rn+1 and then stop. Assume indu
tively that R0; R1; : : : Rihave been
onstru
ted. We de�ne Ri+1 to be the relation obtained by applying oneof the following pruning steps to Ri. If neither of the two steps
an be applied toRi, then we set Ri+1 = Ri and stop.� Suppose (q; q0) 2 Ri and q e1�! q1 is in T but there is no q0 e01�! q01 in T su
hthat '(e1) = '(e01) and (q1; q01) 2 Ri. Then Ri+1 = Ri n f(q; q0)g.� Suppose (q; q0) 2 Ri and q0 e01�! q01 is in T but there is no q e1�! q1 in T su
hthat '(e1) = '(e01) and (q1; q01) 2 Ri. Then Ri+1 = Ri n f(q; q0)g.Sin
e R0 is a �nite set and Ri+1 = Ri (in whi
h
ase we stop) or Ri+1 � Ri, thispro
edure will terminate after at most jQ�Qj steps. Let n be the least integer su
hthat Rn = Rn+1. It is easy to
he
k that Rn is an equivalen
e relation. For q 2 Q,let [q℄ be the Rn-equivalen
e
lass
ontaining q.It is now easy to see that Rn will be a bisimulation between TS and itself. Also,if � � Q�Q is a bisimulation between TS and itself, then � � Rn.Next we �x a stri
t linear order < on E. We now de�ne TS 0 = (Q0; E 0; T 0; q0in; '0)via:� Q0 = Q=Rn = f[q℄ j q 2 Qg� E 0 = E; '0 = '� ([q℄; e; [q0℄) 2 T 0 i� there exists (q1; e; q01) 2 T su
h that q1 2 [q℄ and q01 2 [q0℄and furthermore, if (p; e0; p0) 2 T with p 2 [q℄ and p0 2 [q0℄ and '(e) = '(e0),then e = e0 or e < e0.

Chapter 2: Control-synthesis for simulations and bisimulations 36� q0in = [qin℄It is easy to verify that TS 0 is redu
ed and that TS and TS 0 are bisimilar withf(q; [q℄) j q 2 Qg being a bisimulation. It is also easy to verify that jTS 0j � jTS jand that TS 0
an be
omputed in time polynomial in jTS j. 2Theorem 2.4 There is a uniform pro
edure whi
h takes as input a pair of �nitetransition systems (TS p;TS s) and de
ides whether or not (TS p;TS s) admits astrong
ontroller.Proof Due to the previous lemma, it involves no loss of generality to assume thatTS s is redu
ed. It now follows from Lemmas 2.16 and 2.17 that it suÆ
es to de
idewhether or notGps
ontains a strong subgraph. This
an be a
hieved by
onstru
tinga sequen
e of graphs G0; G1; : : : Gn+1 su
h that ea
h Gi is a subgraph of Gps andea
h Gi+1 a subgraph of Gi with G0 = Gps and Gn = Gn+1. Assume indu
tivelythat G0; : : : Gi have been
onstru
ted. We now obtain Gi+1 by applying one of thefollowing pruning steps to Gi. If none of the pruning steps
an be applied we setGi+1 = Gi and stop.Let Gi = (Xi;!i).(PR1) Suppose t = ((q; q0); (e1; e01); (q1; q01)) 2 !i and there exists (q; e2; q2) 2 TS pwith 'p(e1) = 'p(e2). Further suppose that there exists no edge in !i of theform ((q; q0); (e2; e02); (q2; q02)). Then remove the edge t from !i and set Gi+1to be the resulting graph.(PR2) Suppose (q; q0) 2 Xi and q0 e01�! q01 is in Ts but there is no edge of the form((q; q0); (e1; e01); (q1; q01)) in !i. Then remove (q; q0) and all its in
oming andoutgoing edges from Gi and de�ne Gi+1 to be the resulting graph.(PR3) Let (q; q0) 2 Xi.Let Eiq;q0 = f(e1; e01) j 9(q2; q02) : ((q; q0); (e1; e01); (q2; q02)) is in !ig. Supposeevery � � Eiq;q0 fails to satisfy at least one of the
onditions BS3 (i), (ii) and(iii). Then remove (q; q0) and all its in
oming and outgoing edges and de�neGi+1 to be the resulting graph.Sin
e G0 is �nite, this pro
edure will terminate after a �nite number of steps.Let n be the least integer su
h that Gn = Gn+1. Let Gn = (Xn;!n). Now it is easyto show that Gps
ontains a strong subgraph i� (qpin; qsin) 2 Xn.

Chapter 2: Control-synthesis for simulations and bisimulations 37First, if (qpin; qsin) 2 Xn, it is
lear that Gn is a strong subgraph of Gps as the fa
tthat (PR)(1){(3) are not appli
able means that Gn satis�es (BS)(1){(3).To prove the
onverse, let us assume that Gps has a strong subgraph G. We
anindu
tively prove (by indu
tion on i) that G is a subgraph of Gi. It would thenfollow that sin
e (qpin; qsin) is in G, it would be in Gn also. The indu
tion goes asfollows.Clearly, G is a subgraph of G0 = Gps. Now assume indu
tively that G is asubgraph ofGi. If pruning step (PR1) or (PR2) is applied, it is easy to see thatG willbe a subgraph of Gi+1. If (PR3) is used, let the pruned node be (q; q0). To prove G isa subset ofGi+1 it suÆ
es to prove that (q; q0) 62 G. Assume the
ontrary. Then sin
eG is a strong subgraph, it satis�es (BS3) for the node (q; q0) | let � � Eq;q0 be a setwhi
h satis�es (BS3)(i){(iii) with Eq;q0 = f(e; e0) j 9(q2; q02) : ((q; q0); (e; e0); (q2; q02))is in Gg � Eiq;q0.Now it is
lear that � � Eiq;q0 . We will show that � in fa
t satis�es (BS3)(i){(iii)for the node (q; q0) in Gi.Let (e; e0) 2 Eiq;q0. Then there must be a transition q0 e0�! q01 in Ts. Sin
e G is astrong subgraph, by (BS2), 9e1 : (q; q0) e1;e0�! (q1; q01) is in G. Hen
e (e1; e0) 2 Eq;q0.By (BS3)(i) for (q; q0) in G, 9e2 : (e2; e0) 2 �. This shows (BS3)(i) for (q; q0) in Gi.Let (e; e0) 2 Eiq;q0. Then, as argued above, 9e1 : (q; q0) e1;e0�! (q1; q01) is in G. Sin
e'p(e) = 'p(e1), by (BS1), 9e02 : (q; q0) e;e02�! (q2; q02) is in G. So, (e; e02) 2 Eq;q0. Sin
eG is a strong subgraph, by BS3(ii), 9e03 : (e; e03) 2 �, whi
h shows BS3(ii) holds forGi.Also, sin
e � satis�es BS3(iii) for G, it also satis�es it for Gi.This shows that the
onditions for using (PR3) is not met, whi
h
ontradi
ts ourassumption. Hen
e (q; q0) 62 G and hen
e G is a subgraph of Gi+1. 2Corollary 2.19 Let (TS p;TS s) be a pair of �nite transition systems with jQpj =np, jQsj = ns, jEpj = kp and jEsj = ks. Let m = maxfnp; ns; kp; ksg. Then intime polynomial in m, one
an de
ide whether or not (TS p;TS s) admits a strong
ontroller.Proof By Lemma 2.18, we
an
onstru
t in time polynomial in m, a redu
edtransition system TS 0s su
h that TS s and TS 0s are bisimilar. We
an now supply(TS p;TS 0s) as input to the de
ision pro
edure presented in the proof of Theorem 2.3.

Chapter 2: Control-synthesis for simulations and bisimulations 38This pro
edure will take time only polynomial inm. To show this, the only nontrivialpart is to show how rule (PR3)
an be implemented in time polynomial in m. Wedo this by showing a redu
tion to the maximal mat
hing problem.For an undire
ted bipartite graph G = (S1; S2; A) where S1 and S2 are sets ofverti
es and A � S1� S2, a mat
hing for G is a set X � A su
h that for any vertexs 2 S1 [S2, there is at most one edge in X that is in
ident on s. A mat
hing Xof G is a maximal mat
hing if it is a mat
hing of maximum
ardinality | i.e. forevery mat
hing X 0 of G, jX 0j � jXj. The problem of �nding a maximal mat
hingof a given graph is a well-studied problem and
an be solved in time polynomial inthe size of the given graph [CLR92℄.Let Gi = (Xi;!i) and (q; q0) 2 Xi. Let Eq;q0 be de�ned as before. Consider thebipartite (undire
ted) graph (S1; S2; A) where� S1 = fe1 j 9e2 : (e1; e2) 2 Eq;q0g� S2 = fe2 j 9e1 : (e1; e2) 2 Eq;q0g� A = Eq;q0We now
laim that there is a � satisfying the
onditions (BS3)(i){(iii) i� thereis a mat
hing for (S1; S2; A) of size jS2j. Let � be a subset of Eq;q0 that satis�es
onditions (BS3)(i){(iii). For ea
h e2 2 S2, we know by (BS3)(i) that there is anedge of the form (e01; e02) in �. Pi
k one su
h edge for ea
h e2 2 Es and
all this setX. jXj = jS2j. Let (e1; e2); (e01; e02) 2 X. If e1 = e01, then by (BS3)(iii) we knowthat e2 = e02. If e2 = e02, then from the way X was formed, e1 = e01. Hen
e Xis a mat
hing of size jS2j and is
learly a maximal mat
hing. Conversely, assumeX � Eq;q0 is a mat
hing of size jS2j. Clearly, for ea
h e2 2 S2, there must be exa
tlyone edge of the form (e1; e2) in X. Let � � X be formed by expanding X by addingpre
isely one edge of the form (e1; e2) of Eq;q0 for ea
h e1 2 S1 where there is no edgeof the kind (e1; e02) 2 X. Clearly, � satis�es (BS3)(i){(iii).Sin
e the size of the maximal mat
hing of a given graph
an be found in poly-nomial time, we
an implement (PR3) in polynomial time. In fa
t, we
an solvethe maximal mat
hing problem by redu
ing it to the max-
ow problem and use theFord-Fulkerson method ([EK70, CLR92℄) to get a maximal mat
hing in polynomialtime, from whi
h we
an get a witness �. These witnesses will be useful in
on-stru
ting the
ontroller. 2

Chapter 2: Control-synthesis for simulations and bisimulations 39Corollary 2.20 Let (TS p;TS s) be a pair of �nite transition systems with m de�nedas above. Then (TS p;TS s) admits a strong
ontroller i� it admits a strong
ontrollerof size at most a polynomial in m. Moreover, su
h a
ontroller
an be
onstru
tedin time polynomial in m.Proof Using the de
ision pro
edure presented in the proof of Theorem 2.4, on
e
an
ompute a strong subgraph of Gps, if one exists, in time polynomial in m. We
an synthesize a strong
ontroller from the strong subgraph as shown in the proofof Lemma 2.17. Clearly, the size of this
ontroller will be at most polynomial in m.2
2.6 Con
lusionsIn this
hapter we have studied the
ontroller synthesis problem in a bran
hingtime setting. We started with a simple notion of bran
hing time spe
i�
ations,namely simulations, whi
h
an
apture simple safety properties. We then
onsideredbisimulation spe
i�
ations, whi
h
an express liveness properties as well, and are anatural extension to simulations. In both instan
es we have established polynomialtime de
ision pro
edures as well as polynomial time synthesis pro
edures whi
hprodu
e polynomial sized
ontrollers whenever
ontrollers exist.A
onsiderable amount of knowledge is available about the
ontrol-synthesisproblem in the linear time framework. Here the behaviour of the plant will
onsistof LP , a suitable
olle
tion of (�nite or in�nite) sequen
es. One then spe
i�es thedesired behaviour by another
olle
tion of sequen
es LS . The problem then is to
ome up with a
ontroller su
h that LPC � LS where LPC is the
onstrained languagegenerated by the plant-
ontroller
ombination.As for bran
hing-time spe
i�
ations, the supervisory
ontrol synthesis problemhas been studied in a bran
hing time setting using the failure semanti
s model ofpro
esses [Ove94, Ove97℄. A pre-order relates the behaviour of the plant-
ontrollerto the spe
i�
ation. However their setup is very di�erent. In their setting, thenondeterminism arises due to abstra
tion and not due to the hiding of the envi-ronment's a
tions. Consequently, their
ontrollers
annot distinguish between thenondeterministi

hoi
es made in the plant. In our setting the nondeterminism (onthe labels of events) is purely due to the hiding of the environment's responses and

Chapter 2: Control-synthesis for simulations and bisimulations 40the
ontroller
an dis
ern between the nondeterministi

hoi
es made. A ni
e featureof [Ove97℄ is that it deals with partial des
riptions via the use of internal events.Extension of our work to handle partial des
riptions is yet to be a
hieved.There is a neighbouring body of work (see for instan
e [JL91℄, [LX90℄) whi
h hasa similar
avour as the
ontroller synthesis problem and uses te
hniques similar tothose we dis
uss in this paper. This body of work has to do with equation solving ina pro
ess algebrai
 domain. The simplest problem setting is one where one is givena system A and a spe
i�
ation B both presented as terms in a pro
ess algebra, sayCCS. The problem is to
ome up with a CCS term X su
h that AjX is bisimilarto B. To
onsider an extreme example, suppose A is the pro
ess nil whi
h doesnothing. Then X = B will be a

epted as solution to the equation AjX = B. Thusthe
ru
ial di�eren
e between the work reported here and the work on equationsolving in pro
ess algebras is that our
ontrollers | unlike the unknown term X inthe pro
ess algebra setting |
an only restri
t the behaviour of the plant; it is notallowed to
ontribute any new behavioural possibilities.Our results
an be extended in a number of ways. To mention just a few, one
ould
onsider plants with internal events and also
ontrollers with internal events.In the
ase of
ontrollers with internal events one will have to deal with re�nementmaps instead of simulations and one will have to deal with weak bisimulations insteadof (strong) bisimulations.A natural extension of this work is to
onsider the problem where we
an handlespe
i�
ations written in bran
hing-time logi
s su
h as CTL, 8-CTL, CTL?, et
. Itis hard to pin down a ni
e logi
 (say as a sub-logi
 of CTL) whi
h will
apturethe notion of simulation/bisimulation we have
onsidered. A related work is [AM95℄where the bran
hing time temporal logi
 CTL is used for spe
i�
ations. The notion ofa
ontroller is however quite weak in that
ontrollers are required to be memoryless.Though the notions of simulations and bisimulations are weak me
hanisms ofspe
i�
ation, the attra
tive feature of these is that model-
he
king is in polynomialtime due the \lo
al" nature of the de�nitions of su
h relations. One �nds very fewspe
i�
ation me
hanisms in the literature whi
h yield su
h polynomial time algo-rithms. Our work shows that this tra
tability extends to
ontrol-synthesis as well.(The logi
 CTL also has a polynomial time model-
he
king algorithm | however aswe point out in Chapter 5, the tra
tability does not extend to
ontrol-synthesis forCTL.)

Chapter 2: Control-synthesis for simulations and bisimulations 41One way to enhan
e our spe
i�
ation me
hanisms is to handle them in a settingwhi
h
an express fairness properties. In formulating liveness spe
i�
ations, it isimportant in many
ases to say that the fair runs (runs where the s
heduler does notignore a pro
ess forever, runs where a failure of an event doesn't happen in�nitelyoften, et
.) satisfy a spe
i�
ation. In parti
ular, the notion of fair simulation[HKR97, ESW01℄, introdu
ed in [HKR97℄ is a notion of simulation whi
h
atersto fairness and at the same time allows polynomial-time model
he
king. It wouldbe interesting to see if the
ontrol-synthesis problem for fair simulation, and othernotions of simulations
atering to fairness requirements, are also tra
table.Another
hallenging extension is suggested by the environment model
onsideredby Kupferman and Vardi in their work on module
he
king [KV96, KV97a℄. Theidea is that in a bran
hing time setting what one should require is: the
ontrollershould prune the system moves in su
h a way that for every pruning of its movesby the environment, the resulting
omputation tree should meet the spe
i�
ation.We note however that in the presen
e of simulations and bisimulations, this re-�ned modelling of the environment is immaterial. It is however very relevant whenwe start
onsidering bran
hing time temporal logi
s, su
h as CTL, as spe
i�
ationme
hanisms. A variety of interesting and
omputationally hard problems arise inthis new setting and will be the subje
t of Chapter 5.Yet another extension is to study the
ontrol-synthesis problem in a
on
urrentsetting for simulations and bisimulations. This is the topi
 of study in the next
hapter.

Chapter 3
Asyn
hronous simulations

But the prin
ipal failing o

urred in the sailing,And the Bellman, perplexed and distressed,Said he had hoped, at least, when the wind blew due East,That the ship would not travel due West!| The Hunting of the Snark, Lewis Caroll
3.1 Introdu
tionThe transition systems we studied in Chapter 2 are a suitable model to des
ribesequential systems and
an be augmented with some
on
urren
y information tomodel distributed systems. In this
hapter we study a well-established variant
alledasyn
hronous transition systems [Bed88, WN95℄ and a
orresponding notion of sim-ulation (
alled an asyn
hronous simulation) between them. We show the surprisingresult that even
he
king whether there is su
h a simulation between the unfoldingsof two �nite asyn
hronous transition systems is unde
idable. It turns out that,
on-sequently, there is no way to e�e
tively solve the
ontrol-synthesis problem in thissetting. This is in sharp
ontrast to the results in Chapter 2 and show how
omplexthe design of any notion of distributed
ontrol
an be
ome.42

Chapter 3: Asyn
hronous simulations 43There is a natural notion of bisimulation between asyn
hronous transition sys-tems studied in the literature
alled the hereditary history-preserving bisimulation(see [WN95, JNW96℄). A long-standing open question in this area was whether theproblem of
he
king if there is a hereditary history-preserving bisimulation betweena pair of �nite asyn
hronous transition systems is de
idable.The result in this
hapter hinted that the hereditary history preserving bisimu-lation problem might be unde
idable. Jurdzi�nski and Nielsen [JN00℄ have re
entlyshown that this problem is indeed unde
idable. Their proof makes essential use ofthe te
hnique we develop here to en
ode grids into unfoldings of asyn
hronous tran-sition systems. We
onje
ture that their result
an be extended to show that the
ontroller problem for hereditary history-preserving bisimulation is also unde
idable.Coming ba
k to our work, we model both the system and the spe
i�
ation asasyn
hronous transition systems and the notion of a simulation from one asyn-
hronous transition system to another will be de�ned so that it preserves the in-dependen
e of events. Unfoldings of asyn
hronous transition systems are de�nedsu
h that states rea
hed after tra
e-equivalent behaviours are identi�ed with ea
hother. We then show that the problems of model-
he
king and
ontrol-synthesis areunde
idable. We also show that our negative result holds even for very restri
ted
lasses of asyn
hronous transition systems.3.2 The modelWe enri
h the transition systems de�ned in De�nition 2.1 of Chapter 2 to re
e
tthe notion of independen
e of events.De�nition 3.1 A �-labelled deterministi
 asyn
hronous transition system is a stru
-ture TS = (Q;E; T; qin; '; I) where (Q;E; T; qin; ') is a transition system (as inDe�nition 2.1) and I � E�E is an irre
exive and symmetri
 independen
e relationsu
h that the following
onditions are satis�ed:(TR1) Suppose q e1�! q1 and q e2�! q2 and e1 I e2. Then there exists q0 su
h thatq1 e2�! q0 and q2 e1�! q0.(TR2) Suppose q e1�! q1 e2�! q0 and e1 I e2. Then there exists q2 su
h thatq e2�! q2 e1�! q0. 2

Chapter 3: Asyn
hronous simulations 44From now on, we refer to �-labelled deterministi
 asyn
hronous transition sys-tems as just asyn
hronous transition systems. Simulations will now be required topreserve the independen
e of events:De�nition 3.2 Let TS 1 = (Q1; E1; T1; q1in; '1; I1) and TS 2 = (Q2; E2; T2; q2in; '2; I2)be a pair of asyn
hronous transition systems. Then an asyn
hronous simulationf : TS 1 ! TS 2 is a simulation from (Q1; E1; T1; q1in; '1) to (Q2; E2; T2; q2in; '2) (as inDe�nition 2.2, Chapter 2) whi
h in addition satis�es:� Suppose in TS 1, we have e1 I1 e2, t1 = (q; e1; q1), t2 = (q1; e2; q0), t3 = (q; e2; q2)and t4 = (q2; e1; q0).� If f(t1) = (p; e01; p1) and f(t2) = (p1; e02; p0) then e01 I2 e02 and there exists p2 su
hthat f(t3) = (p; e02; p2) and f(t4) = (p2; e01; p0).� If f(t1) = (p; e01; p1) and f(t3) = (p; e02; p2) then e01 I2 e02 and there exists p0 su
hthat f(t2) = (p1; e02; p0) and f(t4) = (p2; e01; p0). 2From now on we will often drop the adje
tive \asyn
hronous" in referring toasyn
hronous simulations. As before
ontrollers will be de�ned in terms of unfold-ings. The new feature is that the independen
e of events will indu
e a partial orderover the runs of the system. A standard te
hnique taken from Mazurkiewi
z tra
etheory [DR95℄ will be used to group together di�erent interleavings of the samepartially ordered stret
h of behaviour.De�nition 3.3 Let TS = (Q;E; T; qin; '; I) be an asyn
hronous transition system.Then �TS is the least equivalen
e relation (whi
h turns out to be a
ongruen
e)
ontained in E� � E� whi
h satis�es: �e1e2� 0 �TS �e2e1� 0 whenever e1 I e2 and�; � 0 2 E�. We let [� ℄ denote the �TS -equivalen
e
lass
ontaining � . 2Unfoldings are now de�ned by identifying states that arise by exe
uting sequen
esof a
tions that are �TS equivalent:De�nition 3.4 Let TS = (Q;E; T; qin; '; I) be an asyn
hronous transition system.The unfolding of TS is Uf (TS) = (bQ; bE; bT ; bqin; b'; bI) where bQ, bE and bT are thesmallest sets that satisfy:� (qin; ["℄) 2 bQ.

Chapter 3: Asyn
hronous simulations 45� If (q; [� ℄) 2 bQ and (q; e; q0) 2 T then(q0; [�e℄) 2 bQ, e 2 bE and ((q; [� ℄); e; (q0; [�e℄)) 2 bT .The initial state is bqin = (qin; ["℄) and b' and bI are ' and I restri
ted to bE and bE� bErespe
tively. 2Tra
e theory ensures that Uf (TS) is also an asyn
hronous transition system.Figure 3.1 shows an asyn
hronous transition system TS p and its unfolding Uf(TS p).The independen
e relation is the symmetri

losure of fask1;
s1g � fask2;
s2g.Note that unlike the unfoldings in Chapter 2, the unfolding is not a tree, but is adire
ted a
y
li
 graph.The model-
he
king problem for asyn
hronous simulations is determine, given apair of transition systems TS p and TS s, whether there is an asyn
hronous simulationfrom Uf(TS p) to Uf(TS s).Let us now
onsider produ
ts of asyn
hronous transition systems. The newfeature is that the
on
erned independen
e relations should agree on the
ommonevents. Let TS 1 and TS 2 be two asyn
hronous transition systems with Ei as theset of events and 'i as the labelling fun
tion of TS i, i 2 f1; 2g. Then TS 1kTS 2 isde�ned i� 8 e; e0 2 E1 \ E2, e I1 e0 i� e I2 e0. If this
ondition is satis�ed (and the
ondition that 8e 2 E1 \ E2, 'q(e) = '2(e) is also met), then TS 1kTS 2 is de�nedas done in De�nition 2.4, Chapter 2 with the new independen
e relation de�nedas I1 [I2. Again, it should be
lear that TS 1kTS 2 is an asyn
hronous transitionsystem.Let TS p, TS s and TS
 be three asyn
hronous transition systems. Then TS
 is anasyn
hronous
ontroller for (TS p;TS s) i� TS
 satis�es the usual properties (CT1){(CT3) of De�nition 2.5 for being a
ontroller and if there exists an asyn
hronoussimulation from Uf(TS pkTS
) into Uf (TS s). The
ontrol-synthesis problem is thento
he
k whether, given a pair of �nite asyn
hronous transition systems TS p andTS s, there is an asyn
hronous
ontroller for (TS p;TS s).Let us
onsider the example given below in Figure 3.1. The plant
onsists oftwo agents whi
h do the following: these agents wait for the user to press a button(aski) after whi
h they enter a
riti
al se
tion (
si). When they �nish and exitthe
riti
al se
tion, they send a signal (�ni) whi
h
an be observed by the otheragent. The two agents are shown in the �gure. The
ombined system is the normalsyn
hronized produ
t of the two systems and is also illustrated. The unfolding of the

Chapter 3: Asyn
hronous simulations 46plant is also shown. The indu
ed independen
e relation is the symmetri

losureof fask1;
s1g � fask2;
s2g. Let us �x the labelling fun
tion as '(aski) = ask ,'(
si) =
s and '(�ni) = �n, i 2 f1; 2g.The spe
i�
ation TS s (whi
h is equivalent to its unfolding) is shown in Figure 3.2with only the labels of events on the transitions | the independen
e of events shouldbe
lear. On the labels, it is identi
al to the plant, ex
ept that it has no movesenabled when both agents are in the
riti
al se
tion. This therefore demands thatthe plant should not rea
h a state where both agents are in their
riti
al se
tions (ifit rea
hes su
h a state, then the
ontroller will not be able to satisfy the nonblo
king
ondition at this state).An asyn
hronous
ontroller is required to respe
t the independen
e relation.Hen
e it
annot enable an agent entering a
riti
al se
tion depending upon an in-dependent event o

urring in the other agent. In other words, independent a
tionshave to be
ontrolled independently. In this example, we require that the event
s1is
ontrolled independent of the event
s2 (as they belong to di�erent agents). Hen
ethe
ontroller is for
ed to sequentialize the agents in a predetermined manner | anexample of a valid
ontroller is TS
 shown in the �gure whi
h allows the �rst agentto enter its
riti
al se
tion before the se
ond, regardless of the sequen
e of buttonspressed.Before we go on to proving that the model-
he
king problem in this setting ofasyn
hronous simulations is unde
idable, note that the model-
he
king problem forsimulations for sequential transition systems studied in Chapter 2 is de
idable. One
an easily show that, given two �nite-state (sequential) transition systems TS p andTS s, there is a simulation from TS p to TS s i� the
orresponding graph Gps de�nedin Se
tion 2.3 is itself a good subgraph. Che
king whether Gps
an
learly be donein polynomial time.We now wish to show that the problems of model-
he
king for �nite asyn
hronoussimulations and the problem of de
iding if a pair of �nite asyn
hronous transitionsystems admits an asyn
hronous
ontroller | �nite or otherwise | are unde
idable.The redu
tion is from the tiling problem [LP81℄ whi
h is known to be unde
idable.In what follows, it will be
onvenient to talk about the tiling problem as a
olouringproblem. An instan
e of the
olouring problem is a quadruple C = (C;
in; R; U)where C is a �nite set of
olours,
in 2 C is a distinguished initial
olour andR : C �! 2C and U : C �! 2C are two fun
tions. A solution to C is a map

Chapter 3: Asyn
hronous simulations 47

Agent1

ask1
s1�n1
�n2�n2�n2�n2 Agent2

ask2
s2�n2
�n1�n1�n1�n1

ask1 ask2
s1
s2�n1 �n2
TS p = Agent1kAgent2

ask1 ask2
s1
s2�n1 �n2ask2
s2�n2
�n1
s2�n2 �n1�n2 �n2 �n1

�n2
s1�n1
ask1
s1�n1

Uf(TS p)Figure 3.1: A transition system and its unfolding

Chapter 3: Asyn
hronous simulations 48
ask ask
s
s�n �nask
s�n

�n
s�n
�n
s�n

ask
s�n
TS s

ask1 ask2
s1�n1ask2
s2�n2
�n1
s2�n2

TS

Figure 3.2: Asyn
hronous spe
i�
ation and
ontroller for TS p

Chapter 3: Asyn
hronous simulations 49

r0 r1 r2 r0u0u1
u2u0

0001
0200

1011
1210

2021
2220

0001
0200

Figure 3.3: The main grid
ol : N0 � N0 �! C (N0 is the set of natural numbers f0,1,2,. . . g) whi
h satis�es:�
ol(0; 0) =
in� 8 (m;n) 2 N0 � N0 .
ol(m + 1; n) 2 R(
ol(m;n)) and
ol(m;n + 1) 2U(
ol(m;n)).For ea
h instan
e C of a
olouring problem we �rst
onstru
t a pair of in�niteasyn
hronous transition systems (TS C1 ;TS C2) su
h that C has a solution i� there ex-ists an asyn
hronous simulation from TS C1 to TS C2 . We then show how to
onstru
t,given C, two �nite asyn
hronous transition systems TS Cp and TS Cs su
h that TS C1and TS C2 are isomorphi
 to Uf(TS Cp) and Uf (TS Cs) respe
tively. This will showthat the model-
he
king problem is unde
idable.Through the rest of the se
tion �x an instan
e of the
olouring problem C =(C;
in; R; U) and let
;
0 range over C. The asso
iated pair of in�nite asyn
hronoustransition systems will be denoted as TS C1 and TS C2 .The main part of TS C1 will look like a two dimensional grid generated by the twosets of events ER = fr0; r1; r2g and EU = fu0; u1; u2g with ER � EU � I1 where I1is the independen
e relation of TS C1 . This is shown in Figure 3.3. We display onlythe events
on
erned and not their labels. We deal with the labels later.In addition, there will be nine events f0; 1; 2g2. At ea
h grid point at most foursu
h events will be sti
king out. For
onvenien
e we will often write ij instead of(i; j) for i; j 2 f0; 1; 2g. At a grid point, the event ij will be enabled if ri and ujare enabled at this point. This event will
ommute with events ri and uj enabled at

Chapter 3: Asyn
hronous simulations 50

r0 r1u1
u2

01 01 11
Figure 3.4: A typi
al neighbourhood of a grid-pointthis grid point. It will also
ommute with the events i(j + 1) and (i + 1)j enabledat the neighbouring grid points. Here and in what follows addition is taken to beaddition modulo 3.Thus the set of events of TS C1 is E1 = Er [Eu [fij j i; j 2 f0; 1; 2gg and itsindependen
e relation I1 is the least symmetri
 relation of E1 �E1 whi
h satis�es :- fr0; r1; r2g � fu0; u1; u2g � I1- ij I1 ri0 if i = i0- ij I1 uj0 if j = j 0- ij I1 i0j 0 if [(i0 = i + 1 and j = j 0) or (i = i0 and j 0 = j + 1)℄TS C1 is su
h that along any run, an event ij
an o

ur at most on
e. Thus a typi
alneighbourhood in TS C1 will look as in Figure 3.4.Note that on
e an event of type ij is performed, one
an never get ba
k to themain grid; at most three more events
an be performed before rea
hing a terminalstate. These events whi
h sti
k out of the grid will be used | via a simulation |to
he
k whether the
olours assigned to neighbouring grid points are
onsistent.The assignment of
olours to the grid points will be done in TS C2 . This transitionsystem will look exa
tly like TS C1 ex
ept that we will use events taken from the setC � f0; 1; 2g2 instead of f0; 1; 2g2. At a grid point, the event (
; ij) will be enabled

Chapter 3: Asyn
hronous simulations 51if ri and uj are enabled at this point. As an ex
eption, at the origin only the event(
in; 00) will be enabled apart from the events r0 and u0. In addition the event (
; ij)
an wander forward a bit through the independen
e relation as des
ribed below. The
ru
ial point is, the independen
e relation I2 of TS C2 will be used to
he
k for the
onsisten
y of the
olouring s
heme.The set of events of TS C2 is E2 = Er [Eu [f(
; ij) j
 2 C; i; j 2 f0; 1; 2gg Wede�ne I2 to be the least irre
exive and symmetri
 subset of Es � Es satisfying:- fr0; r1; r2g � fu0; u1; u2g � I2.- ri I2 (
; i0j 0) if i = i0- uj I2 (
; i0j 0) if j = j 0- (
; ij) I2 (
0; i0j 0) if [(i0 = i + 1, j 0 = j and
0 2 R(
)) or (i0 = i, j 0 = j + 1 and
0 2 U(
))℄.We for
e TS C1 and TS C2 to mar
h together by a suitable
hoi
e of labels. Fix� = fr0; r1; r2; u0; u1; u2g [f0; 1; 2g2. In both the systems the event x 2 Er [Eugets the label x. The events ij in TS C1 and the events (
; ij) in TS C2 get the labelij. Let us de�ne TS C1 and TS C2 formally. Let TS C1 = (Q1; E1; T1; q1in; '1; I1) andTS C2 = (Q2; E2; T2; q2in; '2; I2) be two �-labelled asyn
hronous transition systemswith E1, '1, I1, E2, '2 and I2 de�ned as above. Let X(0)r = (r0 � r1 � r2)�, X(1)r =(r0 � r1 � r2)� � r0 and X(2)r = (r0 � r1 � r2)� � r0 � r1. Similarly, let X(0)u = (u0 � u1 � u2)�,X(1)u = (u0 � u1 � u2)� � u0 and X(2)u = (u0 � u1 � u2)� � u0 � u1. LetZ1 = [i;j2f0;1;2gX(i)r �X(j)u � ij � ri � uj � [(i + 1)j + i(j + 1)℄Z1 represents representatives of all maximal sequen
es we want the system to gen-erate. Let Z 01 = fy j 9x 2 Z1 : y �1 xg, where �1 is the tra
e equivalen
e relation
orresponding to I1. Set Z 001 = Pref(Z 01), the pre�xes of words in Z 01. Z 001 denotes theset of all sequen
es we would like TS C1 to generate. So, set Q1 = Z 001= �1 and forea
h [x℄; [x � e℄ 2 Q1 where x 2 E�1 , e 2 E1, let the transition [x℄ e�! [xe℄ belong toT1. The initial state q1in is ["℄.TS C2 is de�ned similarly: For ea
h pair of
olours
;
0 2 C, letR(
;
0) = [i;j2f0;1;2gX(i)r �X(j)u � (
; ij) � ri � uj � (
0; (i+ 1)j)

Chapter 3: Asyn
hronous simulations 52U (
;
0) = [i;j2f0;1;2gX(i)r �X(j)u � (
; ij) � ri � uj � (
0; i(j + 1))Now setZ2 = [i;j2f0;1;2g[X(i)r �X(j)u � (
; ij) � ri � uj℄ [[
;
0j
02R(
)[R(
;
0)℄ [[
;
0j
02U(
)[U (
;
0)℄Let Z 02 = fy j 9x 2 Z2 : y �2 xg, where �2 is the tra
e equivalen
e relation
orresponding to I2. Let Z 002 = Pref(Z 02), the pre�xes of words in Z 02. Z 002 denotesthe set of all sequen
es we would like TS C2 to generate. Set Q2 = Z 002= �2 and let ushave, for ea
h [x℄; [x � e℄ 2 Q2 where x 2 E�2 , e 2 E2, the transition [x℄ e�! [xe℄ inT2. The initial state q2in is ["℄.Grid points are those states in TS C1 and TS C2 rea
hed after exe
uting a sequen
ein (Er [Eu)�.Lemma 3.1 For any
olouring problem C, there is a solution for C i� there is asimulation from TS C1 to TS C2 .Proof()) Let
ol : N0 � N0 ! C be a solution for C. Now there is a simulation whi
hworks as follows. Map the grid-points of TS C1 to the grid-points of TS C2 . Thisis easily a
hieved by mapping the states of the form [x℄ (where x 2 (Er [Eu)�to [x℄. If at a grid-point, ri and uj events are enabled, then map the outgoingedge ij from this grid-point to the (
; ij) event in the
orresponding grid-pointof TS C2 , where
 is the
olour assigned by
ol to that grid-point. That is, at agrid-point [x℄, if ri and uj are enabled, we map the transition [x℄ ij�! [x � ij℄to [x℄ (
;ij)�! [x � (
; ij)℄. We extend the fun
tion to map other o

urren
es of thesame event to appropriate transitions. It is now easy to see that this de�nesa simulation. The simulation will preserve independen
e of events sin
e
ol isa solution for C.(() Let f : TS C1 ! TS C2 be a simulation. First, it is easy to argue that the grid-points of TS C1 must get mapped to the grid-points of TS C2 . This follows fromthe fa
t that f must preserve the label of events that are mapped. Now, we
an assign
olours to the grid-points as follows: at any grid-point, if ri and ujare enabled, then the
olour for that grid-point is
 where f maps the outgoingedge ij event to (
; ij). It follows easily from the
onstru
tion and the fa
t

Chapter 3: Asyn
hronous simulations 53that f preserves the independen
e of events, that the
olouring de�ned is asolution to C. 2All that remains now is to exhibit �nite state transition systems TS Cp and TS Cssu
h that their unfoldings are isomorphi
 to TS C1 and TS C2 respe
tively. The systemsTS Cp and TS Cs are �-labelled transition systems, (where � = fr0; r1; r2; u0; u1; u2g [f0; 1; 2g2) de�ned as follows:TS Cp = (Qp; Ep; Tp; qpin; 'p; Ip) where� Ep = E1, 'p = '1 and Ip = I1 as de�ned above We denote by Dp the depen-den
e relation: Dp = (Ep � Ep) n Ip.� Qp = fr0; r1; r2g � fu0; u1; u2g � 2f0;1;2g � 2f0;1;2g � 2f0;1;2g2A state (R;U; LR; LU ; X) of the plant
ontains the following information:{ R en
odes whi
h ri event is enabled and U en
odes whi
h uj event isenabled.{ LR en
odes the set of all i su
h that events ij 0 may be permitted and LUen
odes the set of all j su
h that events i0j may be permitted. Togetherthey en
ode exa
tly whi
h ij events are permitted at a grid-point: anevent ij is permitted i� i 2 LR and j 2 Lj.{ X en
odes the set of all ij events that have o

urred so far.� qpin = (r0; u0; f0g; f0g; ;)� Let a typi
al member of Qp be denoted as a tuple (R;U; LR; LU ; X).Tp is de�ned as follows:{ (R;U; LR; LU ; X) ri�! (R0; U 0; L0R; L0U ; X 0) ifR = ri, (6 9i0j 0 2 X : i 6= i0), R0 = ri+1, U 0 = U , L0U = LU , L0R =(LR n fi� 1g) [fi+ 1g and X 0 = X{ (R;U; LR; LU ; X) uj�! (R0; U 0; L0R; L0U ; X 0) ifU = uj, (6 9i0j 0 2 X : j 6= j 0), U 0 = uj+1, R0 = R, L0R = LR, L0U =(LU n fj � 1g) [fj + 1g and X 0 = X

Chapter 3: Asyn
hronous simulations 54{ (R;U; LR; LU ; X) ij�! (R0; U 0; L0R; L0U ; X 0) ifi 2 LR, j 2 LU , (69i0j 0 2 X : i0j 0Dpij), R0 = R, U 0 = U , X 0 = X [fijg,L0R = LR and L0U = LUIt should be
lear now how the de�nitions of the plant transitions work. Notethat X = ; at any grid point.TS Cs is de�ned as TS Cs = (Qs; Es; Ts; qsin; 's; Is) where� Es = E2, 's = '2 and Is = I2 as de�ned above We denote by Ds the depen-den
e relation: Ds = (Es � Es) n Is.� Qs = fr0; r1; r2g � fu0; u1; u2g � 2f0;1;2g � 2f0;1;2g � 2C�f0;1;2g2 � finit ; �g� qsin = (r0; u0; f0g; f0g; ;; init)� Let a typi
al member of Qs be denoted as a tuple (R;U; LR; LU ; X; S). Ts isde�ned as follows :{ (R;U; LR; LU ; X; S) ri�! (R0; U 0; L0R; L0U ; X 0; S 0) ifR = ri, (6 9i0j 0 2 X : i 6= i0), R0 = ri+1, U 0 = U , L0U = LU , L0R =(LR n fi� 1g) [fi+ 1g, X 0 = X and S 0 = �{ (R;U; LR; LU ; X; S) uj�! (R0; U 0; L0R; L0U ; X 0; S 0) ifU = uj, (6 9i0j 0 2 X : j 6= j 0), U 0 = uj+1, R0 = R, L0R = LR, L0U =(LU n fj � 1g) [fj + 1g, X 0 = X and S 0 = �{ (R;U; LR; LU ; X; S) (
;ij)�! (R0; U 0; L0R; L0U ; X 0; S 0) if(S = init)
 =
in), i 2 LR, j 2 LU , (69(
0; i0j 0) 2 X : (
0; i0j 0)D(
; ij)),R0 = R, U 0 = U , X 0 = X [f(
; ij)g, L0R = LR, L0U = LU and S 0 = SThe spe
i�
ation is
onstru
ted in almost the same way as the plant, ex
ept thatthe LR and LU
omponents en
ode the (
; ij) events enabled and the independen
erelation of the (
; ij) events are
onstrained by the given
olouring problem. Wealso keep tra
k in a new
omponent S whether the last grid-point seen was (0; 0) ornot. If it is, then we only allow the
in event to o

ur.It is tedious but straightforward to see that Uf(TS Cp) and Uf (TS Cs) are iso-morphi
 to TS C1 and TS C2 . Also, from a given C, we
an
onstru
t TS Cp and TS Cse�e
tively. From Lemma 3.1 we then have

Chapter 3: Asyn
hronous simulations 55Theorem 3.1 The problem of uniformly determining the existen
e of a simulationfrom the unfolding of a �nite asyn
hronous transition system to the unfolding ofanother is unde
idable. 2Next we show that the problem of
he
king for an asyn
hronous simulation re-du
es to that of
he
king for the existen
e of an asyn
hronous
ontroller. GivenTS p and TS s, we
onstru
t TS 0p and TS 0s su
h that there exists a simulation fromUf (TS p) into Uf(TS s) i� there is a
ontroller for (TS 0p;TS 0s). It will turn out thatUf (TS p) and Uf(TS s)
an be embedded into Uf(TS 0p) and Uf (TS 0s). Further, itwill turn out that if (TS 0p;TS 0s) has a
ontroller, say TS 0
, then it would have to bethe trivial
ontroller whi
h allows all system moves. Hen
e Uf(TS 0pkTS 0
) will beisomorphi
 to Uf(TS 0p). Hen
e, if (TS 0p;TS 0s) has a
ontroller, it would imply thatthere is a simulation from Uf (TS 0p) to Uf (TS 0s), from whi
h we will show how toextra
t a simulation from Uf(TS p) to Uf (TS s). To prove the
onverse, we will showhow any simulation from Uf(TS p) to Uf(TS s) easily extends to a simulation fromUf (TS 0p) to Uf (TS 0s). This will show that the
ompletely non-restri
tive
ontrolleris a valid
ontroller for (TS 0p;TS 0s).Let TS = (Q;E; T; qin; ') be a �-labelled asyn
hronous transition system. Wethen de�ne its augmented version Aug(TS), a �0-labelled asyn
hronous transitionsystem, below, where �0 = � [f?g where ? is a new label not in �. First, as-sume without loss of generality that � is disjoint from Qp; Qs; Ep and Es. ThenAug(TS) = (Q0; E 0; T 0; q0in; '0; I 0) is de�ned as follows:� Q0 = Q [fX j X is a non-empty subset of �0g [fq?; q??g� E 0 = Ep [�0 [f?0g� '0(e1) = 'p(e1), if e1 2 Ep; '0(a) = a, if a 2 �0; '0(?0) = ?� q0in = qin.� T 0 = T [f(q1; a; fag) j q1 2 Q and a 2 �0g [f(X; a; Y) j X; Y are non-empty subsets of � and a 62 X andY = X [fagg [f(q1; ?0; q?) j q1 2 Qg [f(q?; ?0; q??)g� I 0p = Ip [f(a; b) j a 6= b and a; b 2 �0g.We
an prove the following:

Chapter 3: Asyn
hronous simulations 56Lemma 3.2 For any two asyn
hronous transition systems TS p and TS s, thereis a simulation from Uf(TS p) to Uf (TS s) i� there is a
ontroller for(Aug(TS p);Aug(TS s)).Proof()) Let f : Uf (TS p) ! Uf (TS s) be a simulation. Consider TS
 = Aug(TS p).Then Uf(Aug(TS p)) and Uf(Aug(TS p))kTS
) are
learly isomorphi
. Now itis easy to see that f
an be extended to a simulation from Uf (Aug(TS p)) toUf (Aug(TS s)) by mapping �0-events to
orresponding �0-events and ?0-eventsto
orresponding ?0-events.(() Let TS
 be a
ontroller for (Aug(TS p);Aug(TS s)). Let g be a simulation fromUf (Aug(TS p)kTS
) to Uf (Aug(TS s)). First, we
an show that TS

annotrestri
t any system move of Aug(TS p).Claim If (qp; q
) is rea
hable in Aug(TS p)kTS
 and qp e�! q0p, then 9q0
 :q
 e�! q0
 in TS
.The
laim
an be
he
ked as follows. If qp is in Qp, then we know that someevent from (qp; q
), say e0, must be enabled in Aug(TS p)kTS
. Now, the
or-responding event '(e0) is also enabled. We
an then argue that if any one�0-event is enabled, then all of them must be enabled (using the nonblo
k-ing property of the
ontroller and the fa
t that it preserves independen
e ofevents). Using the properties of a
ontroller, it follows that all events from(qp; q
) must be enabled in the
ontrolled plant. If qp is not in Qp, then also itis easy to
he
k the
laim. End of
laimIt therefore follows that Uf(Aug(TS p)kTS
) is isomorphi
 to Uf(Aug(TS p)).We
an also show that g maps the Uf (TS p) fragment of Uf(Aug(TS p)) tothe Uf(TS s) fragment of Uf(Aug(TS s)), using the fa
t that two
onse
u-tive ?-labelled events are enabled only from the states of Uf(TS p). Hen
e arestri
tion of g will give a simulation from Uf(TS p) to Uf(TS s). 2

Chapter 3: Asyn
hronous simulations 57This leads to the se
ond main result of this
hapter.Theorem 3.2 The problem of uniformly determining if a pair of �nite asyn
hronoustransition systems admits an asyn
hronous
ontroller is unde
idable. 2From our
onstru
tions above it is easy to dedu
e that the problem of uniformlydetermining if a pair of �nite transition systems (TS p;TS s) admits a �nite
ontrolleris unde
idable. This holds sin
e in the redu
tion from the unde
idable simulationproblem to the
ontroller problem, our plant-spe
i�
ation pair is su
h that it admitsa
ontroller i� it admits a �nite
ontroller (namely the trivial one that is isomorphi
to the plant).Our unde
idability result goes through even for the restri
ted
lass of transitionsystems
alled produ
t transition systems. The main details of the
onstru
tionof produ
t transition systems whose unfoldings will be the same as we require, aregiven in the Appendix. Consequently, the unde
idability extends to other models |for example, when the plant and spe
i�
ation are presented as labelled 1-safe Petrinets.Yet another restri
tion one
an
onsider is the
lass of asyn
hronous transi-tion systems where there is an underlying independen
e over the labels � whi
hrespe
ts the independen
e of events, i.e.: TS = (Q;E; T; qin; '; I; bI) where TS =(Q;E; T; qin; '; I) is an asyn
hronous transition system and bI � ��� is irre
exiveand symmetri
 and 8e; e0 2 E, e I e0) '(e) bI '(e0).It is easy to see that the
lass of systems and spe
i�
ations used in the unde-
idability result for simulation fall within this
lass. Hen
e
he
king existen
e ofsimulation for this
lass is also unde
idable. We
an also show that
he
king forthe existen
e of a
ontroller for this
lass is unde
idable. The redu
tion is from thesimulation problem for this
lass and the details are given in the Appendix.

Chapter 4
Temporal logi
s, trees andautomata

The Beaver brought paper, portfolio, pens,And ink in unfailing supplies:While strange
reepy
reatures
ame out of their dens,And wat
hed them with wondering eyes.| The Hunting of the Snark, Lewis Caroll
In this
hapter we review some temporal logi
s (the bran
hing-time temporallogi
s CTL and CTL? and the linear-time temporal logi
 LTL) and also review labeledin�nite trees and automata working on them. All these
on
epts and de�nitions(ex
ept that of alternating automata) will be used in the next
hapter where we
onsider the synthesis and
ontrol problems for bran
hing-time logi
s. Also, tree-automata will be extensively used in Chapter 6 where we
onsider the distributed
ontrol-synthesis problem. Though we won't really work with synthesis/
ontrolproblems involving LTL, we use LTL in some
ru
ial lower-bound results in the next
hapter and it will also be a natural way to view the spe
i�
ation me
hanisms inChapter 6. 58

Chapter 4: Temporal logi
s, trees and automata 594.1 Linear-time temporal logi
 LTLWe introdu
e the temporal logi
s we need in the next two
hapters brie
y here.We refer the reader to [Eme90℄ for a more
omprehensive and gentle introdu
tion.Linear-time temporal logi
 (LTL) is a temporal logi
 designed to spe
ify proper-ties of in�nite sequen
es. The models for this logi
 are !-sequen
es of letters from�, where � = 2AP for a set of atomi
 propositions AP .Let us �x a set of atomi
 propositions AP . Then the formulas of LTL over APis de�ned to be the least set su
h that:� For ea
h p 2 AP , p is a formula� If ' and are formulas then so are :', ' _ , X' and 'U The modalities X and U stand for \Next" and \Until" respe
tively | i.e. X'means that the suÆx sequen
e starting from next position satis�es ' while 'U means that the formula holds somewhere down the sequen
e and till that point 'holds.Let � 2 (2AP)! be an !-sequen
e of subsets of AP . If � = �0 � �1 � : : :, then wedenote by �[i℄ the suÆx of � starting from the ith position in the sequen
e | i.e.�[i℄ = �i � �i+1 : : :.Formally, the semanti
s of when a formula ' is satis�ed in a model � 2 (2AP)!,denoted � j= ', is de�ned indu
tively on the stru
ture of ' as follows:� � j= p i� � = �0 � �1 : : : and p 2 �0� � j= ' _ i� � j= ' or � j= � � j= :' i� � 6j= '� � j= X' i� �[1℄ j= '� � j= 'U i� there is a j 2 N0 su
h that �[j℄ j= and for every 0 � i < j,�[i℄ j= 'We use the following abbreviations as well:� ' ^ = :((:') _ (:)) (\and").� F' = trueU' (\eventually").� G' = :F:' (\always").

Chapter 4: Temporal logi
s, trees and automata 604.2 Bran
hing-time temporal logi
s CTL and CTL?In the bran
hing time logi
 CTL?, a path quanti�er, E denoting \for some path"(or A denoting \for all paths"),
an pre�x an assertion
omposed of an arbitrary
ombination of the linear time operators X (\next") and U (\until"). CTL and CTL?are interpreted on Kripke stru
tures whi
h we de�ne below.CTL? has two types of formulas: state formulas, whose meaning is related to aspe
i�
 state, and path formulas, whose meaning is related to a spe
i�
 path. LetAP be a set of atomi
 propositions. A CTL? state formula is either:� p, for p 2 AP .� :' or ' _ , where ' and are CTL? state formulas.� E' or A' where ' is a CTL? path formula.A path formula is either:� A CTL? state formula.� :' or ' _ or X', or 'U , where ' and are CTL? path formulas.The logi
 CTL?
onsists of the set of state formulas generated by the above rules.The logi
 CTL (\
omputation tree logi
") is a restri
ted subset of CTL?. In CTL,the temporal operators X and U must be immediately pre
eded by a path quanti�er.Formally, it is the subset of CTL? obtained by restri
ting the path formulas in theabove de�nition to be X' or 'U , where ' and are CTL state formulas. In otherwords, the set of CTL formulas is the smallest set su
h that:� For ea
h p 2 P , p is a CTL formula.� If ' and '0 are CTL formulas, then so are :', ' _ '0, EX', AX', E'U'0 andA'U'0.The semanti
s of CTL? (and its sub-logi
 CTL) is de�ned with respe
t to a(Kripke) stru
ture S = hAP;W;R;w0; Li, where AP is the set of atomi
 proposi-tions, W is a set of states, R � W �W is a transition relation that must be total(i.e., for every w 2 W there exists w0 2 W su
h that (w;w0) 2 R), w0 is an initialstate, and L : W ! 2AP maps ea
h state to a set of atomi
 propositions true in thisstate. We sometimes say R(w;w0) to mean that (w;w0) 2 R. If R(w;w0) holds, we

Chapter 4: Temporal logi
s, trees and automata 61say that w0 is a su

essor of w . A path of S is an in�nite sequen
e � = w0; w1; : : :of states su
h that for every i � 0, we have R(wi; wi+1). The suÆx wi; wi+1; : : : of� is denoted by �i. We use w j= ' to indi
ate that a state formula ' holds at statew, and we use � j= ' to indi
ate that a path formula ' holds at path � (assuminga stru
ture S). The relation j= is indu
tively de�ned as follows.� For an atomi
 proposition p 2 AP , we have w j= p i� p 2 L(w)� w j= :' i� w 6j= '.� w j= ' _ i� w j= ' or w j= .� w j= E' i� there exists a path � = w0; w1; : : : su
h that w0 = w and � j= '.� w j= A' i� for every path � = w0; w1; : : : su
h that w0 = w, � j= '.� � j= ' for a state formula ' i� � = w0; w1; : : : and w0 j= '� � j= :' i� � 6j= '.� � j= ' _ i� � j= ' or � j= .� � j= X' i� �1 j= '.� � j= 'U i� there exists j � 0 su
h that �j j= and for all 0 � i < j, wehave �i j= '.We say that a Kripke stru
ture S satis�es a CTL? (or CTL) formula ', denotedS j= ', if w0 j= ' where w0 is the initial state of S.We use abbreviations ' ^ , F', G' to mean the same as in LTL.4.3 TreesA (rooted dire
ted) tree is a dire
ted a
y
li
 graph T = (N;E), where N is a setof nodes and E � N � N is an edge-relation, that has a designated root r whi
hdoesn't have a parent (i.e. there is no v 2 N su
h that (v; r) 2 E) and every othernode of the tree has a unique parent and is rea
hable from r.For a �nite set �, we note that T� = (��; E�), where E� = f(x; x:
) j x 2�� and
 2 �g, is a tree | we refer to this as the full �-tree. Also,
onsider the

Chapter 4: Temporal logi
s, trees and automata 62graph T = (N;E) where N � �� and E � E� su
h that, if v:
 2 N with v 2 ��and
 2 �, then v 2 N . Then T is a tree (it's a subtree of T�) and we
all this an�-tree. The root of an �-tree is the empty word ".Let T = (N;E) be a tree. For every v 2 T , the set su

T (v) = fv0 2 N j (v; v0) 2Eg is the set of
hildren (su

essors) of v. Where T is
lear from the
ontext, wedrop the subs
ript T and write su

(v). We usually
onsider trees that satisfy the
ondition that su

(v) 6= ; for every v in T .We also asso
iate a dire
tion dir(v) 2 � with ea
h node v of an �-tree T . Adesignated element
0 2 � is the dire
tion of ". For ea
h non-root node v:
 with
 2 �, we set dir(v:
) =
.A path � of any tree T = (N;E) is an in�nite sequen
e of nodes of the tree� = v0v1 : : : su
h that v0 is the root of T and for ea
h i 2 N0 , vi+1 is a su

essor of viin T . Finally, given a set �, a �-labeled tree is a pair (T; V) where T is a tree andV : T ! � is a labeling fun
tion that labels ea
h node of the tree with a symbol of�. Of spe
ial interest to us are 2AP -labeled trees, where AP is a �nite set of proposi-tions. We
all su
h trees
omputation trees and we sometimes interpret CTL? formu-las with respe
t to them. Formally, a
omputation tree (T; V), where T = (N;E),satis�es a CTL? formula ' if ' is satis�ed in the stru
ture hAP;N;E; r; V i, where ris the root of T .Kripke stru
tures
an be unfolded into trees just as transition systems were un-folded into trees in Chapter 2. Formally, for a Kripke stru
ture S = hAP;W;R;w0; Li,we
an asso
iate a 2AP -labelledW -tree (TS; VS) where TS � W � is the least set su
hthat:� " 2 TS; dir(") = w0� For every x 2 W �, if x 2 TS and dir(x) = w and (w;w0) 2 R, then x:w0 2 TS.(Also, by
onvention, dir(x:w0) = w0)It turns out that CTL? formulas
annot distinguish between a Kripke stru
tureand its unwinding:Proposition 4.1 Let ' be a CTL? formula and let S be a Kripke stru
ture. ThenS j= ' i� (TS; VS) j= ', where (TS; VS) is the unwinding of S.

Chapter 4: Temporal logi
s, trees and automata 63Proof Follows easily by indu
tion on the stru
ture of '. 2Hen
e, we swit
h freely between Kripke stru
tures and their unfoldings whileinterpreting CTL? formulas on them.4.4 Automata on treesLet us now turn to automata working over �-labelled �-trees. Let us �x �nitesets � and �. We introdu
e here B�u
hi, Rabin and parity tree automata (see[Tho90, Tho97℄ for more details). Our treatment of automata are a bit non-standard(for the sake of
onvenien
e). We de�ne them on �-trees while in the literature,automata are usually de�ned on �xed-arity
omplete trees. However, one
an easilygo ba
k and forth between these de�nitions.A non-deterministi
 tree automaton over �-labeled �-trees is A = h�; Q; Æ; q0;Fiwhere � is the �nite alphabet we have �xed. Q is a �nite set of states. For ea
hX � �, let GX denote the set of all fun
tions from X to Q. Also, let G denotethe union of all sets GX where X � �. Then Æ : Q � � � 2� ! 2G is a transitionfun
tion that maps a state, a letter, and a subset X of � to a subset of GX . In otherwords, if q 2 Q, a 2 �, X � �, then Æ(q; a;X) is a set of fun
tions from X to Q| ea
h su
h fun
tion gives a set of possible propagation of states to the
hildren ofthe node being read. q0 2 Q is the initial state, and F is an a

eptan
e
ondition(or a winning
ondition) that depends on the kind of automata we
onsider:(B�u
hi) F is a subset of Q(Rabin) F = f(R1; G1); : : : ; (Rm; Gm)g is a set of pairs of subsets of Q (i.e. forea
h i, Ri; Gi � Q).(parity) F is a fun
tion F : Q! f0; : : : ; hg for some h 2 N (the set f0; : : : ; hg is
alled the set of
olours).Automata with B�u
hi, Rabin and parity winning
onditions are
alled B�u
hi,Rabin and parity automata, respe
tively.Let � = x0x1 : : : 2 Q! be an in�nite sequen
e of states. Then we denote thestates that o

ur in�nitely often in � as:inf (�) = fq 2 Q j there are in�nitely many i 2 N su
h that xi = qg:

Chapter 4: Temporal logi
s, trees and automata 64The notion of when � satis�es a winning
ondition F is de�ned depending onthe kind of winning
ondition:(B�u
hi) � is a

epting if inf (�) \ F 6= ; | i.e. � meets F in�nitely often.(Rabin) Let F = f(R1; G1); : : : ; (Rm; Gm)g. Then � is a

epting if 9i 2 f1; : : : ; mgsu
h that inf (�)\Ri = ; and inf (�)\Gi 6= ;| i.e. if there is a pair (Ri; Gi)in F su
h that � meets Gi in�nitely often and meets Ri only �nitely often.(parity) Let F : Q ! f0; : : : ; hg for some h 2 N . Then � is a

epting ifmin(F(inf (�))) is even | i.e. the smallest
olour met in�nitely often in �is even.Let (T; V) be a �-labeled �-tree (hen
e T � ��). Let su

 dir(x) = fdir(y) jy 2 su

T (x)g denote the dire
tions of the
hildren of x.A run of the automaton A over (T; V) is a Q-labeled tree (T; �) su
h that:� �(") = q0� Let x 2 T and C = su

 dir(x). Then there is a fun
tion g : C ! Q inÆ(q; V (x); C) su
h that for ea
h
0 2 C, �(x:
0) = g(
0).A path � of a run (T; �) is said to be a

epting if it satis�es the a

eptan
e
ondition as de�ned above. The run (T; �) itself is said to be a

epting if all pathsof it are a

epting. A �-labeled tree (T; V) is a

epted by A if there is an a

eptingrun of A over (T; V). The language a

epted by A is the set of all �-labeled treesa

epted by A.4.5 Alternating tree automataLet us now de�ne alternating tree automata whi
h are a generalization of non-deterministi
 tree automata. While non-deterministi
 automata
an guess a set ofsu

essor states and send one
opy of itself along the subtrees rooted at ea
h of its
hildren, an alternating automaton
an pass several
opies of itself to a single
hildas well.For a set X, let B+(X) denote the set of positive boolean formulas formed usingelements in X | i.e B+(X) ::- true j false j x j � _ �0 j � ^ �0 where x 2 X and �and �0 are in B+(X). For a set Y � X, we say that Y satis�es � 2 B+(X) if setting

Chapter 4: Temporal logi
s, trees and automata 65elements in Y to true (and the elements not in Y to false) satis�es �, with the usualinterpretation of _ and ^.An alternating tree automaton over �-labeled �-trees is A = h�; Q; Æ; q0;Fiwhere �, Q, q0 and F are as in a non-deterministi
 automaton and Æ : Q���2� !B+(Q � �) is a transition fun
tion whi
h satis�es the following
ondition: it mustmap a state, a letter, and a subset C of � to a boolean formula involving statesalong with the dire
tions in C. In other words, if q 2 Q, a 2 �, C � �, thenÆ(q; a; C) is a boolean formula in B+(Q� C).Let (T; V) be a �-labeled tree. A run of the automaton A over (T; V) is a(T � Q)-labeled tree (T�; �) where T� is a tree that needn't be isomorphi
 to T .Intuitively, the label of a node y in T� being (x; q) represents that the run at thatnode is reading the node x of the tree T and is in state q. Let the root of T� be r.(T�; �) is a run if � satis�es the following
onditions:� �(r) = ("; q0)� Let y 2 T� and �(y) = (x; q). Let C = su

 dir(x) and Æ(q; V (x); C) = �where � is a formula in B+(Q � C). Let Y � Q � C be the set of all (q0;
0)su
h that there is a
hild y0 of y with �(y0) = (q0; x:
0). Then we require thatY satis�es the formula �.A path � of a run (T�; �) is said to be a

epting if the sequen
e of Q-
omponentsof the labels of � satis�es the a

eptan
e
ondition. The run (T�; �) is a

epting ifall paths it it are a

epting. A �-labeled tree (T; V) is a

epted by A if there isan a

epting run of A over (T; V) and the language a

epted by A is the set of all�-labeled �-trees a

epted by A.Example 4.1 Let � = f
; d; eg.Consider the automaton A = h�; fq0; qa; qb; q0bg; Æ; q0;Fi where � = fa; bg and Fis a B�u
hi winning
ondition with F = fqbg.The transition fun
tion is de�ned as follows: For any C � �:Æ(q0; a; C) = Æ(q0; b; C) =
̂2C ((qa;
) ^ (qb;
) ^ (q0;
))Æ(qa; b; C) =
̂2C (qa;
) ; Æ(qa; a; C) = true

Chapter 4: Temporal logi
s, trees and automata 66Æ(qb; a; C) =
̂2C (qb;
) ; Æ(qb; b; C) =
̂2C (q0b;
)Æ(q0b; a; C) =
̂2C (q0b;
) ; Æ(q0b; b; C) =
̂2C (qb;
)The state q0 propagates itself to all
hildren of the
urrent node and hen
e walksdown all paths. At ea
h node, it also spawns a
opy of the automaton in state qaand another in state qb. The state qa persists till it reads an a, at whi
h point itstops. Hen
e it
he
ks if all the paths of the subtree it is pursuing has an a. Thestates qb and q0b persist in their states when they see an a and swit
h states whenthey see a b. Consequently the B�u
hi
ondition is met i� b is seen in�nitely oftenalong any path pursued by these states. It is easy to see that this automaton a

eptsan �-tree i� any path from any subtree has at least one a and also has in�nitelymany b's. Note that the
opies of the automaton
he
king the two properties walkdown the tree independent of ea
h other. 2Note that for any non-deterministi
 automaton A = (�; Q; Æ; q0;F) we have thealternating automaton A0 = (�; Q; Æ0; q0;F) where for every q 2 Q, a 2 �, C � �,Æ0(q; a; C) = _g2Æ(q;a;C)
̂2C (g(
);
)It is easy to
he
k the language of trees a

epted by A0 is the same as that of A.The
onverse also holds:Theorem 4.1 ([MSS86℄) For every alternating parity automaton A0, one
an
on-stru
t an equivalent non-deterministi
 parity automaton A. Moreover, the numberof states in A is at most exponential in the number of states in A0.Hen
e non-deterministi
 parity automata and alternating parity automata areequally expressive. Rabin tree automata are also as expressive as parity automata.However, it turns out that B�u
hi non-deterministi
 tree automata are stri
tly weakerthan Rabin/parity non-deterministi
 tree automata.The
lass of languages a

epted by Rabin/parity automata are
alled regular treelanguages and it is well-known that this
lass is
losed under union, interse
tion,proje
tion and
omplement [Tho97℄.Also, Rabin proved in 1969 [Rab69℄ that the problem of
he
king whether a non-deterministi
 tree automaton a

epts some tree is de
idable. The
omplexity of this

Chapter 4: Temporal logi
s, trees and automata 67de
ision pro
edure has been improved over the years and
urrently it is known thatnon-deterministi
 Rabin automata
an be
he
ked for emptiness in time (nm)O(m)where n is the number of states in the automaton and m is the number of Rabinpairs in the winning
ondition. This problem has also been shown to be NP-
omplete[EJ88, PR89a℄. For parity automata, the
omplexity of
he
king emptiness is in NP,and in
o-NP, but is not known to be in P [Eme97℄. On the other hand, B�u
hi treeautomata
an be
he
ked for emptiness in polynomial time (in fa
t in time O(n2)where n is the number of states in the automaton) [VW86b℄.Moreover, all the above algorithms give a regular witness tree that the automa-ton a

epts, if the language it a

epts is nonempty. A tree is regular if its set of\
omplete" subtrees (i.e. the full subtrees rooted at nodes), up to isomorphism, is�nite. Su
h a tree
an in fa
t be presented as a �nite-state transition system whoseunfolding gives the tree (for a natural notion of unfolding similar to the one de�nedin Chapter 2). The number of states in this transition system is also bounded bythe time-estimate above | i.e. (nm)O(m) for Rabin tree automata, et
. In many ofour appli
ations of tree-automata, these witnesses of regular trees will be useful ina
tually designing
ontrollers.

Chapter 5
Synthesis and
ontrol forbran
hing-time logi
s

They sought it with thimbles, they sought it with
are;They pursued it with forks and hope;They threatened its life with a railway-share;They
harmed it with smiles and soap.| The Hunting of the Snark, Lewis Caroll
In this
hapter we study the problem of
ontrol-synthesis for the bran
hing-timetemporal logi
s CTL and CTL?. Apart from the
ontrol-synthesis problem, we alsostudy the synthesis problem where we are given a spe
i�
ation in CTL?, say, andare asked to
ome up with a program that satis�es the spe
i�
ation.Let us look at the program synthesis problem more
losely. Suppose we aregiven �nite sets I and O of input and output signals. A program
an be viewedas a strategy f : (2I)� ! 2O that maps �nite sequen
es of input signal sets into anoutput signal set. When f intera
ts with an environment that generates in�niteinput sequen
es, what results is an in�nite
omputation over 2I[O. Though f isdeterministi
, it produ
es a
omputation tree. The bran
hes of the tree
orrespond68

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 69to external non-determinism
aused by the di�erent possible inputs. Many
lassesof rea
tive programs like proto
ols and �nite-state hardware devi
es
an be seen towork in su
h a manner.One
an now spe
ify properties of su
h an open system by a linear or bran
hingtemporal logi
 formula (over I[O). Unlike linear temporal logi
s, in bran
hing tem-poral logi
s one
an spe
ify possibility requirements su
h as \every input sequen
e
an be extended so that the output signal v eventually be
omes true" ([DTV99℄).This is a
hieved via existential and universal quanti�
ation provided in bran
hingtemporal logi
s [Lam80, Eme90℄.The realizability problem for a bran
hing-temporal logi
 is to determine, givena bran
hing-time spe
i�
ation ', whether there exists a program f : (2I)� ! 2Owhose
omputation tree satis�es ' [ALW89, PR89a℄. Realizing ' boils down tosynthesizing su
h a fun
tion f . An important aspe
t of the
omputation tree asso-
iated with f is that it has a �xed bran
hing degree j2Ij. It re
e
ts the assumptionthat at ea
h stage, all possible input signals are provided by the environment. Su
henvironments are referred to as maximal or universal environments. Intuitively,these are stati
 environments in terms of the bran
hing possibilities they
ontributeto the asso
iated
omputation trees. Equivalently, as we have noted already, ea
hprogram has just one
omputation tree
apturing its behavior in the presen
e ofa maximal environment. In a more general setting, however, we have to
onsiderenvironments that are, in turn, open systems. We term su
h environments rea
tive.They might o�er di�erent subsets of 2I as input possibilities at di�erent stages inthe
omputation.As an illustration,
onsider I = fr1; r2; :::; rng and O = ft1; t2; :::; tng where Irepresents n di�erent types of resour
es and O represents n di�erent types of taskswith the understanding that, at ea
h stage, the system needs to re
eive ri from theenvironment in order to exe
ute ti. In the
ase of the maximal environment, thespe
i�
ation \it is always possible to rea
h a stage where ti is exe
uted" (AGEF(ti)in CTL parlan
e) is realizable. This is so be
ause at ea
h stage in the
omputation,the maximal environment presents all possible
ombinations of the resour
es. In the
ase of the rea
tive environment, the above spe
i�
ation is not realizable. This isso be
ause there
ould be an environment driven by an open system that produ
esonly a �nite number of the resour
e ri. In the resulting
omputation tree, ea
h patheventually rea
hes a node in whi
h the environment stops o�ering ri. From then on,

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 70ti
annot be exe
uted.So, a rea
tive environment asso
iates a set of
omputation trees with a program| ea
h tree des
ribes the behaviour of the program when it intera
ts with someenvironment. Consequently, in the presen
e of rea
tive environments, the realiz-ability problem must seek a program all of whose
omputation trees satisfy thespe
i�
ation.The
ontrol-synthesis problem is
losely related to the realizability problem. Herewe are given a plant (whi
h is an open system) that suitably models the system andenvironment intera
ting with ea
h other. Given a bran
hing-time spe
i�
ation ',the
ontrol problem is to
ome up with a strategy for
ontrolling the moves made bythe system so that the resulting
omputation tree satis�es '. Here again, assuminga rea
tive environment requires the
ontroller to fun
tion
orre
tly no matter howthe environment disables some of its moves; thus
orre
tness should be
he
ked withrespe
t to a whole set of
omputation trees.In this
hapter, we study the
ontrol problems for both CTL� and CTL spe
-i�
ations against non-rea
tive and rea
tive environments. It turns out that therealizability problem
an be redu
ed to the
ontrol problem.The
ontroller-synthesis problem for maximal environments
an be transformed(by
ipping the role of the system and the environment) into the module-
he
kingproblems solved in [KV96, KV97a℄. Hen
e, from the results on module
he
king, itfollows that the problem is EXPTIME and 2-EXPTIME
omplete for CTL and CTL?respe
tively [KV99a, KV99b℄.The main result of this
hapter is that for rea
tive environments these problems(realizability and
ontrol) are 2-EXPTIME
omplete and 3-EXPTIME
omplete forCTL and CTL?, respe
tively. In this sense, rea
tive environments make it morediÆ
ult to realize open systems and synthesize
ontrollers for them.The upper bounds are established using automata-theoreti
 methods. In
asethe answer to a realizability/
ontrol problem is positive, we also show how to extra
ta program/
ontroller that meets the spe
i�
ation. The sizes of these and the time to
onstru
t them are shown to be of the same order as the time-
omplexity in solvingthe problem.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 715.1 The problem settingFirst, re
all the de�nitions of the bran
hing-time logi
s CTL and CTL?, Kripkestru
tures as well as the notions of nondeterministi
 automata on in�nite trees in-trodu
ed in Chapter 4.In order to study
ontroller synthesis, we model a plant as P =hAP;Ws;We; R; w0; Li, where AP;R; w0, and L are as in a Kripke stru
ture withW = Ws [We. Here Ws is a set of system states and We is a set of environmentstates. Throughout what follows we are
on
erned only with �nite plants; AP andW are both �nite sets. We also assume that Ws \We = ;. The size of the plant isjP j = jW j+ jRj.Note that unlike the models in Chapter 2 and Chapter 3, our models no longerhave event-labels on transitions and the additional labelling of events to
apture theway the system and the environment intera
t. What we have instead is a partitionof the state-spa
e into the set of system states (where it is the turn of the systemto move) and environment states (where the environment makes a move). Theunderlying stru
ture need not be bipartite with respe
t to these sets, and hen
e, thesystem and environment need not stri
tly alternate. In addition, we have a labellingon the states of the plant that des
ribes the set of atomi
 propositions that are truein ea
h state.Re
all the notion of �-trees, for a �nite set �. Let P = hAP;Ws;We; R; wo; Libe a plant. Then P
an be unwound into a W -tree TP in the obvious manner: it isthe smallest set su
h that the following
onditions hold:� " 2 TP ; dir(") = w0� If x 2 TP and w 2 W , then (x:w 2 TP i� R(dir(x); w))This tree is similar to the unfoldings of transition systems studied before. Thetree TP indu
es the 2AP -labelled tree (TP ; VP) where for ea
h v 2 TP , we haveVP (v) = L(dir(v)).A
ontroller is now an advi
e fun
tion whi
h, for every system state in this tree,pi
ks a subset of
hildren of the state to indi
ate whi
h moves it wants to allow atthat point. Hen
e it is just a restri
tion of the tree at the system nodes.Let P = hAP;Ws;We; R; wo; Li be a plant, (TP ; VP) be its unwinding and let(T; V) be a subtree of (TP ; VP). We denote by T s = fv j v 2 T and dir(v) 2 Wsg

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 72the set of nodes of T that
orrespond to system states, and by T e = T n T s the setof states that
orrespond to environment states.A restri
tion (T 0; V 0) of (T; V) is a tree T 0 � T su
h that V 0 is V restri
ted toT 0. A restri
tion (T 0; V 0) of (T; V) is said to be a system restri
tion if for everyenvironment state v 2 T 0e, all
hildren of v in T belong to T 0 as well. I.e., thereis no pruning of the tree at environment states. Similarly, a restri
tion (T 0; V 0) of(T; V) is said to be an environment restri
tion if for every system state v 2 T 0s, all
hildren of v in T belong to T 0.A strategy (or
ontroller) for a plant P is now just a system restri
tion (T; V) of(TP ; VP). Note we
an have v and v0 with dir(v) = dir(v0) and still have su

T (v) 6=su

T (v0). Indeed, the de
isions made by the system and the environment dependnot only on the
urrent state of the intera
tion (that is, dir(v)), but also on theentire intera
tion between the system and the environment so far (that is, v). Wesay that the strategy (T; V) has �nite-memory (or that the
ontroller is �nite-state)if the number of non-isomorphi
 subtrees of it is �nite. In this
ase, one
an �nd a�nite Kripke stru
ture P 0 whose unwinding is isomorphi
 to (T; V). This stru
turethen
orresponds to the
ontrolled plant.For example, Figure 5.1 shows a plant P and the unwinding (TP ; VP) of it. Italso illustrates a system restri
tion of the plant. The system nodes are denoted by
ir
les and the environment nodes by squares. This tree (T; V) represents the systemplaying a

ording to its strategy against an environment whi
h plays all moves it
an at all its states (whi
h we
all an universal environment). The
ontrol-synthesisproblem for non-rea
tive environments is to �nd whether, given a plant P and aspe
i�
ation ', there is a strategy for P su
h that the tree
orresponding to thestrategy playing against the universal environment satis�es the spe
i�
ation.However, in some
ases, we may not only want the strategy to win against theuniversal environment, but also against all possible environments. Consider, for ex-ample, the s
enario where we have a set of plants fP1; : : : ; Pkg that intera
ts with a(universal) environment E. In this
ontext, in order to make the individual plantssatisfy a spe
i�
ation, we may want to solve the problem by synthesizing indepen-dently a
ontroller for ea
h plant. Hen
e, we would want to design a
ontrollerCi, say, for a plant Pi, by
onsidering its environment as all intera
tions with E aswell as the other plants. We would like the
ontroller to make sure that the plantmeets its spe
i�
ation no matter how the other pro
esses behave. These pro
esses

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 73
w0w1 w2 w3w4 w5 A plant P
w0w1 w2 w3w4 w5w0 w4 w3 w5 w3w4 w3w2 w2w5 w3 The unwinding (TP ; VP) of P
w0w1 w2 w3w4 w5w0 w4 w5 w3w3w2 w2w5 w3 A system restri
tion of (TP ; VP)Corresponds to a universalg-tree for some
ontroller g

Figure 5.1: Unwindings and system-restri
tions

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 74
w0w1 w2 w3w5w4 w5 w3w3w2 w2w3 A g-respe
ting exe
ution of Pi.e. an environment restri
tionof the universal g-tree

Figure 5.2: g-respe
ting exe
utionsform part of the environment but being independently designed, may not play likethe universal environment. Hen
e we would like Pi to meet its spe
i�
ation for allpossible environments.The intera
tion of a rea
tive environment with a plant
an be seen as just a wayof pruning the unwinding of a plant at environment states | the environment atany environment node of the tree pi
ks a (nonempty) subset of its
hildren whi
hare the possibilities it will o�er. Hen
e the
ontrol-synthesis problem for rea
tiveenvironments is to
ome up with a strategy su
h that any pruning of the unwindingof the
ontrolled plant at the environment states satis�es the given spe
i�
ation.We now make this intuition formal. A
ontroller for the system is a fun
tion gthat assigns to ea
h v 2 T sP , a non-empty subset of su

TP (v). The universal g-treeis the system restri
tion of (Tp; Vp)
orresponding to g: i.e. it is the tree (Tg; Vg)where Tg is the smallest subset of TP su
h that:� " 2 Tg� If v 2 Tg and v0 2 g(v), then v0 2 TgA g-respe
ting exe
ution of P is any environment restri
tion (T; V) of (Tg; Vg).For example, Figure 5.2 exhibits a g-respe
ting exe
ution of the
ontroller g depi
tedin Figure 5.1.De�nition 5.1 [Control problem for non-rea
tive environments℄Given a �nite plant P and a spe
i�
ation ' (in CTL or CTL?), does there exists a

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 75
ontroller g su
h that (Tg; Vg) satis�es '? 2De�nition 5.2 [Control problem for rea
tive environments℄Given a �nite plant P and a spe
i�
ation ' (in CTL or CTL?), does there exist a
ontroller g su
h that all g-respe
ting exe
utions of P satisfy '?Controllers for the above problems will be
alled
ontrollers for (P; ') againstnon-rea
tive and rea
tive environments, respe
tively.The synthesis problem (or the realizability problem) for programs against rea
tiveand non-rea
tive environments
an be de�ned along very similar lines: we
onsidera program f intera
ting with its environment via two �nite sets I and O of inputand output signals respe
tively . We
an view f as a strategy f : (2I)� ! 2O thatmaps �nite sequen
es of input signal sets into an output signal set. The intera
tionstarts by the program generating the output f("). The environment replies withsome i1 � I. In general, f(i1:i2: : : : ij), is the response of f for the input sequen
ei1:i2: : : : ij. This (in�nite) intera
tion
an be represented by a
omputation tree.The bran
hes of the tree
orrespond to external non-determinism
aused by di�erentinput signal sets
hosen by the environment. Thus f
an be viewed as the full 2I[O-labeled 2I-tree (Tf ; Vf) with Tf = (2I)�, dir(") = ; and Vf(v) = dir(v) [f(v) forea
h v 2 Tf .Given a CTL or CTL? formula ', the realizability problem for non-rea
tive envi-ronments is to �nd a a strategy f so that (Tf ; Vf) satis�es '. We say that f realizes' if f is su
h a strategy. And say that ' is realizable if there is a strategy thatrealizes it.On the other hand, the realizability problem for rea
tive environments is to �nda strategy f su
h that no matter how the environment disables (in a non-blo
kingmanner) its possible responses at di�erent stages, the tree of intera
tion between thesystem and the environment satis�es '. Formally, let f : (2I)� ! 2O be a strategyand let (T; V) be a 2I[O-labeled 2I-tree with dir(") = ;. We say that (T; V) is anf -respe
ting exe
ution i� V (v) = f(v) [dir(v) for ea
h v 2 T . (In other words,(T; V) is a restri
tion of the
omputation tree (Tf ; Vf)). The realizability problemfor rea
tive environments is to �nd if there is an f su
h that every f -respe
tingexe
ution satis�es '. We say that f rea
tively realizes ' if f is su
h a strategy.Also, ' is said to be rea
tively realizable if there is a program f that rea
tivelyrealizes '.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 76It turns out that the
ontrol-synthesis problem is harder than that of realizability.Using a universal plant that embodies all the possible assignments to I and O, therealizability problem
an be redu
ed to the
ontrol problem. Formally, we have thefollowing:Lemma 5.1 Let ' be a CTL? (CTL) formula over AP = I [O. We
an e�e
tively
onstru
t a �nite plant P and a CTL? (resp. CTL) formula '0 su
h that jP j =O((2jAP j)2), j'0j = O(j'j+ 2jAP j), and the following hold:� ' is realizable i� there is
ontroller for (P; '0) against the universal environ-ment� ' is rea
tively realizable i� there is a
ontroller for (P; '0) against rea
tiveenvironments.Proof We de�ne P = (AP 0;Ws;We; R; w0; L) as follows:� AP 0 = AP [fpeg with pe =2 AP: (The role of pe will be
ome
lear soon).� We = 2I � 2O� Ws = fw0g [2I with w0 =2 2I [We� R = R0 [R1 [R2 where R0 = fw0g � (f;g � 2O), R1 = We � 2I , andR2 = f(X; (X; Y)) j X � I and Y � Og.� L((X; Y)) = X[Y [fpeg for ea
h (X; Y) 2 We and L(w) = ; for ea
h w 2 Ws.Next, for the formula ' in CTL (or CTL?), we
onstru
t the CTL (respe
tivelyCTL?) formula '0 over AP 0 by setting '0 = '01^'02. The basi
 idea is that '01 ensuresthat the truthhood of ' matters only at the states in We. The
onjun
t '01 is theformula EX(k'k) where k'k is de�ned indu
tively as follows:For formulas ' in CTL?, k'k is de�ned as:� For state formulas:{ kpk = p for p 2 AP{ k:'k = :k'k{ k'1 _ '2k = k'1k _ k'2k

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 77{ kE'k = Ek'k{ kA'k = Ak'k� For path formulas{ If ' is a state-formula, then k'k is already de�ned.{ k:'k = :k'k{ k'1 _ '2k = k'1k _ k'2k{ kX'k = X X (k'k){ k' U '0k = (pe) k'k) U (pe ^ k'0k))For formulas in CTL, it is de�ned as:� kpk = p for p 2 AP� k:'k = :k'kk'1 _ '2k = k'1k _ k'2k.� kEX'k = EX EXk'k andkE(' U '0)k = E((pe) k'k) U (pe ^ k'0k))� kAX'k = AX AXk'k andkA(' U '0)k = A((pe) k'k) U (pe ^ k'0k))The
onjun
t '02 ensures that the system
hooses only one move at states in Ws(sin
e the 2O labelling required must be unique). It is given by '02 = AG(:pe)(Vz2O(EXz) AXz)) It is easy to
he
k that P and '0 satisfy the required proper-ties. 2
5.2 Synthesis and
ontrol against the universalenvironmentIt turns out that the
ontrol-synthesis problem for universal environments re-du
es to another problem, the module
he
king problem, that has been already solved[KV96, KV97a℄.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 78The module-
he
king problem
an be stated in the following manner. Considera plant modelled as a Kripke stru
ture as above and
onsider a formula ' in CTLor CTL?. The idea is now to verify whether the plant (already) satis�es '. Again,we
an
onsider either the plant intera
ting with the universal environment or theplant intera
ting with a rea
tive environment.The model-
he
king problem is to
he
k whether the universal tree generated bythe plant, i.e. the tree (TP ; VP), satis�es the spe
i�
ation '. The module-
he
kingproblem is to
he
k whether all the trees that are obtained by intera
tions with allpossible environments satisfy '. In other words, the problem is to
he
k whetherall environment restri
tions of (TP ; VP) satisfy '. If it does, then we say that Pmodule-
he
ks against '.Now
onsider the problem of
ontrol-synthesis against the universal environment.The problem is to �nd whether there is a system restri
tion of the tree (TP ; VP) thatsatis�es '. But this problem is the same as the module-
he
king problem, if weinter
hange the system and environment states, and negate the formula:Proposition 5.2 Let P = hAP;Ws;We; R; wo; Li be a plant and ' be a formulain CTL?. Let P 0 = hAP;W 0s;W 0e; R; w0; Li be a new plant where W 0s = We andW 0e = Ws. Then there is a
ontroller for (P; ') against the universal environmenti� P 0 does not module-
he
k against :'.Proof A system restri
tion of (TP ; VP) is an environment restri
tion of (TP 0 ; VP 0).Hen
e, there is a system restri
tion of (TP ; VP) that satis�es ' i� there is an envi-ronment restri
tion of (TP 0; VP 0) that satis�es ', i.e. i� it is not the
ase that allenvironment restri
tions of (TP 0; VP 0) satisfy :'. 2Kupferman and Vardi have shown in [KV96℄ that the
omplexity of the module-
he
king problems for CTL and CTL? are EXPTIME
omplete and 2-EXPTIME
om-plete, respe
tively. Due to this we have:Theorem 5.1 ([KV99a℄)1. The problems of realizability and
ontrol-synthesis for CTL against the univer-sal environment are EXPTIME
omplete.2. The problems of realizability and
ontrol-synthesis for CTL? against the uni-versal environment are 2-EXPTIME
omplete.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 79Proof The upper bounds as well as the lower bounds for
ontrol-synthesis followfrom the proposition above and Lemma 5.1. The lower bound for realizability fol-lows from [KV99a℄. 2The pro
edures used in [KV96℄ also employ automata-theoreti
 te
hniques and itis easy to see that their te
hnique
an, when module-
he
king fails, produ
e a regulartree (represented as a �nite transition system) whi
h is an environment restri
tionthat doesn't satisfy the spe
i�
ation. When one starts with a
ontrol-synthesisproblem with a plant P and spe
i�
ation ' and redu
es it to module-
he
king asabove, this tree is a system-restri
tion of (TP ; VP) that satis�es '. Hen
e it gives a�nite-state
ontroller for P that meets the spe
i�
ation. The sizes of the
ontrollers
an also be seen to be bounded by the time-bounds of the module-
he
king pro
edure(exponential for CTL formulas and double exponential for CTL? formulas).5.3 Rea
tive environments: Upper boundsIn view of the notion of module-
he
king mentioned above, the
ontrol-synthesisproblem for rea
tive environments is the problem of
he
king if the plant
an be
ontrolled so that it module-
he
ks against the spe
i�
ation. Before we show thatthe
ontrol-synthesis problems for rea
tive environments are de
idable, let us �rstre
all the following well-known
onne
tions relating bran
hing temporal logi
s andtree automata:Theorem 5.2(1) [VW86a℄ Given a CTL formula ' over AP and a set �, we
an
onstru
t anondeterministi
 B�u
hi tree automaton A�;' with 2O(j'j) states that a

eptsexa
tly the set of 2AP -labeled �-trees that satisfy '.(2) [EJ88, Saf88, Tho97℄ Given a CTL? formula ' over AP and a set �, one
an
onstru
t a nondeterministi
 parity tree automaton A�;' with 22O(j'j) states and2O(j'j)
olours that a

epts exa
tly the set of 2AP -labeled �-trees that satisfy '.The �rst part of the above theorem follows from [VW86a℄. For the se
ond part,in [EJ88℄ it was shown how to
onstru
t, given a CTL? formula ', a nondeterministi
Rabin tree automaton A�;' with 22O(j'j) states and 2O(j'j) Rabin pairs that a

epts

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 80exa
tly the set of 2AP -labeled �-trees that satisfy '. In this proof, a
ru
ial stepis to use the fa
t that one
an
onvert any nondeterministi
 automata on in�nitewords to a deterministi
 automaton on in�nite words with the Rabin a

eptan
e
ondition, shown in [Saf88℄. In [Tho97℄ it is shown that one
an in fa
t build aparity automaton on in�nite words, instead of a Rabin automaton. In
orporatingthis, we
an use parity automata instead of Rabin automata in the proof of [EJ88℄and build, for a given formula ' 2 CTL?, a nondeterministi
 parity tree automatonA�;' with 22O(j'j) states and 2O(j'j)
olours that a

epts exa
tly the set of 2AP -labeled�-trees that satisfy '.The de
ision pro
edureRe
all that in the
ontrol problem for rea
tive environments we are given a plantP = hAP;Ws;We; R; w0; Li and a CTL (or CTL?) formula ' over AP , and we haveto de
ide whether there is a strategy g for the system so that all the g-respe
tingexe
utions of P satisfy '.Re
all that a strategy g for the system assigns to ea
h v 2 T sP a nonempty subsetof su

(v). We
an asso
iate with g a f?;>; dg-labeled W -tree (TP ; Vg), where forevery v 2 TP , the following hold:� If v 2 T sP , then the
hildren of v that are members of g(v) are labeled by >,and the
hildren of v that are not members of g(v) are labeled by ?.� If v 2 T eP , then all the
hildren of v are labeled by d.Intuitively, nodes v:
 are labeled by > if g enables the transitions from dir(v) to
(given that the exe
ution so far has traversed v), they are labeled by ? if g disablesthe transition from dir(v) to
, and they are labeled by d if dir(v) is an environmentstate, where the system has no
ontrol about the transition from dir(v) to
 beingenabled. We
all the tree (TP ; Vg) the strategy tree of g.Note that not every f?;>; dg-labeled W -tree (TP ; V) is a strategy tree. Indeed,in order to be a strategy tree, V should label all the su

essors of nodes
orre-sponding to environment states by d, and it should label all the su

essors of nodes
orresponding to system states by either > or ?, with at least one su

essor be-ing labeled by >. Let us �x the
onvention that the root is always labelled by >.Formally, we have the following.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 81Theorem 5.3 Given a plant P with state-spa
e W , there is a nondeterministi
B�u
hi automaton Astra over f?;>; dg-labeledW -trees, su
h that Astra has jW j statesand a

epts exa
tly the strategy trees of P .Proof Let P = hAP;Ws;We; R; w0; Li and W = Ws [We. For w 2 Ws, let Gwdenote the set of all fun
tions g : su

(w)! f>;?g su
h that there is at least onew0 2 su

(w) whi
h is mapped by g to >. Gw denotes the possible moves the system
an make at the state w.Consider the nondeterministi
 B�u
hi tree automaton on �-labelledW -trees (where� = f>;?; dg): Astra = (�; Q; Æ; Q0;F) where Q = W � �, Q0 = f(w0;>)g and Æis de�ned as:� For every (w;m) 2 Q, m 2 � and X � W where X 6= su

(w), Æ(q;m;X) = ;.i.e. Astra a

epts only trees that are labellings of the unwinding of the plant| it reje
ts all other W -trees.� For every w 2 W , m;m0 2 � where m 6= m0, Æ((w;m); m0; su

(w)) = ;, i.e.at a state (w;m), A is expe
ting to see a node labelled m | if it does not seem, it reje
ts the tree.� For every w 2 Ws, m 2 f>;?; dg, Æ((w;m); m; su

(w)) = f g0 j 9g 2Gw; su
h that for every w0 2 su

(w); g0(w0) = (w0; g(w0)) g� For every w 2 We, m 2 f>;?; dg, Æ((w;m); m; su

(w)) = fgdg where gd :su

(w)! Q is the fun
tion that maps every w0 2 su

(w) to (w0; d).The a

eptan
e
ondition F is trivial | F = Q. Hen
e a tree is a

epted ifthere is a run of the automaton on it. It is easy to
he
k that the automaton a
-
epts exa
tly the set of all strategy trees. 2Our algorithm pro
eeds as follows. Given a formula ', we
onstru
t a treeautomaton A su
h that A a

epts a strategy tree (TP ; Vg) i� there is a g-respe
tingexe
ution of P that does not satisfy '. Then, there is a
ontroller for (P; ') againstrea
tive environments i� the automaton A is not universal with respe
t to strategytrees (that is, the language of Astra is not
ontained in that of A). Indeed, a strategytree that is not a

epted by A is indu
ed by a strategy g all of whose g-respe
tingexe
utions satisfy '.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 82Theorem 5.4 Given a plant P with state spa
e W and a bran
hing-time formula', we
an
onstru
t a nondeterministi
 tree automaton A over f?;>; dg-labeledW -trees su
h that the following hold:1. A a

epts a strategy tree (TP ; Vg) i� there is a g-respe
ting exe
ution of P thatdoes not satisfy '.2. If ' is a CTL formula, then A is a B�u
hi automaton with jW j � 2O(') states.3. If ' is a CTL? formula, then A is a parity automaton with jW j � 22O(j'j) statesand 2O(j'j)
olours.Proof Let P = hAP;Ws;We; R; w0; Li, and let AW;:' = h2AP ; Q; Æ; Q0;Fi be theautomaton that a

epts exa
tly all 2AP -labeledW -trees that satisfy :', as des
ribedin Theorem 5.2. Let W =Ws [We. We de�ne A = h�; Q0; Æ0; Q00;F 0i as follows.� � = f?;>; dg� Q0 = (W �Q�f>;?g)[fqa

g. The state qa

 is an a

epting sink. Considera state (w; q;m) 2 W � Q � f>;?g. The last
omponent m is the mode ofthe state. When m = >, it means that the transition to the
urrent node isenabled (by either the system or the environment). When m = ?, it meansthat the transition to the
urrent node is disabled.When A is at a state (w; q;>) as it reads a node v, it means that dir(v) = w,and that v has to parti
ipate in the g-respe
ting exe
ution. Hen
e, A
an read> or d, but not ?. If v is indeed labeled by > or d, the automaton A guessesa nonempty subset of su

essors of w. It then moves to states
orrespondingto the su

essors of w and q, with an appropriate update of the mode (> forthe su

essors in the guessed subset and ? for the rest).When A is in a state (w; q;?) and it reads a node v, it means that dir(v) = wand that v does not take part in a g-respe
ting exe
ution. Then, A expe
ts toread ? or d, in whi
h
ase it goes to the a

epting sink.� Q00 = fw0g �Q0 � f>g.� The transition fun
tion Æ0 is de�ned as follows:For all w 2 W , q 2 Q, and X = su

P (w), we have:.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 83{ Æ((w; q;>);?; X) = Æ((w; q;?);>; X) = ;{ If x 2 f?; dg, then Æ0((w; q;?); x;X) = fga

g where ga

 is the fun
tionthat maps ea
h element w0 of X to qa

.{ If x 2 f>; dg, then Æ0((w; q;>); x;X) is de�ned as follows. Let Y � X bea nonempty subset of su

(w). Then, Æ0((w; q;>); x;X)
ontains all thefun
tions g su
h that there is a fun
tion h 2 Æ(q; L(w); Y) in AW;:' su
hthat:� If w0 2 Y , then g maps w0 to (w0; q0;>) where q0 = h(w0)� If w0 62 Y , then g maps w0 to (w0; q;?) (in fa
t, we
an map it to anystate (w0; q1;?) where q1 2 Q.)Intuitively, Æ0 propagates the requirements imposed by Æ(q; L(w); Y) tothe Y -su

essors of w, for every possible
hoi
e of Y .Note that Æ0 is independent of w being a system or an environment state.The type of w is taken into
onsideration only in the de�nition of Astra .For all w 2 W , q 2 Q, m;m0 2 f>;?g and X 6= su

P (w), we de�neÆ0((w; q;m); m0; X) = ;. This ensures that A works only on unwindings ofP . We also de�ne, for every X 0 � W and m 2 f>;?g, Æ0(qa

; m;X 0) = fga

gwhere ga

 is the fun
tion that maps ea
h element of X 0 to qa

.� The �nal states are inherited from the formula automaton. Thus, if ' is in CTL,then F 0 = (W �F�f>;?g)[fqa

g. If ' is in CTL?, let F : Q! f0; : : : ; hg.Then, F 0 : Q0 ! f0; : : : ; hg is su
h that F(qa

) = 0 and for all w 2 W , q 2 Q,and m 2 f?;>g, we have F 0((w; q;m)) = F(q). 2The above automaton hen
e a

epts a strategy tree i� the strategy
orrespondingto it is a losing strategy for the system. There is hen
e a winning strategy for thesystem i� there is a tree a

epted by Astra that is not a

epted by A. So we areleft with the problem of
he
king whether the language of Astra is
ontained in thelanguage of A. Sin
e tree automata are
losed under
omplement [Rab69, Tho97℄,we
an
omplement A, get an automaton ~A, and then
he
k the non-emptiness ofthe interse
tion of Astra with ~A. Hen
e the following theorem.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 84Theorem 5.5 Given a plant P and a formula ' in CTL, the
ontrol problem for 'is in 2-EXPTIME. More pre
isely, it
an be solved in time O(exp(jP j2 � 2O(j'j))). For' in CTL?, the problem is in 3-EXPTIME. More pre
isely, it
an be solved in timeO(exp(jP j2 � 22O(j'j))).1Proof For the
omplexity of this pro
edure, it is easy to see that if ' is in CTL,the automaton A has a state-spa
e size of O(jP j � 2O(j'j)). Though A runs on k-arytrees (where k depends on P), it
an be
omplemented as easily as automata on bi-nary trees | the
omplemented automaton ~A (as well as its interse
tion with Astra)is a parity automaton with O(exp(jP j � 2O(j'j))) states and O(jP j � 2O(j'j))
olours([Tho97℄). Sin
e emptiness of parity tree automata
an be done in time polynomialin the state-spa
e and exponential in the number of
olours [EJ88, PR89a℄, we
an
he
k emptiness of this interse
tion in time O(exp(jP j2 �2O(j'j))). For CTL? spe
i�
a-tions, the analysis is similar ex
ept that the
omplexity
ontributed by the formulain
reases by one exponential. 2By [Rab69℄, if there is indeed a strategy that is winning for the system, thenthe automaton that is the produ
t of Astra and the
omplement of the automaton
onstru
ted in Theorem 5.4 a

epts it and when we test the automaton for emptiness,we
an get a regular tree a

epted by the automaton. This then provides a �nite-memory winning strategy that
an be realized as a �nite state
ontroller for thesystem.5.4 Rea
tive environments: Lower boundsFor two 2AP -labeled trees (T; V) and (T 0; V 0), and a set Q = fq1; : : : ; qkg � AP ,we say that (T; V) and (T 0; V 0) are Q-di�erent if they agree on everything ex
eptpossibly the labels of the propositions in Q. Formally, T = T 0 and for all x 2 T ,we have V (x) n Q = V 0(x) n Q. The logi
 AqCTL? extends CTL? by universalquanti�
ation on atomi
 proposition: if is a CTL? formula and q1; : : : ; qk areatomi
 propositions, then 8q1; : : : ; qk is an AqCTL? formula. The semanti
s of8q1; : : : ; qk is given by S j= 8q1; : : : ; qk i� for all trees (T; V) su
h that (T; V)and the unwinding (TS; VS) of S are fq1; : : : ; qkg-di�erent, (T; V) j= . The logi
s1exp(x) stands for 2O(x)

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 85AqLTL and AqCTL are de�ned similarly as the extensions of LTL and CTL withuniversal quanti�
ation on atomi
 propositions.The following Theorem is taken from [SVW87℄. We des
ribe here the full proof,as our lower-bound proofs are based on it.Theorem 5.6 [SVW87℄ The satis�ability problem for AqLTL is EXPSPACE-hard.Proof We do a redu
tion from the problem of whether an exponential-spa
e de-terministi
 Turing ma
hine T a

epts an input word x. That is, given T and x,we
onstru
t an AqLTL formula 8q' su
h that T a

epts x i� 8q' is satis�able.Below we des
ribe the formula ' informally. The formal des
ription of ' and of thefun
tion next are detailed later.Let T = h�; Q;!; q0; F i, where � is the alphabet, Q is the set of states, !�Q � � � Q � � � fL;Rg is the transition relation (we use (q; a) ! (q0; b;�) toindi
ate that when T is in state q and it reads the input a in the
urrent tape
ell, itmoves to state q0, writes b in the
urrent tape
ell, and its reading head moves one
ell to the left or to the right, a

ording to �), q0 is the initial state, and F � Qis the set of a

epting states. Let n = a � jxj, for some
onstant a, be su
h thatthe working tape of T has 2n
ells. We en
ode a
on�guration of T by a word
1
2 : : : (q;
i) : : :
2n. That is, all the letters in the
on�guration are in �, ex
eptfor one letter in Q � �. The meaning of su
h a
on�guration is that the jth
ell ofT , for 1 � j � 2n, is labeled
j, the reading head points on
ell i, and T is in stateq. For example, the initial
on�guration of T is (q0; x1)x2 � � �xn## � � �, where theinput to T is x = x0x1x2 : : : xn and # stands for the empty
ell. We
an now en
odea
omputation of T by a sequen
e of
on�gurations.Let � = �[(Q��). We
an en
ode letters in � by a set AP (T) = fp1; : : : ; pmg(with m = dlogj�je) of atomi
 propositions). We de�ne our formulas over the setAP = AP (T) [fb;
; d; e; qg of atomi
 propositions. The task of the last �ve atomswill be explained shortly. Sin
e T is �xed, so is �, and hen
e so is the size of AP .Consider an in�nite sequen
e � over 2AP . For an atomi
 proposition p 2 APand a node u in �, we use p(u) to denote the truth value of p at u. That is, p(u)is 1 if p holds at u and is 0 if p does not hold at u. We divide the sequen
e � intoblo
ks of length n. Every su
h blo
k
orresponds to a single tape
ell of the ma
hineT . Consider a blo
k u1; : : : ; un that
orresponds to a
ell �. We use the node u1to en
ode the
ontent of
ell �. Thus, the bit ve
tor p1(u1); : : : ; pm(u1) en
odes the

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 86letter (in �[(Q��)) that
orresponds to
ell �. We use the atomi
 proposition b tomark the beginning of the blo
k; that is, b should hold on u1 and fail on u2; : : : ; un(see C1 below).Re
all that the letter with whi
h
ell � is labeled is en
oded at the node u1 ofthe blo
k u1; : : : ; un that
orresponds to �. Why then do we need a blo
k of lengthn to en
ode a single letter? The reason is that the blo
k also en
odes the lo
ationof the
ell � on the tape. Sin
e T is an exponential-spa
e Turing ma
hine, thislo
ation is a number between 0 and 2n � 1. En
oding the lo
ation eliminates theneed for exponentially many X operators when we attempt to relate two su

essive
on�gurations. En
oding is done by the atomi
 proposition
,
alled the
ounter.Let
(un); : : : ;
(u1) en
ode the lo
ation of �. Note that, for te
hni
al
onvenien
e,the least signi�
ant bit of the
ounter is in u1. A sequen
e of 2n blo
ks
orrespondsto 2n
ells and en
odes a
on�guration of T . The value of the
ounters along thissequen
e goes from 0 to 2n� 1, and then start again from 0. This is enfor
ed by '.Sin
e we want the size of ' to be O(n), we need also an atomi
 proposition d thata
ts as a \
arry" bit (see C2 and C3 below).An atomi
 proposition e marks the last blo
k of a
on�guration, that is, e holdsin a node u1 of a blo
k u1; : : : ; un i�
 holds on all nodes in the blo
k (see C4).Let �1 : : : �2n ; �01 : : : �02n be two su

essive
on�gurations of T . For ea
h tripleh�i�1; �i; �i+1i with 1 � i � 2n (taking �2n+1 to be �01 and �0 to be the label of thelast letter in the
on�guration before �1 : : : �2n , or some spe
ial label when �1 : : : �2nis the initial
on�guration), we know, by the deterministi
 transition relation of T ,what �0i should be. Let next(h�i�1; �i; �i+1i) denote our expe
tation for �0i. Theformal de�nition of next is detailed later.Consisten
y with next gives us a ne
essary
ondition for a word to en
ode alegal
omputation. In addition, the
omputation should start with the initial
on-�guration. Finally, if the
omputation ends with an a

epting
on�guration (thatis, one with (q;
i) with q 2 F), then T a

epts x. It is easy to spe
ify in LTL therequirements about the initial and a

epting
on�gurations. For a letter � 2 �, let�(�) be the propositional formula over AP that en
odes �. That is, �(�) holds innode u1 of a blo
k that en
odes
ell � i� the
ell � is labeled �. Then, '
ontains
onjun
ts (see C5 and C6) that require the
omputation to start with the initial
on�guration and to eventually rea
h an a

epting
on�guration.The diÆ
ult part in the redu
tion is in guaranteeing that the sequen
e of
on�g-

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 87urations is indeed
onsistent with next. To enfor
e this, we have to relate �i�1; �i,and �i+1 with �0i for any i in any two su

essive
on�gurations �1 : : : �2n ; �01 : : : �02n .One natural way to do so is by a
onjun
tion of formulas like \whenever we meeta
ell with
ounter i � 1 and the labeling of the next three
ells forms the tripleh�i�1; �i; �i+1i, then the next time we meet a
ell with
ounter i, this
ell is labelednext(h�i�1; �i; �i+1i)". The problem is that as i
an take any value from 1 to 2n,there are exponentially many su
h
onjun
ts. This is where the universal quanti�-
ation of the AqLTL
omes into the pi
ture. It enables us to relate h�i�1; �i; �i+1iwith �0i, for all i.To understand how this is done,
onsider the atomi
 proposition q, and assumethat the following hold. (1) q is true at pre
isely two points, both are points inwhi
h a blo
k starts, (2) there is exa
tly one point between them in whi
h e holds(or possibly that in exa
tly both of them, and not in between, e holds) | thus, thetwo points are in su

essive
on�gurations, and (3) the value of the
ounter at theblo
ks starting at the two points is the same. Then, it should be true that (4) ifthe labels of the three blo
ks starting one blo
k before the �rst q are �i�1, �i, and�i+1, then the blo
k starting at the se
ond q is labeled by next(�i�1; �i; �i+1).Using b;
, and e, we
an easily express (1){(4) with formulas of length polyno-mial in n (see the formal de�nition of (1){(4) below). Re
all that as the set � is�xed, s
anning all the possible labels of a
ell
an be done with a formula of a �xedlength. Also note that for expressing (3), we need to
ompare the value of the two
ounters bit by bit (see de�nition of (3) below).The formula '
ontains the
onjun
t (C7) = ((1) ^ (2) ^ (3))) (4). Sin
e the
ondition (4) is
he
ked in 8q' for all the assignments to q that satisfy (1)^(2)^(3),it follows that ' is satis�ed only in
omputations
onsistent with next. Hen
e, 8q'is satis�able i� there is an a

epting
omputation of T on x.The formulas des
ribed above are formally de�ned as follows:C1. b should hold on u1 and fail on u2; : : : ; un:b ^ X(:b ^ X(:b ^ � � � ^ X:b) � � �) ^ G(b$ Xnb)C2. The
ounter starts at 0::
 ^ X(:
 ^ X(:
 : : : ^ X:
) � � �)

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 88C3. The
ounter is in
reased properly. Note that as we always want to in
rease itby 1 we take b as a
arry for the least signi�
ant bit.� G(((b _ d) ^ :
)! (X(:d) ^ Xn
)).� G((:(b _ d) ^ :
)! (X(:d) ^ Xn:
)).� G(((b _ d) ^
)! (Xd ^ Xn:
)).� G((:(b _ d) ^
)! ((X:d) ^ Xn
)).C4. e holds in a node u1 of a blo
k with
ounter 1n:G(e$ (b ^
 ^ X(
 ^ X(
 ^ X(
 � � �))):C5. The
omputation starts with the initial
on�guration:�(q0; x1) ^Xn(�(x2) � � � ^ Xn(�(xn) ^ Xn(�(#) ^ [(�(#)! Xn�(#))U(�(#) ^ e)℄)) � � �)):C6. The
omputation rea
hes an a

epting
on�guration:F(b ^ _q2F;
2� �(q;
)):C7. The formula ((1) ^ (2) ^ (3))) (4)) where:(1) q is true at pre
isely two points, both are points in whi
h a blo
k starts:(:q)U(b ^ q ^ X((:q)U(b ^ q ^ XG:q)))(2) There is exa
tly one point between them in whi
h e holds or e holds atboth points but not in any point in between them:(:q)U(q ^ ((:e)U(e ^ X((:e)Uq)))):(3) The value of the
ounter at the blo
ks starting at the two points is thesame: (:q)Uq ^ [(
! XF(q ^
)) ^ ((:
)! XF(q ^ (:
)))^X((
! F(q ^ X
)) ^ ((:
)! F(q ^ X(:
)))^X((
! F(q ^ XX
)) ^ ((:
)! F(q ^ XX(:
)))^...X((
! F(q ^ Xn�1
)) ^ ((:
)! F(q ^ Xn�1(:
)))) � � �))℄:

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 89(4) If the labels of the three blo
ks starting one blo
k before the �rst q are�i�1, �i, and �i+1, then the blo
k starting at the se
ond q is labeled bynext(�i�1; �i; �i+1):_�1;�2;�32�(:q) U (�(�1)^Xn(q^�(�2)^Xn(�(�3)^F(q^�(next(�1; �2; �3)))))):The fun
tion next is de�ned as follows: next(h�i�1; �i; �i+1i) denotes our expe
tationfor �0i. It is de�ned as: 2.� next(h
i�1;
i;
i+1i) =
i.� next(h(q;
i�1);
i;
i+1i) = (
i If (q;
i�1)! (q0;
0i�1; L).(q0;
i) If (q;
i�1)! (q0;
0i�1; R).� next(h
i�1; (q;
i);
i+1i) =
0i where (q;
i)! (q0;
0i;�).� next(h
i�1;
i; (q;
i+1)i) = (
i If (q;
i+1)! (q0;
0i+1; R).(q0;
i) If (q;
i+1)! (q0;
0i+1; L). 2We now show that AqCTL is also strong enough to des
ribe an exponential-spa
eTuring ma
hine with a formula of polynomial length. Moreover, sin
e CTL has bothuniversal and existential path quanti�
ation, AqCTL
an des
ribe an alternatingexponential-spa
e Turing ma
hine [CKS81℄, implying a 2-EXPTIME lower bound forits satis�ability problem.Theorem 5.7 The satis�ability problem for AqCTL is 2-EXPTIME-hard.Proof We do a redu
tion from the problem whether an exponential-spa
e alternat-ing Turing ma
hine T a

epts an input word x. That is, given T and x, we
onstru
tan AqCTL formula 8q su
h that T a

epts x i� 8q is satis�able.Let T = h�; Qu; Qe; 7!; q0; F i, where the sets Qu and Qe of states are disjoint,and
ontain the universal and the existential states, respe
tively. We denote theirunion (the set of all states) by Q. Our model of alternation pres
ribes that 7! �Q � � � Q � � � fL;Rg has a binary bran
hing degree. When a universal or an2We assume that T 's head does not \fall o�" from the right or the left boundaries of thetape. Thus, the
ase where i = 1 and (q;
i) ! (q0;
0i; L) and the dual
ase where i = 2n and(q;
i)! (q0;
0i; R) are not possible.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 90existential state of T bran
hes into two states, we distinguish between the left andthe right bran
hes. A

ordingly, we use (q; a) 7! h(ql; bl;�l); (qr; br;�r)i to indi
atethat when T is in state q 2 Qu [Qe reading input symbol a, it bran
hes to the leftwith (ql; bl;�l) and to the right with (qr; br;�r). (Note that the dire
tions left andright here have nothing to do with the dire
tion of movement of the head; those aredetermined by �l and �r.)For a
on�guration
 of T , let su

l(
) and su

r(
) be the su

essors of
 whenapplying to it the left and right
hoi
es in 7!, respe
tively. Given an input x, a
omputation tree of T on x is a tree in whi
h ea
h node
orresponds to a
on�gu-ration of T . The root of the tree
orresponds to the initial
on�guration. A nodethat
orresponds to a universal
on�guration
 has two su

essors,
orrespondingto su

l(
) and su

r(
). A node that
orresponds to an existential
on�guration
has a single su

essor,
orresponding to either su

l(
) or su

r(
). The tree is ana

epting
omputation tree if all its bran
hes rea
h an a

epting
on�guration.An a

epting tree (i.e. a tree labelled with
on�gurations)
an be en
oded as atree where ea
h node in the a

epting tree is blown up into a path where the labelson the path en
ode the
on�guration
orresponding to the node. The formula will des
ribe su
h en
odings of a

epting trees. As in the linear
ase, we en
ode a
on�guration of T by a sequen
e
1
2 : : : (q;
i) : : :
2n, and we use a blo
k of lengthn to des
ribe ea
h letter �i 2 � [(Q � �) in the sequen
e. The
onstru
tion of is similar to the
onstru
tion des
ribed for ' in the linear
ase. For an LTLformula �, let �A be the CTL formula obtained from � by pre
eding ea
h temporaloperator by the path quanti�er A. For example, (G(p ! Fq))A = AG(p ! AFq),and (GFp)A = AGAFp. As in the linear
ase, the atomi
 propositions
 and d areused to
ount, b is used to mark the beginning of blo
ks, and e is used to mark thelast letter in a
on�guration. Note that the
onjun
ts � in ' that impose the desiredbehavior of b;
; d, and e are su
h that �A impose the desired behavior of b;
; d ande in the bran
hing
ase. Also, the
onjun
ts � used in ' in order to
he
k that the�rst
on�guration is the initial one and that the
omputation is a

epting are su
hthat �A do the same for the bran
hing
ase. Our formula has all these
onjun
ts.The diÆ
ult part is to
he
k that the su

l and su

r relations are maintained.For that, we add two atomi
 propositions, eE and eU , that re�ne the proposition eand indi
ate whether the
on�guration just ended has been existential or universal.Also, eE and eU will
ontinue to hold till the end of the blo
k representing the last

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 91
ell of the
on�guration. Formally,
ontains the
onjun
ts� AG(e! (A(eU UEXb) _ A(eE UEXb))) ^ AG(:(eU ^ eE)),� AG(Vq2Qe;
2�(�(q;
)! A(:e)U(e ^ eE))), and� AG(Vq2Qu;
2�(�(q;
)! A(:e)U(e ^ eU))).In addition, we use an atomi
 proposition l to indi
ate whether the nodes belong toa left or a right su

essor. For
larity, we denote :l by r. Formally,
ontains the
onjun
t AG(l ! (AlUe)) ^ AG(r ! (ArUe)):Sin
e a universal
on�guration
 has both su

l(
) and su

r(
) as su

essors, andan existential
 has only one of them, also
ontains the
onjun
tAG((eE ^ EXb)! (EXl _ EXr)) ^ AG((eU ^ EXb)! (EXl ^ EXr))We
an now use universal quanti�
ation over atomi
 propositions in order to
he
k
onsisten
y with su

l and su

r. Note that su

l(
) and su

r(
) are uniquelyde�ned. Thus, we
an de�ne fun
tions, nextl and nextr, analogous to fun
tion nextof the linear
ase. Given a sequen
e h�i�1; �i; �i+1i of letters in
, the fun
tionnextl(h�i�1; �i; �i+1i) denotes the expe
tation for the i'th letter in su

l(
). Wedenote this letter by �li, and similarly for nextr and �ri .In the linear
ase, we
onsidered assignments to q in whi
h q holds at exa
tly twopoints in the
omputation. Here, we look at assignments where q holds at exa
tlytwo points in ea
h bran
h. The �rst point is a node where a blo
k of �i starts, andthe se
ond point is a node where a blo
k of �li or �ri starts (note that an assignmentto q may
he
k
onsisten
y with su

 along di�erent bran
hes)3Consider the atomi
 proposition q, and assume that the following hold: (1) qis labeled as des
ribed above (in parti
ular, in ea
h bran
h of the tree, q is true atpre
isely two nodes, both are nodes in whi
h a blo
k starts), (2) in every bran
hwith two o

urren
es of q, there is exa
tly one node between them in whi
h e holds(thus, the two nodes are in su

essive
on�gurations), and (3) the value of the
ounter at the blo
ks starting at the two points is the same. Then, it should be true3It is
onvenient to think of a satisfying tree for as a tree that has bran
hing degree 1everywhere ex
ept for nodes that are labeled by eU and have a su

essor labelled b, where thebran
hing degree is 2. Our redu
tion, however, makes no assumption about su
h a stru
ture.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 92that (4) if the labels of the three blo
ks starting one blo
k before the �rst q are�i�1, �i, and �i+1, then the blo
ks starting at the se
ond q are either left bran
hesin whi
h
ase they are labeled by nextl(�i�1; �i; �i+1), or they are right bran
hes, inwhi
h
ase they are labeled by nextr(�i�1; �i; �i+1). Hen
e,
ontains the
onjun
t((1) ^ (2) ^ (3))! (4), where (1){(4) are des
ribed formally below. Sin
e in 8q ,the
ondition (4) is
he
ked for all the assignments to q that satisfy (1)^ (2) ^ (3),it follows that is satis�ed only in a
omputation tree
onsistent with su

l andsu

r. Hen
e, 8q is satis�able i� there is an a

epting
omputation tree of T on x.The formulas (1){(4) are formally de�ned as:(1) q is labeled as des
ribed above:A(:q)U(b ^ q ^ AXA((:q)U(b ^ q ^ AXAG:q))):(2) In every bran
h with two o

urren
es of q, there is exa
tly one node betweenthem in whi
h e holds (thus, the two nodes are in su

essive
on�gurations):A(:q)U(q ^ A((:e)U(e ^ AXA((:e)Uq)))):(3) The value of the
ounter at the blo
ks starting at the two points is the same:A(:q)Uq ^ [(
! AXAF (q ^
)) ^ ((:
)! AXAF (q ^ (:
)))^AX((
! AF (q ^ AX
)) ^ ((:
)! AF (q ^ AX(:
)))^AX((
! AF (q ^ AXAX
)) ^ ((:
)! AF (q ^ AXAX(:
)))^...AX((
! AF (q ^ (AX)n�1
)) ^ ((:
)! AF (q ^ (AX)n�1(:
)))) � � �))℄:(4) If the labels of the three blo
ks starting one blo
k before the �rst q are �i�1, �i,and �i+1, then the blo
ks starting at the se
ond q are either left bran
hes inwhi
h
ase they are labeled by nextl(�i�1; �i; �i+1), or they are right bran
hes,in whi
h
ase they are labeled by nextr(�i�1; �i; �i+1):A(:q)U(W�1;�2;�32�(�(�1) ^ (AX)n(q ^ �(�2) ^ (AX)n(�(�3)^AF [(q ^ l ^ �(nextl(�1; �2; �3))) _ (q ^ r ^ �(nextr(�1; �2; �3)))℄))): 2

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 93The satis�ability problem for CTL? is exponentially harder than the one for CTL.We now show that this
omputational di�eren
e is preserved when we look at theextensions of these logi
s with universal quanti�
ation over atomi
 propositions. Afull exposition of the details for the lower bound below will detra
t us from the maintheme of the thesis. Hen
e we omit details and present only a gist of the proof.Theorem 5.8 The satis�ability problem for AqCTL? is 3-EXPTIME-hard.Proof We do a redu
tion from the problem whether a doubly-exponential-spa
ealternating Turing ma
hine T a

epts an input word x. That is, given T and x, we
onstru
t an AqCTL? formula 8q su
h that T a

epts x i� is satis�able.In [VS85℄, the satis�ability problem of CTL? is proved to be 2-EXPTIME-hardby a redu
tion from an exponential-spa
e alternating Turing ma
hine. Below weexplain how universal quanti�
ation
an be used to \stret
h" the length of the tapethat a polynomial CTL? formula
an des
ribe by another exponential. As in theproof of Theorem 5.6, the formula in [VS85℄ maintains an n-bit
ounter, and ea
h
ell of T 's tape
orresponds to a blo
k of length n.In order to point on the letters �i and �0i simultaneously (that is, the letters thatthe atomi
 proposition q point on in the proof of Theorem 5.6), [VS85℄ adds to ea
hnode of the tree a bran
h su
h that nodes that belong to the original tree are labeledby some atomi
 proposition p, and nodes that belong to the added bran
hes are notlabeled by p. Every path in the tree has a single lo
ation where the atom p stopsbeing true. [VS85℄ uses this lo
ation in order to point on �0 and in order to
omparethe values of the n-bit
ounter in the
urrent point (where � is lo
ated) and in thepoint in the
omputation where p stops being true.On top of the method in [VS85℄, we use the universal quanti�
ation in order tomaintain a 2n-bit
ounter and thus
ount to 22n. Typi
ally, ea
h bit of our 2n-bit
ounter is kept in a blo
k of length n, whi
h maintains the index of the bit (a numberbetween 0 to 2n � 1). For example, when n = 3, the
ounter looks as follows.

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 94000 001 010 011 100 101 110 111 n-bit
ounter0 0 0 0 0 0 0 0 2n-bit
ounter000 001 010 011 100 101 110 1110 0 0 0 0 0 0 1000 001 010 011 100 101 110 1110 0 0 0 0 0 1 0000 001 010 011 100 101 110 1110 0 0 0 0 0 1 1...To
he
k that the 2n-bit
ounter pro
eeds properly, we use a universally quanti-�ed proposition q and we
he
k that if q holds at exa
tly two points (say, last pointsin a blo
k of the n-bit
ounter), with the same value to the n-bit
ounter, and withonly one blo
k between them in whi
h the n-bit
ounter has value 1n, then the bitof the 2n-bit
ounter that is maintained at the blo
k of the se
ond q is updatedproperly (we also need to relate and update
arry bits, but the idea is the same).2Note that the number of atomi
 propositions in in the proofs of both Theo-rems 5.7 and 5.8 is �xed. Note also that if is satis�able, then it is also satis�edin a tree of a �xed bran
hing degree (a
areful analysis
an show that for CTL thesuÆ
ient bran
hing degree is 2, and for CTL? it is 3).The logi
 EAqCTL? extends AqCTL? by adding existential quanti�
ation onatomi
 propositions: if 8q1; : : : ; qk is an AqCTL? formula and p1; : : : ; pm are atomi
propositions, then 9p1; : : : ; pm8q1; : : : ; qk is an EAqCTL? formula. The semanti
sof 9p1; : : : ; pm8q1; : : : ; qk is given by S j= 9p1; : : : ; pm8q1; : : : ; qk i� there is atree (T; V) su
h that (TS; VS) and (T; V) are fp1; : : : ; pmg-di�erent and (T; V) j=8q1; : : : ; qk . The logi
 EAqCTL is the subset of EAqCTL?
orresponding to CTL.For n � 1, let [n℄ = f1; : : : ; ng, and let Sn = h;; [n℄; [n℄� [n℄; 1; Li be the stru
turewhose transition relation is the n-state
lique (note that sin
e Sn has no atomi
propositions, its labeling fun
tion L is redundant). For an AqCTL? formula , letwidth() be the suÆ
ient bran
hing degree for ; that is, width() is su
h that ifthere is some tree that satis�es , then there is also a tree with bran
hing degreewidth() that satis�es . Re
all that the semanti
s of EAqCTL? formulas is de-�ned with respe
t to the unwinding (TS; VS), for stru
tures S. Hen
e, as detailed

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 95in [Kup97℄, the satis�ability problem for the AqCTL? formula 8q1; : : : ; qk
an be re-du
ed to the model-
he
king problem of the EAqCTL? formula 9p1; : : : ; pm8q1; : : : ; qk in Swidth(). Sin
e the formulas used in the proof of Theorems 5.7 and 5.8 have �xedwidths, the following Theorem follows immediately from Theorems 5.7 and 5.8.Theorem 5.9 The model-
he
king problems for EAqCTL and EAqCTL? are2-EXPTIME-hard and 3-EXPTIME-hard in the size of the spe
i�
ation, respe
tively.2Intuitively, the model-
he
king problem for EAqCTL? asks whether we
an �ndan assignment to the propositions that are existentially quanti�ed so that no matterhow we assign values to the propositions that are universally quanti�ed, the formulais satis�ed. Re
all that in the
ontrol problem we ask a similar question, namelywhether we
an �nd a strategy for the system so that no matter whi
h strategythe environment uses, the formula is satis�ed. In the theorem below we make therelation between existential and universal quanti�
ation over atomi
 propositionsand supervisory
ontrol formal. The relation is similar to the relation betweenexistential quanti�
ation and the module-
he
king problem, as des
ribed in [KV96℄.Theorem 5.10 Given a stru
ture S and an EAqCTL? (or EAqCTL) formula9p1; : : : ; pm8q1; : : : ; qk , there is a plant P and a CTL? formula (resp. CTL for-mula) 0 su
h that jP j = O((1 + k + m) � jSj), j 0j = O(jSj + j j), and S j=9p1; : : : ; pm8q1; : : : ; qk i� there is a
ontroller for (P; 0) against rea
tive environ-ments.Proof For te
hni
al
onvenien
e, let us �rst assume that a plant has a third typeof states, Wn, whi
h belong to neither the system nor the environment (that is,all the su

essors of states in Wn are always taken). Let E = fp1; : : : ; pmg andU = fq1; : : : ; qkg be the sets of existentially and universally quanti�ed propositions,and let S = hAP;W;R;w0; Li.We de�ne P = hAP [fyes; dummyg;Wn;Ws;We; R0; w0; L0i, where� Wn =W [fqyes; qnog.� Ws = W � E.� We = W � U .

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 96� R0 = R[fhw; hw; rii : w 2 W and r 2 E[Ug[((W �(E[U))�fqyes; qnog)[fhqyes; qyesi; hqno; qnoig.� For all w 2 W and r 2 E [U , we have L0(w) = L(w) n (E [U), L0(hw; ri) =fr; dummyg, L0(qyes) = fyesg, and L0(qno) = ;.That is, the plant P
ontains the stru
ture S. Ea
h state w in S is dupli
atedk + m times. Ea
h
opy of w is asso
iated with a quanti�ed proposition. Statesasso
iated with existentially quanti�ed propositions are system states. States asso-
iated with universally quanti�ed propositions are environment states. Ea
h dupli-
ated state is labeled by the proposition it
orresponds to and by a new propositiondummy. In addition, there are two states qyes and qno that all the dupli
ated statesgo to. The new atomi
 proposition yes is true in qyes.We de�ne 0 in two steps. First, path quanti�
ation in 0 should be restri
tedto
omputations of S. That is, to paths that never meet a dupli
ated state. Todo this, we use a fun
tion f : CTL? formulas ! CTL? formulas that restri
ts pathquanti�
ation to paths that never visit a state labeled with dummy. For example,f(EqU(AFp)) = E((G:dummy) ^ (qU(A((Fdummy) _ Fq)))). The full de�nition off and a proof that when is a CTL formula, there is also a CTL formula equiv-alent to f(),
an be found in [KG96, KV96℄. We
an now de�ne 0 as f()with EX(r ^ EXyes) repla
ing ea
h o

urren
e of a quanti�ed proposition r. So,if r is existentially quanti�ed, the system
hooses whether it holds or not (by en-abling/disabling the transition from the state hw; ri to the state qyes), and duallyfor universal quanti�
ation. Note that we �rst apply f and only then do the re-pla
ement. The length of the formula 0 is linear in the length of .Finally, we remove the assumption about a plant having a third type of states byadding to 0 a
onjun
t that disables the pruning of transitions from Wn. Formally,this is done by addingW to AP , and having formulas like AG(w1 ! (EXw2^EXw3))that des
ribe R. This is why the length of 0 is O(j j+ jP j). 2Sin
e the number of atomi
 propositions in the formulas used in the redu
tionsin Theorems 5.7 and 5.8 is �xed, and sin
e in the
ase P is �xed the size of 0 inTheorem 5.10 is O(j j), we
an
on
lude with the following.Theorem 5.11 The supervisory
ontrol problems for CTL and CTL? are 2-EXPTIME-hard and 3-EXPTIME-hard in the size of the spe
i�
ation, respe
tively. 2

Chapter 5: Synthesis and
ontrol for bran
hing-time logi
s 975.5 Con
lusionsOur results shed additional light on the dis
ussion regarding the relative meritsof linear versus bran
hing temporal logi
s,
f. [Lam80, Pnu85℄. We mainly referhere to the linear temporal logi
 LTL and the bran
hing temporal logi
 CTL. Oneof the beliefs dominating this dis
ussion has been \while spe
ifying is easier inLTL, model
he
king is easier for CTL". As is argued in [KV96, KV97a, KV99b℄,the
omputational advantage of CTL over LTL (
f. [CGP99℄), disappears on
e one
onsiders rea
tive environments. Our results here show that the same phenomenono

urs in the
ontext of the synthesis problem and the
ontrol problem: on
e one
onsiders rea
tive environments, the problems for LTL and CTL are equally hard(2-EXPTIME
omplete).Note that for LTL, the environment being rea
tive or universal makes no di�er-en
e: if a
ontroller meets the spe
i�
ation in a universal environment, then it meetsthe spe
i�
ation for all possible environments. This is be
ause the set of paths gener-ated when playing against the universal environment subsumes the paths generatedwhen playing against any environment.In a setting with in
omplete information, the system (resp., the environment)may not be able to observe all the signals generated by the environment (resp., thesystem), so a strategy needs to depend only on the observed signals. The e�e
t thatin
omplete information has on the
omplexity of the synthesis and
ontrol problems
an vary dramati
ally, from having no impa
t [KV97b℄ to
ausing unde
idability[PR90℄. An interesting question that deserves further study is whether one
anhandle in
omplete information in our setting within the same
omplexity bounds.

Chapter 6
Distributed Control

They roused him with muÆns{they roused him with i
e{They roused him with mustard and
ress{They roused him with jam and judi
ious advi
e{They set him
onundrums to guess.| The Hunting of the Snark, Lewis Caroll
6.1 Introdu
tionThe aim of the previous
hapters has been the study of the automati
 design of
ontrollers for various bran
hing-time spe
i�
ation me
hanisms. In all the problems
onsidered so far (ex
ept that of Chapter 3), we have assumed that the
ontrolleris
entralized and
an observe every move of the plant. In many settings, however,the
ontrol problem arises in a distributed setting, where there are many programs,distributed a
ross a network, that intera
t with di�erent environments and havesome
apability to
ommuni
ate with ea
h other. In these settings, the
ontrollerswe look for have to respe
t the distributed nature of the system. We need to build
ontrollers at the various sites and these
ontrollers may not have
omplete infor-mation about the evolution of the plant at the other sites. In this
hapter, we study98

Chapter 6: Distributed Control 99a version of the distributed
ontrol-synthesis problem for a set of programs thatbehave syn
hronously and
ommuni
ate using messages.Let us say that we have a plant that has k pro
esses, P1; P2; : : : ; Pk, that intera
twith their lo
al environments and
an
ommuni
ate with ea
h other in some �xedmanner. The
ontrol problem in this setting is to
ome up with
ontrollers C1; : : : ; Ckfor the programs su
h that Ci is a
ontroller for Pi, for ea
h i. The importantpoint is that a lo
al
ontroller Ci may not have
omplete information of the inputsfed to the other programs by their lo
al environments, and hen
e will not knowthe exa
t states the other programs are in. However, it is not the
ase that thepro
esses are
ompletely ignorant of ea
h other's
on�gurations | they
an passinformation along the �xed
ommuni
ation
hannels between them. These
hannelsmay not be able to
onvey the entire state-evolution of a program at a site to anothersite. However, there is some partial information ex
hange that is possible. Theproblem is to
ome up with
ontrollers that will
ontrol the plant and the messagessent, so that the programs
an ex
hange enough information to behave in a wayso that the spe
i�
ation is met. (We are not �xing many details, like the mode of
ommuni
ation, spe
i�
ation language, et
. | but these remarks are independentof these details.)There are two ad-ho
 ways in whi
h we
an (partially) solve the distributed-synthesis problem. One of them was brie
y outlined in Chapter 4. Note that thesystem
an be viewed as a set of k players playing a game against an environment.The distributed
ontroller we are looking for is a pres
ription of how ea
h player
anplay su
h that they all win the game. One way to solve this is to assume that theplayers are in fa
t playing against ea
h other and trying to win the game no matterhow the other players play. If we
an
ome up with a set of strategies at ea
h siteso that, if a site plays a

ording to its strategy, then it will win no matter how theother players play, then surely this set of strategies will win against the environment.Hen
e we would have a
ontroller for the plant. However, if we
annot �nd su
ha set, it does not mean that there is no distributed
ontroller | it may be thatindividual players may not be able to win by themselves but only by
ooperatingin some manner. Hen
e, this method to solve the
ontrol-synthesis problem is not
omplete.Another way to solve distributed
ontrol without meeting it head-to-head, is toview the system as a global system and build a
entralized
ontroller for it. This

Chapter 6: Distributed Control 100
ontroller is one whi
h
an view all the inputs at all sites and
ontrol the behaviourin a global manner so that it meets the spe
i�
ation. Existen
e and building of su
ha global
ontroller is often de
idable, as shown in [Tho95, PR89a℄ and the earlier
hapters in this thesis. One
an then try to see if this (parti
ular) global strategy
anbe realized as a distributed one | i.e. we
an try and de
ompose this strategy intolo
al strategies at sites. This is de
idable sometimes (for example Pnueli and Rosnershow this is de
idable in their setting [PR90℄), and if one su

eeds in de
omposingit, then we have a distributed
ontroller. However, again, if we don't, we
annot besure that there is no distributed
ontroller | for there might exist some other globalstrategy that is de
omposable. Hen
e this method too is sound, but not exhaustive.A frontal atta
k on the synthesis problem in a distributed setting was �rst madeby Pnueli and Rosner in [PR90℄ (see also Rosner's Ph.D thesis [Ros92℄). In this pa-per, they study a model where the programs
ommuni
ate in a syn
hronous mannerthrough �xed
ommuni
ation
hannels, and show the surprising but dishearteningresult that the realizability problem for almost all ar
hite
tures is unde
idable. Theproblem
an be seen as a multi-player game with in
omplete information (as de-s
ribed above) studied by Peterson and Reif [PR79℄, and the results in [PR90℄ areextensions of these results. Pnueli and Rosner show that even a two-site ar
hite
-ture where there is no possible
ommuni
ation between the sites, is unde
idable.They also identify a small
lass of ar
hite
tures (
alled hierar
hi
al ar
hite
tures)for whi
h the problem is de
idable.The results in [PR90℄, though they are meant for realizability, extend to
ontrol-synthesis as well. We show that it follows from their results that the only kind ofar
hite
tures for whi
h the
ontrol problem is de
idable is the singly-
anked pipeline(
alled pipelines in [PR90℄). A singly-
anked pipeline is a set of sites arranged in alinear order,
onne
ted one to the other along the order with internal
hannels andwith a single environment input at the �rst site of the sequen
e (see Figure 6.2).The de
idable ar
hite
tures identi�ed above are parti
ularly disappointing asthey don't have external environment inputs at even two sites, and hen
e are notnon-trivial examples of distributed rea
tive systems. The negative results for otherar
hite
tures in fa
t stem from this property of having two external environmentsand lead to the s
enario where there are sites that have in
omplete informationabout ea
h other (in the de
idable ar
hite
tures, for any two sites, one has
ompleteinformation about the other).

Chapter 6: Distributed Control 101The
ru
ial idea for this
hapter
omes from our
onje
ture that the problemis intra
table be
ause we are demanding global properties of systems that are infa
t distributed and have programs that are
ompletely oblivious to ea
h other.The unde
idability proofs
ru
ially use this fa
t that the sites
annot ex
hangeinformation while the spe
i�
ation
an demand global properties of them.We therefore drop global spe
i�
ations, and instead
onsider lo
al spe
i�
ations.Lo
al spe
i�
ations
an des
ribe, for ea
h site, how the site ought to behave | butit
annot demand anything on the global evolution of the plants. Our hope was thatthis may lead to a larger
lass of ar
hite
tures that are de
idable whilst redu
ing thepower of spe
i�
ations but not making the spe
i�
ation too restri
tive. Lo
al logi
shave been studied extensively in the
on
urren
y
ommunity [Thi94, Ram96, Zie87℄.Indeed, if one
onsiders the
ontrol-problem for the two-site ar
hite
ture whi
his not
onne
ted, then it be
omes trivially de
idable for lo
al spe
i�
ations sin
ewe
an design
ontrollers for the two sites, independent of ea
h other, against theirrespe
tive spe
i�
ations.Though the idea looks promising, it turns out that the
lass of de
idable ar
hi-te
tures gets only mildly larger. The main result of this
hapter is to
lassify theexa
t
lass of ar
hite
tures for whi
h the
ontrol problem for lo
al spe
i�
ations isde
idable | this turns out to be the
lass of ar
hite
tures where ea
h
onne
ted
omponent is a sub-ar
hite
ture of a doubly-
anked pipeline (see Figure 6.2). Onthe positive side, our results show that we
an design
ontrollers for doubly-
ankedpipelines, whi
h are nontrivial rea
tive ar
hite
tures (as they allow at least two sitesfor environment input). Indeed, our results show that the realizability problem
analso be e�e
tively solved in this important setting, where the spe
i�
ations at thesites
an state properties of the internal
hannels as well.For
onvenien
e we study here only the
ontroller synthesis problem and assumelo
al spe
i�
ations to be given as Rabin
onditions over the states of the lo
alplant. We
onsider Rabin
onditions sin
e they are expressive enough to state any!-regular spe
i�
ation. Indeed, we
ould have worked instead with temporal logi
spe
i�
ations, one at ea
h site, whi
h des
ribes the desired behaviours of the lo
alprograms. However, sin
e one
ould
ast this as a problem with Rabin
onditions(by building a deterministi
 Rabin automaton over words a

epting the desiredbehaviours [Saf88℄ and taking its interse
tion with the lo
al plant), we
an solve theproblem in that setting as well.

Chapter 6: Distributed Control 102Our unde
idability results go through for weaker a

eptan
e
onditions rightdown to rea
hability. Thus our negative results show that even in the presen
eof lo
al spe
i�
ations, the
ontroller synthesis problem is intra
table for almost allar
hite
tures.In the next se
tion we introdu
e the formal setting for our work. In Se
tion 6.3we brie
y review the results on
ontrol synthesis for global spe
i�
ations obtainedfrom the results of [PR90℄. Se
tion 6.4 establishes our de
idability results for lo
alspe
i�
ations while Se
tion 6.5 proves the unde
idability results.6.2 Problem settingAn ar
hite
ture is a tuple A = (S;X; T; r; w) where S = fs1; : : : ; skg is a �nitenonempty set of sites, X = fx1; : : : ; xlg is a set of external (or environment) input
hannels and T = ft1; : : : ; tng is a set of internal
hannels. r is a fun
tion r : X[T !S whi
h identi�es for ea
h
hannel a pro
ess whi
h reads the
hannel; w : T ! Sidenti�es for ea
h internal
hannel, a pro
ess whi
h writes into it.We assume, without loss in generality, that ea
h pro
ess has at most one externalinput
hannel and that there is at most one
hannel from one site to another.We represent ar
hite
tures graphi
ally as dire
ted graphs whose nodes are thesites and every
hannel z 2 X [T is represented by an edge | if z 2 T , then it isan edge from w(z) to r(z) and if z 2 X, then it is a sour
eless edge to r(z). We only
onsider a
y
li
 ar
hite
tures | i.e. those ar
hite
tures whose graph representationdoes not have a dire
ted
y
le. We will assume further that every site has at leastone input (external or internal)
hannel.For example,
onsider the ar
hite
ture in Figure 6.1. It represents the ar
hite
-ture A = (fs1; s2; s3; s4g; fx1; x4g; ft1; t2; t3; t4g; r; w) where r(x1) = s1, r(x4) = s4,r(t1) = s2, w(t1) = s1, r(t2) = s3, w(t2) = s1, r(t3) = s4, w(t3) = s2, r(t4) = s4 andw(t4) = s3. The external
hannels are represented by dotted lines.As done in [PR90℄, we
ould have ar
hite
tures with external output
hannelsas well. However, sin
e we state our spe
i�
ations in terms of how the sequen
esevolve and not what is output along
hannels, and sin
e spe
i�
ations involving thevalues output on
hannels
an be
onverted to state-based spe
i�
ations, we omitthese external output
hannels.In our framework, ea
h site runs a program whi
h reads its external and internal

Chapter 6: Distributed Control 103
s1s2 s3s4

t1 t2
t3 t4

x1
x4

Figure 6.1: An ar
hite
ture
hannel inputs and rea
ts by sending outputs along the internal
hannels to otherpro
esses and
hanging its state. The moves are syn
hronous | i.e. the programsread a set of external inputs and make one
olle
tive move while respe
ting thepartial order imposed by the ar
hite
ture.For example, in the ar
hite
ture in Figure 6.1, in a syn
hronous step, s1 will readthe environment's input on x1,
hange its state and write onto t1 and t2; s2 and s3will, independently, read the inputs on t1 and t2 respe
tively; s2 and s3
hange stateand write onto t3 and t4, respe
tively; �nally s4 will read both inputs on t3 and t4and the external input on x4, and
hange its internal state.For a site s 2 S, let in(s) = r�1(s), the set of
hannels whi
h s reads from andlet out(s) = w�1(s), the set of
hannels s writes into.Given an ar
hite
ture A, a domain de�nition for A is a fun
tion D whi
h asso-
iates with ea
h z 2 X [T , a �nite set of values that
an be sent along the
hannelz. We denote D(z) sometimes as Dz. For a set of
hannels Z, a valuation fun
tionfor Z is a fun
tion h whose domain is Z and whi
h maps ea
h z 2 Z to an elementof Dz. Let HZ denote the set of all valuation fun
tions for Z.De�nition 6.1 A rea
tive syn
hronous plant (a plant in short) is a tuple (A; D; bP)where A is an ar
hite
ture (say having k sites fs1; : : : ; skg), D is a domain de�nitionfor A, bP is a set of programs, one at ea
h site | i.e. bP is a tuple hP1; : : : Pki.Ea
h Pi is a nondeterministi
 transition system (Qi; qini ; Æi) where Qi is a set of

Chapter 6: Distributed Control 104states, qini 2 Qi is the initial state, Æi is a nondeterministi
 transition fun
tionÆi : Qi �Hin(si) ! P(Qi �Hout(si)).1 2The transition fun
tion of ea
h program de�nes the di�erent ways in whi
h a site
an rea
t to a set of inputs on its input
hannels. Ea
h su
h rea
tion gives a set ofvalues whi
h
an be written on the output
hannels together with a (possible) state
hange. We say a plant is �nite if Qi is �nite for ea
h Pi.For example,
onsider an ar
hite
ture with a site si with in(si) = fx; t1g andout(si) = ft2; t3g, where x is an external input
hannel and t1, t2 and t3 are internal
hannels. Consider a rea
tive syn
hronous plant where the program at si is Pi =(Qi; qini ; Æi). Now let Æ(qi; h) have the element (q0i; g) where qi; q0i 2 Qi, h is a fun
tionthat takes x to an element in Dx and t1 to an element in Dt1 , and g is a fun
tionthat takes t2 and t3 to elements in Dt2 and Dt3 respe
tively. Then this means thatthe plant, when at state qi, and reading the inputs h(x) on
hannel x and h(t1) on
hannel t1,
an write g(t2) onto
hannel t2 and g(t3) onto
hannel t3 and
hange itsstate to q0i.Let (A; D; bP) be a plant. For a program P = (Q; qin; Æ) at a site s in A, alo
al strategy for P is a fun
tion f : Q � H+in(s) ! Q � Hout(s) su
h that 8q 2 Q,� 2 H+in(s), if � = �0 �h then f(q; �) 2 Æ(q; h). Thus the lo
al strategy f is an advi
efun
tion for P whi
h looks at the history of values (�0) on the lo
al input
hannelsand the
urrent values on the lo
al input
hannels (h), and pres
ribes a move whi
hthe lo
al program P should take.A distributed
ontrol-strategy is a set of lo
al strategies, one for ea
h site: i.e. atuple f = hf1; : : : fki where ea
h fi is a lo
al strategy for Pi. We sometimes referto distributed
ontrol strategies as simply a distributed
ontroller. A distributed
ontroller is said to be �nite-state, if it
an be realized as a �nite-state transitionsystem. Let f = hf1; : : : fki and let the state-spa
e of Pi be Qi for ea
h i. Formally,f is �nite-state if there is a (
omplete) transition system TS i, for ea
h fi, on thealphabet Hin(si) and a fun
tion g from the state-spa
e of TS i to the set of fun
tionsfromQi toQi�Hout(si) su
h that for every x 2 (Hin(si))+ and q 2 Qi, if the transitionsystem rea
hes state u on x, then g(u)(q) = f(q; x).We will
all a plant along with a strategy ((A; D; bP); f) a
ontrolled system. Letus �x for now a
ontrolled system ((A; D; bP); f).1P(R) denotes the power-set of R

Chapter 6: Distributed Control 105We need some notations for talking about sequen
es. For a sequen
e �, let �[i℄denote the ith element in � and �[i; j℄ denote the �nite subsequen
e of � from theith to the jth element, both in
lusive, for 0 � i � j, i; j 2 N0 . If � is a sequen
e offun
tions on a domain Z, let � # Z 0, where Z 0 � Z denote the sequen
e of fun
tionsobtained by restri
ting ea
h fun
tion in � to Z 0: i.e. � # Z 0 = � where domain ofea
h �[i℄ is Z 0 and �[i℄(z) = �[i℄(z) for ea
h z 2 Z 0.Consider an environment input sequen
e (on the
hannels in X) � 2 (HX)!.Sin
e P , when
ontrolled by the strategy f , is deterministi
, there is a unique wayin whi
h the plant and
ontroller respond to the external input | i.e. there is aunique sequen
e of states ea
h program takes and a unique set of
hannel values sentalong ea
h
hannel. We
an de�ne these sequen
es as follows. Let � 2 (HX[T)! and
 2 (Q1 � : : : Qk)! su
h that:1.
[0℄ = hqin1 ; : : : ; qink i2. � # X = �3. 8t 2 T , j 2 N0 , if w(t) = si and
[j℄ = hq1; : : : qki withfi(qi; �[0; j℄ # in(si)) = (q0i; h), then �[j℄(t) = h(t)4. 8j 2 N0 , if
[j℄ = hq1; : : : qki and
[j + 1℄ = hq01; : : : q0ki, then it must be the
ase that 8i 2 f1; : : : ; kg: fi(qi; �[0; j℄ # in(si)) = (q0i; h) for some h 2 Hout(si)The de�nitions above formalize how the programs behave when they get anexternal input. (1) says that the global state-sequen
e starts with the initial states.The next
ondition requires that the values whi
h the external
hannels take arede�ned by the external input �. (3) demands that the internal
hannels take valuesa

ording to the move de�ned by the lo
al strategy and (4) ensures that the statesalso evolve a

ording to the moves given by the lo
al strategies.It is easy to see that, sin
e the ar
hite
ture is a
y
li
, there are unique sequen
es� and
 whi
h satisfy the above
onditions. We
all
 the state-behaviour of thesystem for the input �.Global spe
i�
ationsA global spe
i�
ation des
ribes the set of sequen
es the plant is allowed to gen-erate globally. Hen
e it is just a subset Gspe
 of (Q1 � : : : Qk)!.

Chapter 6: Distributed Control 106A
ontrolled plant, when given an external input stream � on the external
han-nels, produ
es a state-behaviour
 as des
ribed above. The
ontrolled plant meetsthe spe
i�
ation Gspe
 if for every possible input stream �, the state-behaviour
produ
ed is in Gspe
 .The set Gspe

an be spe
i�ed in various ways. For example, it
ould be spe
i�edusing LTL formulas where the atomi
 propositions are the lo
al states of the plantwith the understanding that a state-behaviour
 is interpreted as an in�nite sequen
e
0 over subsets of states where if
[i℄ = hq1; : : : ; qki, then
0[i℄ = fq1; : : : ; qkg. A morepowerful me
hanism would be to spe
ify Gspe
 as an !-automaton over in�nite wordsover the alphabet 2Q where Q is the union of the sets of lo
al states [Tho90℄.Lo
al spe
i�
ationsLo
al spe
i�
ations are de�ned on the lo
al state-behaviours of the programs ofthe plant. Sin
e we wish to
apture lo
al linear-time properties, we de�ne lo
alRabin winning
onditions and the spe
i�
ation then demands that the lo
al runs ofthe
ontrolled system meet these
onditions.A lo
al Rabin winning
ondition Ri for a site si is a set f(R1; G1); : : : (Rm; Gm)gwhere Rj; Gj are subsets of Qi, the state-spa
e of the program at si. A Rabinwinning
ondition W for a plant is a tuple hR1; : : :Rki where ea
h Ri is a lo
alRabin winning
ondition for si.Let
 2 (Q1 � : : : Qk)! be a sequen
e of global states of the system. Let
 # idenote the sequen
e in Q!i obtained by proje
ting
 to the
omponent involving Qi.A sequen
e of global states
 is said to satisfy a Rabin
ondition W if for ea
h sitesi,
 # i satis�es the lo
al winning
ondition Ri, i.e. if for ea
h site si, there is apair (R;G) in Ri su
h that inf (
 # i) \R = ; and inf (
 # i) \G 6= ;.Finally, a
ontrolled system is said to satisfy a Rabin winning
onditionW if forevery sequen
e of external inputs � 2 (HX)!, the state-behaviour
 de�ned by �satis�es W.Note that, like in global spe
i�
ations, we
ould have de�ned a set of lo
alspe
i�
ations where the lo
al spe
i�
ation of a site s is des
ription of set of \lo
alstate-sequen
es" the site
an go through. However, any su
h !-regular set of lo
alsequen
es at a site
an be determinized to get a deterministi
 Rabin automatonon in�nite words ([Saf88, Tho97℄). One
an take a produ
t of this deterministi
automaton with the
on
erned lo
al plant to reframe the spe
i�
ation in terms of a

Chapter 6: Distributed Control 107Rabin winning
ondition.Control synthesis problemGiven a lo
al or global spe
i�
ation, a distributed
ontrol-strategy f for a plant(A; D; bP) is said to be winning if the
ontrolled system ((A; D; bP); f) satis�es thewinning
ondition. Note that the strategies are always lo
al. We hen
eforth justsay \strategy" to mean a distributed
ontrol-strategy.We
an now state the
ontrol-synthesis problem for an ar
hite
ture A:De�nition 6.2 [Control problem for A against global spe
i�
ations℄Given a �nite rea
tive plant (A; D; bP), and a global spe
i�
ation Gspe
 , does thereexist a winning strategy for the plant? 2De�nition 6.3 [Control problem for A against lo
al spe
i�
ations℄Given a �nite rea
tive plant (A; D; bP), and a Rabin winning
ondition W, doesthere exist a winning strategy for the plant? 2Our main aim is to
lassify those ar
hite
tures for whi
h, given a domain de�ni-tion and a plant, the
ontrol problem is de
idable.In this
onne
tion, two important
lasses of ar
hite
tures are the singly-
ankedpipelines and the doubly-
anked pipelines. Singly-
anked pipelines are pipelines thathave external inputs only at the left end while doubly-
anked pipelines have externalinputs at both ends (see Figure 6.2):De�nition 6.4 An ar
hite
ture A is said to be a pipeline if the sites in A ares1; : : : sk (for some k 2 N) and there are exa
tly k � 1 internal
hannels t1; : : : tk�1,with w(ti) = si and r(ti) = si+1 for i 2 f1; : : : ; k � 1g. A singly-
anked pipeline isa pipeline that has a single external
hannel x1 with r(x1) = s1. A doubly-
ankedpipeline is a pipeline that has exa
tly two external
hannels x1 and x2 with r(x1) = s1and r(x2) = sk. 2We will also need the notion of a sub-ar
hite
ture | an ar
hite
ture A0 =(S 0; X 0; T 0; r0; w0) is a sub-ar
hite
ture of an ar
hite
ture A = (S;X; T; r; w) if thegraph of A0 is isomorphi
 to a subgraph of the graph of A: i.e. there is a 1-1 fun
-tion g : S 0 [X 0 [T 0 ! S [X [T su
h that g(S 0) � S, g(X 0) � X, g(T 0) � T ,

Chapter 6: Distributed Control 108
s1 s2 sk�1 skt1 tk�1t2 tk�2x1

A generi
 singly-
anked pipeline
s1 s2 sk�1 skt1 tk�1t2 tk�2x1 x2

A generi
 doubly-
anked pipelineFigure 6.2: Flanked pipelinesfor ea
h x0 2 X 0, g(r0(x0)) = r(g(x0)), and for ea
h t0 2 T 0, g(r0(t0)) = r(g(t0)) andg(w0(t0)) = w(g(t0)). Note that an ar
hite
ture is a sub-ar
hite
ture of itself.The
ontrol problem for global spe
i�
ations has already been virtually settledby Pnueli and Rosner [PR90℄. It follows from their results that there is only onekind of ar
hite
ture for whi
h the
ontrol problem is de
idable | the singly-
ankedpipeline ar
hite
tures.The main result of this
hapter is to give identify the pre
ise
lass of ar
hite
turesfor whi
h the
ontrol problem for lo
al spe
i�
ations is de
idable. This
lass is the
lass of all ar
hite
tures all of whose
onne
ted
omponents are sub-ar
hite
tures ofa doubly-
anked pipeline.6.3 Control synthesis against global spe
i�
ationsPnueli and Rosner show in [PR90℄ that a variant of the
ontrol problem, namelythe realizability problem, is de
idable for the singly-
anked pipeline. The realiz-ability problem is awkward to formalize in our setting | it is better stated in asetting where sites
an have external output
hannels as well. Then, the realizabil-ity problem is one where we are given an ar
hite
ture and a spe
i�
ation des
ribing

Chapter 6: Distributed Control 109sequen
es of values output by ea
h site, and are asked whether there is a program atea
h site that realizes the spe
i�
ation. A program at a site now not only outputsvalues along internal
hannels, but also along the external output
hannels. Also,the program is not
onstrained in any way | it
an output any set of values at anypoint, unlike the strategies in the
ontrol problem.The proof in [PR90℄
an however be easily modi�ed to handle the
ontrol problemand we have:Theorem 6.1 ([PR90℄) The
ontrol problem for the
lass of singly-
anked pipelinear
hite
tures against global spe
i�
ations is de
idable. 2In [PR90℄, it is also shown that the two-site ar
hite
ture with no internal
han-nels, i.e. the ar
hite
ture A? = (fs1; s2g; fx1; x2g; ;; r; w) with r(x1) = s1 andr(x2) = s2, is one for whi
h the realizability problem (and hen
e the
ontrol prob-lem) is unde
idable. In fa
t they show this for LTL and even weaker \rea
hability"spe
i�
ations. Using this, we
an in fa
t show that the
ontrol problem for anar
hite
ture that is not a singly-
anked pipeline is unde
idable:Theorem 6.2 Let A be an ar
hite
ture that is not a singly-
anked pipeline. Thenthe
ontrol problem for A against global spe
i�
ations is unde
idable.Proof We prove this theorem by redu
tions from the
ontrol problem forA?. First,
onsider the
ase where A has two sites, s and s0, both of whi
h have external input
hannels. Then, given an instan
e of the
ontrol problem I for A?, we
an produ
ean instan
e I 0 of the
ontrol problem for A by setting the programs of s and s0to be the two programs assigned in I to the two sites in A?. Also, we
an makeall the other sites \dummy" by making them output on any input, a �xed letteron ea
h lo
al output
hannel. In this way, we virtually
ut o� any way of s ands0
ommuni
ating with ea
h other. Also, we set the global spe
i�
ation to be anysequen
e where the behaviours of the programs at sites s and s0 satisfy the globalspe
i�
ation assigned in I. It is now easy to see that there is a strategy for theinstan
e I 0 of the
ontrol problem for A i� there is a strategy for the instan
e I forA?.Now assume A is an ar
hite
ture that doesn't have two su
h sites and neither isit a singly-
anked pipeline. Then, it is easy to see that A must have sites s0; : : : ; si(where i � 0) and two sites s and s0 su
h that s0 has an external input, there is an

Chapter 6: Distributed Control 110internal
hannel from sj to sj+1 for ea
h j 2 f0; : : : i � 1g and there is an internal
hannel from si to s and one from si to s0. (Note that we do not
laim that thereare no other sites or
hannels in A.) Now we redu
e an instan
e I for A? to A bysetting the programs in I to s and s0. Also, the
ombined inputs for the programswill be input into s1, whi
h will propagate it through the internal
hannels to si.The program at si will separate these inputs and feed them to s and s0. All othersites will be \dummy" as in the previous redu
tion. Note that no program at anysite ex
ept those at s and s0 are really
ontrollable (i.e. the programs at other sitesare deterministi
). The global spe
i�
ation for the new instan
e I 0
ontains all se-quen
es where the programs at s and s0 satisfy the global spe
i�
ation of I. It isagain easy to see that there is a strategy for I 0 in A i� there is a strategy for I inA?. 2Observe that the above proof does not go through for the problem of realizabilityof distributed programs, for we are
ru
ially using the programs at \dummy" sitesto for
e the
hannels to
arry only a �xed value. In [PR90℄, the authors de�near
hite
tures so that they also take into a

ount the number of values a
hannel
antake (i.e. the domain fun
tion) and identify a larger
lass of ar
hite
tures for whi
hrealizability is de
idable. It is still an open problem to identify the exa
t
lass ofar
hite
tures for whi
h the realizability problem is de
idable.6.4 Lo
al spe
i�
ations: De
idable ar
hite
turesIn this se
tion, we show that for ar
hite
tures where ea
h
onne
ted
omponentis a sub-ar
hite
ture of a doubly-
anked pipeline, the
ontrol problem against lo
alspe
i�
ations is de
idable. Firstly, sin
e we have lo
al winning
onditions, it is easyto observe the following.Proposition 6.1 The
ontrol problem for an ar
hite
ture A is de
idable i� the
on-trol problem is de
idable for ea
h of its
onne
ted
omponents.Proof Clearly, the
ontrol problem for an ar
hite
ture A
an be redu
ed to a setof
ontrol problems, one for ea
h
omponent, by splitting the spe
i�
ation for the
omponents. This
an be done as the spe
i�
ation is lo
al. Also, the
ontrol prob-lem for a
omponent A0 of A
an redu
ed to a
ontrol problem for A by inheriting

Chapter 6: Distributed Control 111the programs and spe
i�
ations for sites in A0 and by giving \dummy" programs atsites in A that are not in A0, and also making the lo
al spe
i�
ation on these sitesalways win. 2Hen
e it suÆ
es to prove that the problem is de
idable for ar
hite
tures whi
hare sub-ar
hite
tures of doubly-
anked pipelines. We use tree automata to establishour results. Re
all from Chapter 4 the de�nition of trees and nondeterministi
 andalternating automata working on them.Consider a plant (A; D; bP) and a distributed
ontrol-strategy f for it. Let s bea site in A with an output
hannel t.Let L � (Dt)! be the language of in�nite strings output on t by the
on-trolled system ((A; D; bP); f) (by
onsidering all possible inputs on the externalinput
hannels of the plant). We
all su
h a language of in�nite words, a
om-muni
ation language for the
hannel t. (Note that L 6= ;.) Let Pref (L) = fx j 9� 2L; x is a pre�x of �g. Then it is not diÆ
ult to see that L = lim(Pref (L)) wherelim(L) = f� 2 �! j for every pre�x x of �; x 2 Lg. Though this is true for anyar
hite
ture, we show it only for doubly-
anked pipelines as this will suÆ
e for ourpurpose.Proposition 6.2 Let (A; D; bP) be a rea
tive plant and let bf be a distributed
on-troller for it with A = (S;X; T; r; w) a doubly-
anked pipeline. Let t 2 T be aninternal
hannel. Then, for sequen
es of external inputs � 2 (HX)!, let the se-quen
e of values output on t be L � D(t)!. Then L = lim(Pref (L)).Proof Let us �x a doubly-
anked pipeline, say a
anoni
al one with k sites asillustrated in Figure 6.2. Let us �rst do the proof for the �rst internal
hannel. Lets1 be the �rst site of the pipeline, with external input
hannel x1 and output
hannelt1. Let P1 be the program at s1 and let f1 be a lo
al strategy at s1. Let us showthat if the language of strings written onto t1 is L, then L = lim(Pref (L)). Clearly,L � lim(Pref (L)).Let Tx1 = (D(x1)�; E) be the full D(x1)-tree. Now label this tree as follows:label w 2 D(x1)� by the last value output by P1 and f1 on t1, when working oninput w on x1. Then,
learly one
an label the whole tree (ex
ept the root) withlabels from D(t) and the labels on the path to a node w gives the string output ont while reading w.

Chapter 6: Distributed Control 112Let � 2 lim(Pref (L)). Then for every pre�x y of �, there is a � 2 L su
h thaty is a pre�x of �. Now prune the D(x1)-tree as follows: at a level i, retain only thenodes whi
h are labelled �[i℄ and then take the
onne
ted part of the tree from theroot. That is, take the smallest subtree T of Tx1 su
h that� " 2 T� If z 2 T and z:d 2 Tx1 (where z 2 D(x1)�, d 2 D(x1)) and if the label of thenodes in the path from the root to z:d is a pre�x of �, then z:d 2 TFor any pre�x y of �, sin
e there is a � 2 L su
h that y is a pre�x of �, along thepath in the D(x1)-type tree whi
h generates �, there will be a node su
h that thepath to it is labelled by y. Hen
e this node and all the nodes in the path from theroot to it will be in the pruned tree T . Hen
e the tree T is in�nite. Sin
e D(x1) is�nite, by K�onig's lemma, there must be an in�nite path in this tree. Surely this islabelled by �. Hen
e � 2 L.We
an, by indu
tion over the j, show that the property holds for the j'th inter-nal
hannel tj in the pipeline. In the indu
tion step, we start with the assumptionthat the sequen
es fed into the input
hannel tj�1 to a site sj satis�es the prop-erty (when j = 1, tj�1 is interpreted as x1). We
onsider then the subtree of theD(tj�1)-tree, that represents the set of input sequen
es (sin
e the language of inputsequen
es satis�es the required property, we
an �nd a subtree su
h that the in�nitepaths in the subtree is exa
tly the set of input sequen
es). Now
onsider the output
hannel tj from sj. We pro
eed to label the tree with the values output by the
ontrolled program at sj on the
orresponding sequen
e of inputs, as above. Then,by a similar argument, we
an establish that the language of in�nite strings outputon tj also satis�es the required property. 2So L = Pref (L) � D�t , the set of �nite sequen
es sent along t represents theset of in�nite sequen
es sent along the
hannel as well. Let L be a
ommuni
ationlanguage of the
hannel t and L = Pref (L). Then L
an be represented (uniquely)by a f>;?g-labelled Dt-tree T = (D�t ; �), where �(x) = > if x 2 L and �(x) = ?,otherwise. In su
h a tree if a node is labelled > then it will have at least one
hildalso with label > and if a node has label ? then all its
hildren (and hen
e theentire subtree below it) will be labelled ?. Also, the root, � is labelled >. Clearlyea
h su
h f>;?g-labelled Dt-tree uniquely represents a
ommuni
ation language of

Chapter 6: Distributed Control 113the
hannel t. In what follows, we shall refer to su
h trees as t-type trees and workwith automata running over t-type trees. The t-type trees will also be referred toas
ommuni
ation trees of t. If T is a t-type tree then we let Lang(T) denote thelanguage of in�nite strings it represents.Let us �x a doubly-
anked pipeline whi
h has k sites, as shown in Figure 6.2.We refer to s1 as the left-site, sk as the right-site and ea
h of the si's, 1 < i < k asmiddle-sites.We need one more notion before pro
eeding with the main
onstru
tions.De�nition 6.5� Let s be the left-site of a doubly-
anked pipeline with input
hannel x andoutput
hannel t. Suppose P is the program at s. Then, a language of in�nitewords L � D(t)! is said to be an s-su

essful language if there is a lo
alwinning strategy f at s su
h that the sequen
es of outputs produ
ed on t,when P and f work on all possible input sequen
es on x, is L.� Let s be the right-site of a doubly-
anked pipeline with input
hannels t andx. Let P be the program at s. We say that a language L of in�nite stringsover Dt is s-su

essful, if there is a strategy f at s whi
h
an work on theinput sequen
es in L on
hannel t and arbitrary inputs on
hannel x, and winlo
ally.� Let s be a middle-site of a doubly-
anked pipeline with input
hannel t andoutput
hannel t0. Let s host a program P . We say that L0 � D(t0)! issu

essfully generable by s on L � D(t)! if there is a strategy at s that winslo
ally when reading inputs from L on t and the sequen
es of outputs produ
edon t0 is (pre
isely) L0. 2When we do the
onstru
tion of automata below for various languages, we wouldlike the automata to a

ept only
ommuni
ation trees. Instead of making sure ea
htime that the tree that is being read is indeed a
ommuni
ation tree, we �rst showthat the set of
ommuni
ation trees
an be re
ognized by a tree automaton. In later
onstru
tions, we always assume that we take the interse
tion with the automatonthat a

epts the set of
ommuni
ation trees.Proposition 6.3 Let t be an internal
hannel. Then there is an automaton whi
ha

epts the
ommuni
ation trees of t.

Chapter 6: Distributed Control 114Proof The automaton is an alternating B�u
hi automaton A = (Q; q>; Æ;F) whereQ = fq>; q; q?g, F = Q and Æ is de�ned as:� Æ(q>;>) = (Wd2D(t)(q>; d)) ^ (Vd2D(t)(q; d))� Æ(q>;?) = false� Æ(q;>) = Æ(q>;>)� Æ(q;?) = Vd2D(t)(q?; d)� Æ(q?;>) = false� Æ(q?;?) = Æ(q;?)The states q> and q make sure that the root is labelled > and that every >-labelled node has a >-labelled
hild. The state q? keeps tra
k whether the subtreebelow a ?-labelled node is fully labelled ?. 2Lemma 6.4 Let s be the left-site of a doubly-
anked pipeline with input
hannel x,output
hannel t and program P . Then there is an alternating tree automaton (on t-type trees) whi
h a

epts a t-type tree T i� Lang(T) has an s-su

essful sublanguage.Proof The automaton we
onstru
t, while running over a t-type tree T , guesses alo
al strategy f for the program at s, makes sure that f produ
es no string whi
his not in Lang(T) and also
he
ks that f is lo
ally winning.The automaton has, in its state-spa
e, a
omponent en
oding whi
h state of theprogram it is
urrently simulating. Then reading a node y of T , it does the following:� Guess a set of moves from the
urrent state for ea
h possible input d in D(x).� The automaton then propagates, for ea
h d 2 D(x), a
opy along the dire
tiond0 2 D(t) where d0 is the output of the program on d a

ording to the guessedmove. The
orresponding su

essor state of the program is also propagatedand the automaton will
he
k in these
opies whether the labels of the nodesit reads are >. This will ensure that the outputs are allowed by T .

Chapter 6: Distributed Control 115Let the lo
al Rabin winning
ondition be R. The a

eptan
e
ondition ensuresthat paths on a run en
ode state-sequen
es whi
h satisfy R | this ensures that theguessed lo
al strategy is a winning one.Formally, the automaton is de�ned as follows. Let the program be P = (Q; qin; Æ)where the transition system of the program is a fun
tion Æ : Q�Hfxg ! P(Q�Hftg).Sin
e there is only one input and one output
hannel, we
an view Æ as a fun
tionÆ : Q�D(x)! P(Q�D(t)) with the obvious interpretation.The alternating Rabin automaton A is de�ned as A = (Q; qin; Æ0;R) where Æ0 isgiven by:� Let q 2 Q. Let a partition at q be a fun
tion g : D(x) ! Q�D(t) su
h thatfor every d 2 D(x), g(d) 2 Æ(q; d). Let Gq be the set of all partitions at q.Then Æ0(q;>) = _g2Gq ^d2D(x) g(d)� Æ0(q;?) = false, for every q 2 QThe �rst transition says that when the program is in state q and reading >, itguesses a set of moves on ea
h d 2 X. The automaton propagates a
opy for ea
hinput d 2 D(x) along the dire
tion
orresponding to the program's output on d.The se
ond transition says that these propagated states should read a >, verifyingthat the outputs guessed are allowed by the tree.Note that a node in a run-tree of the above automaton
orresponds to a uniqueinput history sequen
e on the
hannel x. This is why guessing the strategy of Pindependently at the nodes of the run is justi�ed. 2Note that the automaton in the above
onstru
tion a

epts a tree provided thelanguage represented by the tree merely
ontains an s-su

essful language. It seemshard to strengthen this
ontainment to equality. However, the present version willsuÆ
e.Lemma 6.5 Let s be the right-site of a pipeline with in(s) = fx; tg and let theprogram at s be P . Then there is an alternating tree automaton on t-type treeswhi
h a

epts a tree T i� the language that T represents is s-su

essful.

Chapter 6: Distributed Control 116Proof The automaton will guess a lo
al strategy for P at s on input sequen
es� 2 Lang(T) along t and arbitrary input sequen
es � 2 D(x)! on x and make surethat f is winning for all lo
al runs on these sequen
es.The automaton will keep tra
k in its state-spa
e the
urrent state of P it issimulating. Reading a node y of the input tree, it will do the following:� Guess Y � D(t)
orresponding to the set of su

essors of y labelled >. Theautomaton will (in its next move)
he
k if Y is indeed the set of >-su

essors.� The strategy has to handle all inputs in Y on the
hannel t along with anarbitrary input in D(x) on
hannel x. The automaton guesses su
h a strategyat this point by guessing moves from the
urrent state of P on ea
h h 2 Hfx;tgwith h(t) 2 Y . It then propagates along ea
h dire
tion d in Y , one
opy of theautomaton for ea
h d0 2 D(x)
orresponding to the
hosen move when
hannelt
arries d and
hannel x
arries d0. It propagates the
orresponding state ofP as well.Let R be the lo
al winning
ondition. The a

eptan
e
ondition for the automa-ton makes sure that all paths on a run en
ode a state-sequen
e in P whi
h satis�esR. Formally, let P = (Q; qin; Æ), where the transition fun
tion of the program is afun
tion Æ : Q � Hfx;tg ! P(Q). Sin
e there is only one internal input and oneexternal input
hannel, we will use a fun
tion Æ : Q � D(t) � D(x) ! P(Q) withthe obvious interpretation. Let R be the lo
al winning
ondition for P .The alternating Rabin automaton is de�ned as follows: A = (Q[fq?g; qin; Æ0;R)where Æ0 is de�ned as follows:� For a set Y � D(t), let a Y guess at q be a fun
tion g : Y �D(x) ! Q su
hthat for every d 2 Y , d0 2 D(X), g(d; d0) 2 Æ(q; d; d0). Let GY;q be the set ofall Y guesses at q. ThenÆ0(q;>) = _;6=Y�D(t)f(_g2GY;q d̂2Y ^d02D(x)(g(d; d0); d)) ^ d̂62Y (q?; d)g� Æ0(q;?) = false, for every q 2 Q� Æ0(q?;>) = false� Æ0(q?;?) = true

Chapter 6: Distributed Control 117The �rst transition says that when the plant is in state q and reading >, itguesses the set Y of the >-su

essors of this node, a way to
hoose transitions fromthis state on every possible input in Y on t and any input on x. The automatonpropagates a
opy, for ea
h input on d 2 Y and d0 2 D(x), along the dire
tion d withthe
orresponding su

essor state of the program a

ording to the guessed move. Italso propagates the state q? along the dire
tions not in Y .The other transitions
he
k whether the guess of Y in the previous step was
orre
t. Again, sin
e ea
h node in a run-tree
orresponds to a unique input historyon t and x, the guessing of the strategy at these points independently is justi�ed. 2Theorem 6.3 The
ontrol problem for the two-site doubly-
anked pipeline is de
id-able.Proof Let the sites and
hannels of the pipeline be labelled as in Figure 6.2.Using Lemma 6.4,
onstru
t an automaton A1 whi
h a

epts a t1-type tree T i� s1
an su

essfully generate a sublanguage of Lang(T). Using Lemma 6.5,
onstru
tA2 whi
h a

epts t1-type trees whi
h represent languages whi
h s2
an win on. The
laim now is that a distributed winning strategy exists i� L(A1)\L(A2) is nonempty.Assume T 2 L(A1) \ L(A2) and let L be the language it represents. Then thereis a strategy f2 at s2 whi
h will win on L. Also, there is a lo
al winning strategy f1at S1 whi
h will generate a sublanguage L0 of L. However, sin
e the lo
al winning
onditions are linear-time spe
i�
ations, f2 will win on L0 as well. Hen
e hf1; f2i isa distributed winning strategy. Furthermore, one
an
onstru
t, from the runs ofA1 and A2 on a regular tree in L(A1) \ L(A2), a strategy whi
h
an be realized as�nite-state transition systems.It is easy to see that if hf1; f2i is any winning distributed strategy, then the tree
orresponding to the language f1 generates is a

epted by A1 as well as A2. 2Lemma 6.6 Let s be a middle-site of a doubly-
anked pipeline with in(s) = ftg andout(s) = ft0g, and let the program at s be P . Let A be a nondeterministi
 automatona

epting t-type trees. Then there is an automaton on t0-type trees that a

epts atree T 0 i� there is a t-type tree T a

epted by A and a language L0 � Lang(T 0) su
hthat L0 is su

essfully generable by s on Lang(T).

Chapter 6: Distributed Control 118Proof Let T 0 be an input to the automaton and L0 be the language it represents.The automaton, while reading T 0, will guess a t-type tree T , guess a run of A on T ,guess a strategy f for P on the input strings represented in T and make sure thatthe run on T is a

epting, make sure that the strategy outputs strings whi
h arein
luded in L0 and make sure that the strategy lo
ally wins!A node in the run on T 0 will
orrespond to a node y0 in T 0 as well as a node xof the tree T being guessed | here x is the sequen
e in D(t)� on whi
h the guessedstrategy has output y0. Note that ea
h sequen
e in D(t)�
an lead to at most onesequen
e in D(t0)� being output and hen
e guessing of the tree T at nodes of therun is justi�ed.2The state-spa
e of the automaton will
ode both the
urrent state of P as well as astate of the automaton A whi
h represents the state-label of the
orresponding nodein T , in the guessed run on T . The automaton at a node in the run
orrespondingto the node y0 in T 0 and x in T will do the following:� Guess the set Y 0 � D(t0) whi
h
orresponds to the
hildren of y0 in T 0 labelled>.� Guess the labels of the
hildren of x in T . This is the point where T is beingguessed. Let X � D(t) be the
hildren of x labelled >.� The automaton now guesses a move of P from the
urrent state on ea
h d 2 Xand makes sure that the output on t is in Y 0. It then propagates along ea
hdire
tion d0 2 Y 0 in T 0, many
opies of itself | ea
h
orresponding to a d 2 Xon whi
h the guessed move outputs d0. The appropriate su

essor state of Pis propagated. The automaton also guesses a transition of A from the node xand propagates these automaton states as well.The a

eptan
e
ondition makes sure that along any path in the run, the state-sequen
e of P along the run meets the lo
al winning
ondition of s and the state-sequen
e of the automaton meets the winning
ondition of A.Formally, let P = (P; pin; Æ) (by abuse of notation, we refer to state-spa
e of Palso as P) where Æ : P �D(t) ! P(P �D(t0)) (note the
hange in notation). LetR be the lo
al winning
ondition at s.Let A = (Q; qin; ÆA;F) be the nondeterministi
 Rabin automaton where ÆA :Q� f>;?g ! P(M), where M is the set of all fun
tions m : D(t)! Q.2If the site also has an external input, this will not be the
ase.

Chapter 6: Distributed Control 119Fix an arbitrary element e0 in D(t0). Formally, the alternating Rabin automatonon t0-type trees is de�ned as follows:A0 = ((P �Q) [Q; (pin; qin); Æ0;F 0) where Æ0 is de�ned as follows:� Let p 2 P , q 2 Q. For a set Y � D(t0) and X � D(t), a partition of X intoY at p is a fun
tion g : X ! P � Y su
h that 8d 2 X, if g(d) = (p0; d0) then(p0; d0) 2 Æ(p; d) and d0 2 Y . For su
h a fun
tion g, let g(d)[1℄ and g(d)[2℄denote the P and D(t0)
omponents of g(d), respe
tively. Let �pX;Y denote theset of partitions of X into Y at p. Now,Æ0((p; q);>) = _;6=Y�D(t0) _;6=X�D(t) _g2�pX;Y _m2ÆA(q;>)((1) ^ (2))where (1) = d̂2X((g(d)[1℄; m(d)); g(d)[2℄)and (2) = d̂62X(m(d); e0)� Æ0((p; q);?) = false, for all p 2 P , q 2 Q.� Æ0(q;?) = Æ0(q;>) = Wm2ÆA(q;?)Vd2D(t)(m(d); e0), for all q 2 Q.The a

eptan
e
ondition is de�ned so that a path in the run-tree is a

epted i�one of the following happen:� The states along the path never leave the set (P �Q) and the �rst
omponentmeets the Rabin
ondition R and the se
ond
omponent meets the Rabin
ondition F .� The states along the path eventually land in the set Q (and hen
e stay there)and this in�nite suÆx meets the Rabin
ondition F .In the �rst kind of transition above, the formulas indu
ed by (1) are similar tothe one in Lemma 6.4 ex
ept that now it is spe
ialized to work over a guessed subsetX of D(t) rather than the whole of D(t). It also does the additional job of guessingthe automaton A's move at this point on the letter >. The automaton propagatesalong the
hildren
orresponding to moves on X, the program state as well as theautomaton state a

ording to the guessed move.

Chapter 6: Distributed Control 120For su

essor states of the automaton A on dire
tions not in X, the automatonpropagates these states along the arbitrary dire
tion e0. This is done by the formulasenfor
ed by (2). The idea is that, sin
e in guessing T , we know that these
hildrenare all going to read the full subtree labelled ?, we just have to make sure that Aa

epts this subtree from ea
h of these states. These
opies of the automaton willnot read the tree from this point, but simply guess some move on ? and propagatethese states (as formalized in the last transition above).Let us now turn to formalizing the a

eptan
e
ondition. Let R =f(R1; G1); : : : ; (Rs; Gs)g and F = f(R01; G01); : : : ; (R0t; G0t)g. We augment the state-spa
e of the above automaton (in fa
t only the states that are in (P � Q)) withanother
omponent, whi
h
ontains the set of fun
tions r : f1; : : : sg � f1; : : : ; tg !f0; 1g � f0; 1; 2g. Thus we have states of the form (p; q; r). The transition fun
tionremains the same ex
ept that the r
omponent is updated to r0 as follows: for everyi 2 f1; : : : ; sg, j 2 f1; : : : ; tg,� The �rst
omponent of r0(i; j) is 1 i� the
urrent P -state is in Ri or the
urrentQ-state is in R0j.� The se
ond
omponent of r0(i; j) is de�ned as:{ If se
ond-
omponent of r(i; j) is 0, then r0(i; j) = 1 if the
urrent P -stateis in Gi, else r0(i; j) = 0.{ If se
ond-
omponent of r(i; j) is 1, then r0(i; j) = 2 if the
urrent Q-stateis in G0j, else r0(i; j) = 1.{ If se
ond-
omponent of r(i; j) is 2, then r0(i; j) = 0.Intuitively, the �rst
omponent of r(i; j) turns 1 whenever the
urrent state hitsRi or R0j. The se
ond-
omponent of r(i; j) evolves in su
h a way that it takes thevalue 2 in�nitely often i� the run meets both Gi and G0j in�nitely often.Now, the a

eptan
e
ondition F 0 has, for every i 2 f1; : : : ; sg, j 2 f1; : : : ; tg,the pair (P �Q�W;P �Q�W 0) where W is the set of all fun
tions r where the�rst
omponent of r(i; j) is 1 and W 0 is the set of all fun
tions r where the se
ond
omponent of r(i; j) is 2. A run satis�es su
h a pair i� it meets both Gi and G0jin�nitely often and meets Ri and R0j only �nitely often.F 0 also
ontains, for every (R;G) 2 F , the pair (R [(P � Q); G). These pairsa

ept those runs that eventually settle in the state-spa
e Q and meet the a

ep-

Chapter 6: Distributed Control 121tan
e
ondition of F . 2Theorem 6.4 The
ontrol problem for doubly-
anked pipelines is de
idable.Proof Let the pipeline have k sites, as in Figure 6.2. Starting with the left-site,use Lemma 6.4 to
onstru
t an alternating automaton A1 that a

epts a t1-typetree T1 i� s1
an su

essfully generate a sublanguage of Lang(T1). Convert A1into a nondeterministi
 automaton bA1. Invoking Lemma 6.6 for s2, with bA1 as theautomaton a

epting t1-type trees, we
an
onstru
t an automaton A2 whi
h a

eptsa t2-type tree T2 i� there is a tree T1 whi
h bA1 a

epts and there is a lo
al strategywhi
h wins on Lang(T1) and generates a sublanguage of Lang(T2). Arguing in amanner similar to the one in Theorem 6.3, we
an show that A2 a

epts a tree T2 i�there is a strategy f1 at s1 and a strategy f2 at s2 whi
h work on all possible inputson x1, win lo
ally, and generate a sublanguage of Lang(T2).Invoking Lemma 6.6 repeatedly, we
an walk down the pipeline till we have anautomaton Ak�1 whi
h a

epts a tk�1-type tree Tk�1 i� there are strategies at sitess1; : : : ; sk�1 whi
h win lo
ally and produ
e a sublanguage of Lang(Tk�1) on tk�1.Now using Lemma 6.5,
onstru
t an automaton Ak whi
h a

epts tk�1-type treeswhi
h sk
an win on.We
an now show that L(Ak�1) \ L(Ak) 6= ; i� there is a distributed winningstrategy for the plant. Further, if there is a winning strategy, we
an using the runson regular trees, walk ba
k along the pipeline and synthesize winning strategieswhi
h are represented by �nite-state transition systems. This will then
orrespondto a �nite-state distributed
ontroller. 2We note that sub-ar
hite
tures of doubly-
anked pipelines are either doubly-
anked pipelines or singly-
anked pipelines. Lemma 6.5
an be easily modi�ed tohandle su
h a site. Hen
e we have:Theorem 6.5 Let A be any ar
hite
ture su
h that all
onne
ted
omponents of Aare sub-ar
hite
tures of doubly-
anked pipelines. Then the
ontrol problem for A isde
idable.

Chapter 6: Distributed Control 122
s1 s2s3t1 t2x1 x2

A1 s1 s2 s3t1 t2x1 x2
A2

ss1 s2t1 t2x
A3Figure 6.3: Basi
 unde
idable ar
hite
tures6.5 Lo
al spe
i�
ations: Unde
idable ar
hite
turesWe show now that any ar
hite
ture that is not a sub-ar
hite
ture of a
leanpipeline is unde
idable. We show �rst the unde
idability of three basi
 ar
hite
turesshown in Figure 6.3.The redu
tions will be from the halting problem for deterministi
 Turing ma-
hines starting with a blank tape. Our proofs are extensions of the unde
idabilityproof developed in [PR90℄.Let us �rst assume a standard notion of Turing ma
hines, as say in [HU79℄.A Turing ma
hine working over a tape-alphabet � is a tuple M = (Q; qin;!; qh)where Q is a �nite set of states, qin and qh belong to Q and are the initial arehalting states, respe
tively, and !: Q � � ! Q � � � fL;Rg is the transitionfun
tion. ! (q; a) = (q0; b; d) is interpreted as meaning that if M is in state q andreads the symbol a at the
urrent head position, then it rewrites the
ell with thesymbol b, the tape-head moves one
ell to the right/left (depending on whether d isR or L) and M
hanges its state to q0.A
on�guration of the deterministi
 Turing ma
hineM is a sequen
e C 2 �� �Q ��+ where � is the set of tape symbols and Q is the set of states. If C = x:q:y, withq 2 Q, then the ma
hine is in state q and has x:y written on the tape with the headposition on the
ell after x. The initial
on�guration, Cin = qin � [where qin is theinitial state and [is the spe
ial tape symbol
alled blank. The transition relation` on
on�gurations is de�ned in the obvious way. We say that the ma
hine halts

Chapter 6: Distributed Control 123on the blank-tape if Cin `� Ch where Ch = qh � y with qh being the designated haltstate and y 2 �+. We assume that the tape-head of M never falls o� the left-end ofthe tape.A
ru
ial me
hanism used in the proofs will be the en
oding of a program at asite so that it generates sequen
es of
on�gurations when
ontrolled by a strategy.Let us explain this �rst before going into the proofs. Let s be a site with an input
hannel z (z
ould be internal or external) and an output
hannel t. In order to haves generate
on�gurations on the
hannel t, we equip the domain of values for
hannelt to in
lude a suitable vo
abulary to des
ribe
on�gurations. In parti
ular,
hannelt will be able to take values in � and Q and also the spe
ial symbols $ and �. Theinput
hannel z
an take at least the two values S (whi
h means \Start outputtinga new
on�guration") and N (whi
h means \output the Next symbol of the
urrent
on�guration"). The site s will host a program P whi
h will behave as follows. Onre
eiving S, the program will output $, and on being prompted repeatedly with asequen
e of N 's, will output a
on�guration (i.e. a word in �� �Q � �+). At the endof the
on�guration, it will output a $ again and wait for the next S input. If atthis point it gets N , then it simply outputs the symbol �. The �rst
on�gurationoutput by the program is always Cin.The program P will, of
ourse, be �nite state and will not en
ode the exa
t
on�gurations generated. It will just be a transition system that allows, when fed aninput S when it is not generating a
on�guration, to generate any word in �� �Q ��+.However, the program does enfor
e the
ondition that no matter how many N 's arefed in the beginning, the �rst
on�guration output is the initial
on�guration. Notethat the program
annot by itself for
e the
on�guration output to even be �nite.What is important is that a
ontroller strategy working on the program must beable to generate any sequen
e of
on�gurations, when prompted by the
hannel z,as des
ribed above.If something abnormal o

urs (for example, if while in the middle of outputtinga
on�guration, the program re
eives S as input), we
an assume that it goes toa spe
ial state qwin where it is stu
k and where, on any input, it outputs a spe
ialsymbol win on
hannel t.Note that a strategy working on the program
ould generate di�erent sequen
esof
on�gurations, depending on how long the delay was in between
on�gurations.Thus the behaviour of the
ontrolled program is best viewed as a tree of
on�gura-

Chapter 6: Distributed Control 124tions.Let us now prove the �rst unde
idable ar
hite
ture:Lemma 6.7 The
ontrol problem for the ar
hite
ture A1 is unde
idable.Proof Let us �rst note that there is a simple proof of this using the fa
t thatthe realizability/
ontrol problem for the two-site dis
onne
ted ar
hite
ture A? isunde
idable for global spe
i�
ations, a result proved in [PR90℄. We
an redu
e aninstan
e I of the
ontrol problem for A? to an instan
e I 0 of the
ontrol problemon A1 by setting the programs at s1 and s2 to be the two programs assigned tothe sites in I. We
an now engineer the programs at s1 and s2 so that they sendthe
urrent states they are in, along the internal
hannel, to s3 at every move. Thesite s3 now reads the global behaviour of the programs and we
an suitably state awinning
ondition on s3 so that the program at s3 wins i� the global behaviour ofs1 and s2 meets the global spe
i�
ation mentioned in I.We however go through a longer proof here by in
orporating the proof in [PR90℄to our setting sin
e understanding this will be a stepping-stone in proving the otherunde
idability results.Given a Turing ma
hine M we
onstru
t an instan
e of the
ontrol problem onA1 as follows. The sites s1 and s2 will host programs so that a
ontroller working onthem
an generate
on�guration sequen
es ofM , as des
ribed earlier. The
hannelsx1 and x2 hen
e
an
arry values S and N and the sites s1 and s2 will produ
e
on�guration sequen
es on t1 and t2 respe
tively.The site s3 will pro
ess the
on�gurations sent by s2 and s3 as follows. Suppose,starting from the same time instant, s1 starts sending C and s2 starts sending C 0.If s1 and s2 are both outputting the ith
on�guration for some i, then s3
he
kswhether C = C 0. If not, it goes to a state from where it
annot win. If s2 leads s1by exa
tly one
on�guration, then s3
he
ks whether C ` C 0. If not, it again goesto a losing state. The behaviour for the
ase when s1 leads s2 by one
on�gurationis analogous. If it so happens that at a point s1 or s2 leads the other by morethan one
on�guration, then s3 starts to ignore its inputs and goes to a state fromwhi
h it lo
ally wins. Note that the program at s3 does not need to
ount the exa
tnumber of
on�gurations it has seen, but just maintain whether the
on�gurationsare pro
eeding together, or if not, whether one of them leads the other by pre
iselyone
on�guration (and if so, whi
h). The
ru
ial fa
t is that this
an be a
hievedby s3 with a bounded amount of memory.

Chapter 6: Distributed Control 125If s3 re
eives win from either of the other two sites, it goes to a state whereit always wins. Finally, s3 will
he
k whether any of the sites output the halting
on�guration | if they do, it enters a winning state.The site s1 and s2 are
ontrollable while s3 is not (i.e. the program at s3 isdeterministi
). The lo
al winning
ondition will be trivial for s1 and s2 while ins3 it will demand that it wins if it enters the winning states mentioned above (e.g.when the
on�gurations move more than one
on�guration apart or when the sites3 reads a halting
on�guration from s1 or s2).Let us now look
losely at how a pair of strategies at s1 and s2
an hope to meetthe lo
al spe
i�
ation of s3. We
laim that for them to win, they must both outputthe proper
on�guration sequen
e whi
h the Turing ma
hine goes through startingfrom the initial
on�guration. In other words, we
laim that if a pair of strate-gies doesn't do this, it will de�nitely not meet the spe
i�
ation (we are not sayingyet anything about what happens when they do output the
orre
t
on�gurationsequen
es).For assume that a pair of strategies at s1 and s2 do not output the proper
on�guration sequen
e. Then, the environment
an suitably s
hedule the outputsof the
on�gurations to make the
ontroller lose. For example, let the �rst site togo o� the
orre
t
on�guration sequen
e be s1. That is, there is a sequen
e of S'sand N 's of length i su
h that after the i'th input, s1 outputs the �rst symbol thatis a wrong
on�guration while for all possible sequen
es of S and N of length i, the
on�guration sequen
es output by s2 all
onform to M .Let s1 on that parti
ular sequen
e generate a
on�guration sequen
eC1; C2; : : : Cn; C 0 where C1; : : : ; Cn is the
orre
t run of the ma
hine and Cn 6` C 0.The environment
an now let s1 run one
on�guration ahead of s2. Then, at somepoint, s3 will read Cn from s2 and C 0 from s1 simultaneously. The
he
k Cn ` C 0will fail, and s3 will go to a state from where the
ontroller
annot win.Now, if the strategies do indeed play the proper sequen
es of M , then in orderto win, s3 must see the halting
on�guration (in the s
enario where the the environ-ment for
es the
on�gurations to pro
eed together, say) It follows then that thereis a distributed
ontroller for this plant i� the Turing ma
hine halts. 2Note that in the redu
tion above, if there was a
ontroller for the plant that meetsthe spe
i�
ation, then M halts and one
an in fa
t build a �nite-state
ontroller for

Chapter 6: Distributed Control 126the programs at s1 and s2. Hen
e it follows that M halts i� there is a �nite-state
ontroller for the plant that meets the spe
i�
ation; this shows that the
ontrolproblem is unde
idable for A1 even if we are seeking only �nite-state
ontrollers.Let us now move on to the ar
hite
ture A2. Here, the di�eren
e from the previoussetting is that we no longer have a site that
an globally observe the plant whilemaintaining that the other two sites
an
ommuni
ate \se
retly" to it. (If we
hooses3 to be the global observer, then though s1 and s2
an pass on information to s3,s2 will always be able to read the message from s1 to s3, and
hange its behavioura

ordingly).In order to get around this, we will use s1 and s3 as the independent agents (anal-ogous to s1 and s2 in A1) whi
h will generate
on�guration sequen
es, while s2 willbe the one that
he
ks these sequen
es. However, note that s3
annot
ommuni
ateto s2.Let us now introdu
e a me
hanism whereby a site
an \a

ept" sequen
es of
on�gurations rather than generate them. Let s be a site with no output
hanneland a single internal input
hannel t. As usual,
hannel t will
arry values S and Nin order to prompt s to generate sequen
es. However, when s starts a
on�guration,it will generate it one unit time in advan
e and keep the generated symbol of �[Qin its state-spa
e. It
an then pro
eed from this state only if the input it re
eives ont is the same as the symbol it has
ommitted to. For example, at a parti
ular point,on prompting, let us say that s
ommits that the next symbol it will generate is a.Then the program at s moves to a state of the form (q; a). At the next instant, s
an move from (q; a) only if it re
eives a as input on t. It then pro
eeds to
ommitthe next symbol. If the expe
ted signal is not read, then s will go to a state whereit loses. This me
hanism
an be viewed as a way so that a strategy
an �x a treeof
on�gurations whi
h a site \generates" | and the program will win only if thesequen
es generated on t
onform to these sequen
es.Lemma 6.8 The
ontrol problem for the ar
hite
ture A2 is unde
idable.Proof Site s1 will output
on�gurations on t1 when prompted by the environmenton the
hannel x1. Site s3 will, when prompted by s2 on t2, \a

ept"
on�gurations.Site s2
an go into two modes, A and B, the de
ision being taken a

ording tothe �rst environment input on x2. In mode A, the program at s2 simply passes the
on�gurations whi
h it re
eives on t1 to t2. In Mode B, the program �rst outputs

Chapter 6: Distributed Control 127the initial
on�guration to s3 and after that, ea
h time it re
eives a
on�gurationC on t, it propagates online C 0 to s3 where C ` C 0. (Note that a �nite transitionsystem
an indeed generate C 0 from C online, with a
onstant delay, say three timeunits).Re
all that if s3 re
eives a symbol it has not
ommitted to, it goes to a reje
tstate. Mode A ensures that the two sites output/a

ept the same
on�gurationsequen
es while Mode B ensures that if the ith
on�guration output by s1 is C andthe (i + 1)th
on�guration a

epted by s2 is C 0, then C ` C 0. So the only waythe
ontroller
an hope to win is by s1 and s3 a

epting the
on�guration sequen
eof M . By introdu
ing a winning
ondition on s2 whi
h makes sure that s2 lo
allywins only if it outputs the halting
on�guration, one
an show that the plant has adistributed
ontroller i� M halts on the blank tape. 2Lemma 6.9 The
ontrol problem for the ar
hite
ture A3 is unde
idable.Proof As done by s3 of A2 in the previous lemma, s1 and s2 will now a

ept
on�gurations of M . Site s
an be in two modes, A and B, the mode
hosen by the�rst input on x. In Mode A, the program at s1 passes the initial
on�guration Cinto s1 and makes s2 wait. Then, while getting as input an arbitrary
on�gurationC from the environment on x, it passes C to s2 and simultaneously passes C 0 to s1where C ` C 0. Mode B is analogous with the roles of s1 and s2 inter
hanged.Sites s1 and s2 a

ept
on�guration sequen
es and when they get an input whi
his not what they have
ommitted to a

ept, they go to a stu
k state stk . If they arenot in this state, we say they are unstu
k.Now, assume that at least one of the sites s1 and s2 doesn't a

ept the
orre
t
on�guration | say s2 is the one whi
h a

epts the smallest wrong sequen
e. Thenthe environment
an for
e s1 to be unstu
k and get s2 stu
k by playing in modeB and sending the proper sequen
e of
on�gurations of M to s1 and s2. If s1 wasthe one that a

epted the smallest wrong sequen
e, then the environment
an gets1 stu
k while keeping s2 unstu
k, by playing in mode A. Note, however, that nomatter how the
ontroller plays, the environment
an for
e both s1 and s2 to getstu
k by feeding a
ompletely unrelated
on�guration to s. Also, if programs at s1and s2 a

ept the
orre
t run of M , then there is no way for the environment to getthe site s
heduled earlier to be unstu
k and the site s
heduled later to get stu
k, i.e.

Chapter 6: Distributed Control 128it is impossible to go into mode A and keep s1 unstu
k and get s2 stu
k or go intomode B and get s1 stu
k and keep s2 unstu
k.Hen
e, to for
e s1 and s2 to a

ept the
orre
t
on�guration sequen
e of M , wewould like the environment to win i� it
an get the site s
heduled �rst to be unstu
kand get the other stu
k. This kind of
ondition, however, is not realizable as lo
alwinning
onditions on s1 and s2. The tri
k now is to have another mode C for swhere the
ontroller is for
ed to emulate the
ombined (produ
t) behaviour of s1and s2.In mode C, the program will enter a zone where the state-spa
e is the produ
tstate-spa
es of the programs at s1 and s2. This zone of the program will in fa
t be
ontrollable and we would like to enfor
e the
ondition that a winning strategy fors must
ontrol it in a manner su
h that it exa
tly mimi
s the (
ombined) behaviourof s1 and s2. Just after entering mode C, the program will, depending on the nextinput on x, de
ide whether it enters the submode A or B. Hen
e it goes to amode CA or CB. In mode CA, it virtually passes the initial
on�guration to its �rst
omponent (that
orresponding to s1) and makes the se
ond
omponent wait. Thestrategy for s at this point has to de
ide how the
omponent states will evolve. (Notethat this strategy has a

ess to a lot of information | the mode of the state, theexa
t produ
t state, et
. Its
hoi
es need not be \independently" made for the two
omponents). When the
omponents evolve, they
ommit to
ertain symbols and sis for
ed, by the stru
ture of the program, to send these values along the
hannelst1 and t2. The
ru
ial point is that the sites s1 and s2 are oblivious to these modesand have to behave the same way on all modes.At any point in this intera
tion, the environment
an
hoose to send a spe
ialsymbol
he
k to s. When s in mode C re
eives this, it immediately sends the valueof the
urrent lo
al states of the programs of s1 and s2 along the
hannels t1 and t2.The programs of s1 and s2 are augmented in su
h a way that on re
eiving a stateof the program, they go to a state that is winning if it is the same state they are in;otherwise they go to a losing state.Now, if a strategy at s doesn't mimi
 the exa
t behaviour of the strategies at s1and s2, then it is easy to see that the environment
an play in mode C and makethe strategy lose at s1 or s2.The winning
ondition
an now be stated on the state-spa
e of s in the zone
orresponding to mode C, by allowing a behaviour to be winning for the environ-

Chapter 6: Distributed Control 129ment only if it rea
hes a state where the program is in mode CA, the
omponentof s1 is unstu
k the
omponent for s2 is stu
k, or, the program is in mode CB, the
omponent of s2 is unstu
k the
omponent for s1 is stu
k. One
an make make surethat one of the sites, say s1, wins when it a

epts the halting
on�guration. One
an show now that a distributed
ontroller exists i� M halts on the blank tape. 2Though we have proved the unde
idability result only for three ar
hite
tures,they show the unde
idability of all other ar
hite
tures as well. Using Lemma 6.7we
an show that any ar
hite
ture A0 whi
h has a site s with two internal
hannelsis unde
idable. Let s0 be su
h a site with s001 and s002 su
h that there are internal
hannels from s001 and s002 to s0. The idea is to pi
k a minimal site s01 above s001 anda minimal site s02 above s002. One
an redu
e the
ontrol problem for A1 to su
h anar
hite
ture by setting the programs at sites s3, s1 and s2 in A1 to be the programsat s0, s01 and s02 in A0, respe
tively. We
an make the rest of the sites \dummy" bymaking them just pass their input to their output and always win lo
ally.If there is only one minimal site ~s above s001 and it is the only minimal site aboves002 as well, then it must be the
ase that there is a path from ~s to a site ~s0 su
hthat ~s0 has two internal output
hannels to sites s01 and s02 that are above s001 and s002,respe
tively. We
an now set the programs of s1 and s2 in A1 to be the programsat s001 and s002, set the program at s3 in A1 to be the program at site s0, make ~s takethe inputs for both sites s001 and s002 and propagate it all the way to ~s0; the programat ~s0 will simply separate the inputs and feed them to s01 and s02 and the programsat s01 and s02 will propagate these inputs to s001 and s002 respe
tively.Similarly, using Lemma 6.9 we
an show that any ar
hite
ture whi
h has a sitewith two internal output
hannels is unde
idable.What we are left with are pipelines. Sin
e we require ea
h pro
ess to have aninput
hannel, the left-site of the pipeline must have an external input
hannel. Letus have a pipeline with sites fs01; : : : ; s0kg, with s01 having an external input
hanneland with internal
hannels from s0i to s0i+1 for ea
h 0 < i < k. If k = 2 or if s0k isthe only other site whi
h has an external input, then it is a sub-ar
hite
ture of adoubly-
anked pipeline (and hen
e the
ontrol problem is de
idable). So let k > 2and let s0i have an external input
hannel, where 1 < i < k. Then, by making thesites s0j \dummy", where 1 < j < i or i < j < k, we
an redu
e the
ontrol problemfor A2 to the
ontrol problem for this pipeline, by
oding the program at s1 into s01,

Chapter 6: Distributed Control 130the program at s2 into s0i and the program at s3 into s0k. Hen
e we have:Theorem 6.6 If A is an ar
hite
ture whi
h has a
onne
ted
omponent whi
h isnot a sub-ar
hite
ture of a doubly-
anked pipeline, then the
ontrol problem for A isunde
idable. 2All the ar
hite
tures shown to be unde
idable above
an be shown to be unde-
idable even if we are looking for only �nite-state
ontrollers | this is so be
ausein all the redu
tions above, if there was a
ontroller, then there was always a �nite-state one. The results above
an be also suitably
hanged to show that even forweaker winning
onditions su
h as B�u
hi,
o-B�u
hi, or even safety
onditions, thear
hite
tures remain unde
idable.The proof of Lemma 6.9 shows a method to
onvert
ertain global spe
i�
ationsto lo
al ones. We
an use this te
hnique to prove a lower bound on the
omplexityof the
ontrol problem on the de
idable ar
hite
tures shown in Se
tion 6.4.Note the our de
ision pro
edure for the doubly-
anked pipeline works in timethat is non-elementary in the number of sites in the pipeline. This is be
ause the op-eration of
onverting alternating automata to nondeterministi
 automata when wewalk down the pipeline (see Theorem 6.4) blows up the state-spa
e of the automatonby one exponential ea
h time. In the setting of global spe
i�
ations too, the
om-plexity of de
idability of singly-
anked pipelines is non-elementary in the numberof sites, as shown in [PR90℄. Pnueli and Rosner show, using results in [PR79℄, thatthis non-elementary
omplexity is unavoidable as well.Let us
onsider singly-
anked pipelines. Using the fa
t that for solving realiz-ability for these pipelines against global spe
i�
ations needs time non-elementary inthe number of sites, we
an show that this lower bound extends to
ontrol-synthesisfor lo
al spe
i�
ations on these ar
hite
tures as well. First, it is easy to see that therealizability problem for a pipeline redu
es to that of
ontrol on the same ar
hite
-ture and hen
e one needs time non-elementary in the number of sites for the
ontrolproblem against global spe
i�
ations.Now, we
an redu
e a
ontrol problem on these pipelines against global spe
i�
a-tions to a
ontrol problem on these pipelines against lo
al spe
i�
ations. Consider a
ontrol problem on a k-site (fs1; : : : ; skg) singly-
anked pipeline with a global spe
-i�
ation. We redu
e this to a
ontrol problem on the (k + 1)-site (fs01; : : : ; s0k+1g)singly-
anked pipeline with lo
al spe
i�
ations. The program at s0i is inherited from

Chapter 6: Distributed Control 131the program at site si�1, for ea
h i 2 f2; : : : ; k+1g. Site s1 will behave in two modesA and C; the mode it goes into will be de
ided by the �rst environment input. Inmode A, the input it gets is meant for s02 (the external input to s1 in the problemwe started with) and hen
e it passes it on to the site s02.In mode C, it behaves like the program at s in the proof of Lemma 6.9: it entersa zone where it emulates the produ
t behaviour of the programs at sites s1; : : : ; sk.At any point, if it gets a spe
ial symbol
he
k from the environment, it sends its
urrent state along the pipeline. The programs at sites s02; : : : ; s0k are modi�ed sothat when they re
eive su
h a global state, they go to a state where the system losesif the state doesn't mat
h the state they are in. If it does mat
h, they move to astate where the system wins and pass the state to the next site in the pipeline.Using arguments similar to that of Lemma 6.9, one
an show that for any winningstrategy, the lo
al strategy at s01 must emulate the strategies at s02; : : : ; s0k+1 when s01is in mode C. One
an now en
ode the global spe
i�
ation for s1; : : : ; sk as a lo
alspe
i�
ation on s01 and show that the redu
tion preserves the property of existen
eof a
ontroller.Though this redu
tion is exponential in the number of sites, it shows that the
omplexity of the
ontrol problem for singly-
anked ar
hite
tures is non-elementaryin the number of sites. The same lower bound follows for doubly-
anked ar
hite
-tures as one
an engineer the program at the last site to ignore its external input.Finally, it is easy to see that for any de
idable ar
hite
ture, the
ontrol problemmust take time non-elementary in the maximum number of sites in a
onne
ted
omponent of the ar
hite
ture.6.6 Con
lusionsIn this
hapter, we have studied the problem of
ontrol-synthesis in a distributedbut syn
hronous setting for lo
al spe
i�
ations and
hara
terized the exa
t
lass ofar
hite
tures for whi
h the problem is de
idable.We
ould extend our study of distributed
ontrollers for ar
hite
tures that arenot a
y
li
 | for example, rings. In a re
ent paper [KV01℄, the
ontrol problem forthe singly-
anked pipeline with other extra internal
hannels thrown in, has beenstudied for global spe
i�
ations, and shown to be de
idable. However, this is notsurprising as one
an show (as observed in [KV01℄ as well) that the extra internal

Chapter 6: Distributed Control 132
hannels
annot
hange the answer to the problem | there is a
ontroller on su
h anar
hite
ture i� there is one for the singly-
anked pipeline
orresponding to it. Thisis be
ause the sites have stri
tly de
reasing information of the global state of thesystem and a site knows
ompletely the
on�gurations of the programs at all sitesdown the pipeline. Hen
e adding internal
hannels that go ba
kward on the pipeline
an
arry no useful information. (Adding extra internal edges that go forward willmake them unde
idable, even for lo
al spe
i�
ations, as we have shown.)One
an also study the
ontrol problem for lo
al spe
i�
ations for ar
hite
turesthat have
y
les. However, one
an show, using our results, that even here mostar
hite
tures are unde
idable. An important ar
hite
ture for whi
h the problem isstill open is the two-site ring (i.e. the ar
hite
ture where there are two sites, bothhaving external input
hannels and having a
hannel both ways between them).For rings with more than two sites (where at least two sites have external input
hannels), one
an show that the problem is unde
idable.Another dire
tion to explore would be to try and extend the lo
al spe
i�
ations tomore powerful spe
i�
ations that respe
t the
onne
tivity in the ar
hite
ture but forwhi
h the
ontrol-problem remains de
idable (for the
lass of de
idable ar
hite
turesfor lo
al spe
i�
ations). One su
h me
hanism would be to have a set of tuples oflo
al winning
onditions | a behaviour of the plant satis�es this spe
i�
ation ifthere is some tuple in the set for whi
h the lo
al winning
onditions are met. Thereare logi
s like Produ
t-LTL [Thi94℄, for example,, that o�er a lo
alized temporallogi
 that
an be en
oded in this manner.A natural extension of our work would be to
onsider lo
al bran
hing-time win-ning
onditions instead of linear-time winning
onditions. Again, in [KV01℄, Kupfer-man and Vardi extend the de
idability results of [PR90℄ for singly-
anked ar
hite
-tures to global bran
hing-time spe
i�
ations. As for lo
al spe
i�
ations, the resultsfor doubly-
anked pipelines don't seem to extend to the bran
hing-time setting.The
ru
ial diÆ
ulty lies in Lemma 6.4 where it seems to be hard to a

ept exa
tlanguages rather than sublanguages. Note that in Theorem 6.3, we
ru
ially use thefa
t that the spe
i�
ation is linear-time. We
onje
ture that the
ontrol problem forbran
hing-time logi
s (say for CTL? adapted in this setting) would be unde
idablefor doubly-
anked pipelines.

Chapter 7
Con
lusions

In the midst of the word he was trying to say,In the midst of his laughter and glee,He had softly and suddenly vanished away|For the Snark was a Boojum, you see.| The Hunting of the Snark, Lewis Caroll
In summary, we have shown the following results in this thesis:- The
ontrol synthesis problem was studied for simulations and bisimulations andit was shown that one
an solve this in polynomial time. Moreover, whenevera
ontroller exists, one
an synthesize a
ontroller of polynomial size withinthe same time-bounds.- The
ontrol synthesis and model-
he
king problems for asyn
hronous simulationsis unde
idable. The unde
idability extends even to very simple
lasses of
on
urrent systems.- The
ontrol and realizability problems for the bran
hing-time temporal logi
swere studied. For universal environments, these problems redu
e to module-
he
king and hen
e are, for CTL and CTL?, EXPTIME-
omplete and 2-EXPTIME-
omplete, respe
tively [KV96℄. The
omplexity of these problems in rea
tive133

Chapter 7: Con
lusions 134environments be
ome exponentially harder | they are 2-EXPTIME-
ompletefor CTL and 3-EXPTIME-
omplete for CTL?.- We also investigated the
ontrol-synthesis problem in a distributed setting, wherethe pro
esses
ommuni
ate with ea
h other in a syn
hronous fashion and alsointera
t with their lo
al environments a

ording to an ar
hite
ture. From theresults of [PR90℄, it follows that for global spe
i�
ations, the only de
idablear
hite
ture is the singly-
anked pipeline. We studied the problem for lo
alspe
i�
ations and showed that the
lass of de
idable ar
hite
tures (mildly)in
reases. The
ontrol problem for an ar
hite
ture for lo
al spe
i�
ations isde
idable i� ea
h
onne
ted
omponent of it is a sub-ar
hite
ture of a doubly-
anked pipeline.Future dire
tionsApart from the various open problems and dire
tions mentioned in the
on
lud-ing se
tions of the earlier
hapters, a theme that universally begs attention is thatof partial observation. In many settings, the
ontroller
annot observe all the movesof the plant and has to give its advi
e based on only the partial information ithas about it [KS95, KS97℄. A related te
hni
ally similar work is that
on
erningrealizability under in
omplete information studied in various papers by Kupfermanand Vardi [KV97b, KV99a℄. The
ontrol-synthesis problem for simulations, bisim-ulations, bran
hing-time logi
s and distributed systems, in the setting of partialobservation, needs to be explored.Another aspe
t of
ontrol usually studied is that of performan
e evaluation of
ontrollers. In settings involving simple state-based internal spe
i�
ations, one
ande�ne the notion of a minimally restri
tive
ontroller and synthesize it [CL99℄. How-ever, in many
ases involving liveness
onditions, as in temporal logi
s, su
h a naiveway of de�ning minimally restri
tive
ontrollers is useless as they almost never exist.However, one does require a fair notion of when a
ontroller is \better" than anothersu
h that it is possible to synthesize the \best"
ontroller.The results on simulations and bisimulations of Chapter 2 are
onspi
uous inthat they are not solved using automata-theoreti
 methods. Of
ourse, one
oulduse tree-automata here as well | but, a naive way of using them, would not giveus polynomial-time de
idability. The most natural way to
ode the problem into an

Chapter 7: Con
lusions 135automaton would involve the automaton guessing the moves enabled and how theywill be simulated and this itself would
ause an exponential blow-up. Of
ourse, onejust needs to de�ne a
lass of automata whi
h are suited for handling simulations andbisimulations and use the eÆ
ient me
hanisms employed in Chapter 2 to get optimalresults. We feel that this requires further study and a de�nition of tree automatawhi
h, by their very stru
ture, a

ept only bisimilar sets of trees and followed by aformal study of them, will be rewarding.The results in Chapter 6 also suggest many extensions. The study of distributed
ontrollers for sub
lasses of bran
hing-time spe
i�
ations would be interesting. Amore interesting question is whether one
an restri
t the
ontrol problem in a dif-ferent way (say by redu
ing the power of the
ontroller's memory) in order to getde
idability a
ross a more generous
lass of ar
hite
tures.A serious drawba
k of our distributed-
ontrol model is that the
ommuni
ationis syn
hronous. In most pra
ti
al situations (say in proto
ols, et
.), the pro
esses
annot hope to
ommuni
ate in this manner but only by message-passing along
hannels, where messages
an take arbitrary time to rea
h their destination. Oursetting is only distributed in nature and it is important to bring
on
urren
y intoplay as well, and try to synthesize
ontrollers in su
h a setting. A possible pla
e tostart is the work by Pnueli and Rosner on the synthesis of asyn
hronous rea
tivemodules [PR89b℄.The
lose link between synthesis and games extends to the distributed setting,where we
an
onsider designing a distributed
ontroller as �nding strategies inmulti-party
ooperative games studied in [PR79, APR91℄. The authors in theseworks show that \hierar
hi
al games", where the information
ow pro
eeds in onedire
tion, is de
idable. Our results show that there
an exist settings where there isno su
h hierar
hy, where two players
an have in
omplete information about ea
hother, and yet the problem of �nding winning strategies is de
idable. It would beinteresting to study in more generality the games that
orrespond to the
ontrolproblem in our setting, and �nd the real reason why su
h games turn out to bede
idable. Proving our results in the more general framework of multi-player gameswill give a better understanding of the issues involved and may �nd appli
ations inother areas as well.Yet another general extension would be to study
ontrol-synthesis for systemswhere the behaviours en
ode not only the order in whi
h events o

ur, but also at the

Chapter 7: Con
lusions 136exa
t times at whi
h they o

ur as well. There are fairly robust me
hanisms in
om-puter s
ien
e su
h as timed-automata [AD94℄ using whi
h one
an model and analyzetimed-systems. The problem of
ontrol synthesis for su
h systems against linear-timespe
i�
ations has been undertaken in re
ent works [AMP95, AMPS98, HW91℄. Ex-tension of these results to the the setting where spe
i�
ations are external or wherethe setting is distributed, would be rewarding in terms of theoreti
al understandingas well as pra
ti
al use.Rea
hing out to handle more
ontinuous forms of behaviour
an be stret
hedeven further | for example, in the
ontrol of hybrid systems, say using the model ofhybrid automata [Hen96℄. However, these models, though interesting and extremelyuseful, seem hard at present to analyze, let alone a
hieve automated
ontrol.On the pra
ti
al side,
onsiderable e�ort is needed in terms of building toolsand heuristi
s to do
ontrol-synthesis. There has been very little implementation ofprograms for automated synthesis of
ontrollers and this situation needs to improve.The high-
omplexity of
ontrol-synthesis should not deter trying big examples, asit is not
lear how the
omplexity will play out in pra
ti
e. The
omplexity is alsousually high only in terms of the size of the spe
i�
ation, and not the plant itself,and hen
e might be pra
ti
ally feasible. We hope that the work presented in thisthesis will one day �nd uses in pra
ti
al appli
ations in industry.

Appendix
Unde
idability of simulation for produ
ts of systemsHere we will show how to realize the plants and spe
i�
ations given in Chap-ter 3 as a restri
ted
lass of asyn
hronous transition systems | those whi
h
an bedes
ribed as syn
hronized produ
ts of ordinary transition systems.A �-labeled deterministi
 syn
hronized produ
t system is a stru
ture (fPigni=1; ')whi
h
onsists a set of deterministi
 transition systems (pro
esses) Pi =(Qi; Ei; Ti; qiin). The Pi's are supposed to represent sequential pro
esses whi
h work
on
urrently and independently while syn
hronizing on
ommon events. ' is alabeling fun
tion ' : SEi ! �. The asyn
hronous transition system whi
h
ap-tures the behaviours of su
h a system is de�ned as the following \global" systemTS = (Q;E; T; qin; '; I) where:� Q = Q1 �Q2 � : : : Qn� E = SEi� qin = (q1in; : : : ; qnin)� (q1; : : : ; qn) e�! (q01; : : : q0n) i�8i : e 2 Ei) (qi e�! q0i) is in Pi and8i : e 62 Ei) qi = q0i� e1 I e2 i� fi j e1 2 Eig \ fj j e2 2 Ejg = ;137

Appendix : 138It is easy to see that the system de�ned above is indeed an asyn
hronous tran-sition system.The
onstru
tion of the plant TS p.TS p
an be realised as a produ
t of the following pro
esses:� A pro
ess R = (fR0; R1; R2g; fr0; r1; r2g; TR; R0) where Tr has the transitionsR0 r0�! R1 r1�! R2 r2�! R0� A pro
ess U = (fU0; U1; U2g; fu0; u1; u2g; UR; U0) where Ur has the transitionsU0 u0�! U1 u1�! U2 u2�! U0� For every i; j 2 f0; 1; 2g we have a pro
essRij = (fq1; q2; q3g; fij; ri+1; ri�1g; T; qin) where T has the transitions:q1 ri+1�! q2 ri�1�! q1 q1 ri�1�! q1 q2 ri+1�! q2 q1 ij�! q3qin = q1 if i = 0 and qin = q2 if i 6= 0� For every i; j 2 f0; 1; 2g we have a pro
essUij = (fq1; q2; q3g; fij; uj+1; uj�1g; T; qin) where T has the transitions:q1 uj+1�! q2 uj�1�! q1 q1 uj�1�! q1 q2 uj+1�! q2 q1 ij�! q3qin = q1 if j = 0 and qin = q2 if j 6= 0� For every i; j; i0; j 0 2 f0; 1; 2g su
h that ij and i0j 0 are distin
t events andit is not the
ase that ij I i0j 0 (as de�ned in the
onstru
tion), we have apro
ess (fq1; q2; q3g; fij; i0j 0g; T; q1) where T has the transitions: q1 ij�! q2 andq1 i0j0�! q3The
onstru
tion of the spe
i�
ation TS s.TS s
an be realised as a produ
t of the following pro
esses:� The same pro
esses R and U as in the de�nition of TS p� For every (
; ij)-event in TS s, we have a pro
essR(
;ij) = (fq1; q2; q3g; f(
; ij); ri+1; ri�1g; T; qin) where T has the transitions:q1 ri+1�! q2 ri�1�! q1 q1 ri�1�! q1 q2 ri+1�! q2 q1 (
;ij)�! q3qin = q1 if (i = 0 and
 =
in)qin = q2 if (i 6= 0 or
 6=
in)

Appendix : 139� For every (
; ij)-event in TS s, we have a pro
essU(
;ij) = (fq1; q2; q3g; f(
; ij); uj+1; uj�1g; T; qin) where T has the transitions:q1 uj+1�! q2 uj�1�! q1 q1 uj�1�! q1 q2 uj+1�! q2 q1 (
;ij)�! q3qin = q1 if (j = 0 and
 =
in)qin = q2 if (j 6= 0 or
 6=
in)� For every pair of distin
t events (
; ij) and (
0; i0j 0) in TS s su
h that it isnot the
ase that (
; ij) I (
0; i0j 0) (as de�ned in the
onstru
tion), we have apro
ess (fq1; q2; q3g; f(
; ij); (
0; i0j 0)g; T; q1) where T has the transitions:q1 (
;ij)�! q2 and q1 (
0;i0j0)�! q3It is tedious but routine to verify that the produ
t systems given above dogenerate the asyn
hronous transition systems we need.Unde
idability of
ontroller synthesis for a restri
ted
lassHere we
onsider asyn
hronous transition systems of the form TS =(Q;E; T; qin; '; I; bI) where TS = (Q;E; T; qin; ') is an asyn
hronous transition sys-tem and bI � �� � is an irre
exive symmetri
 independen
e relation over � whi
hsatis�es the following property: 8e1; e2 2 E, e1 I e2) '(e1)bI'(e2).Note that any transition system TS = (Q;E; T; qin; '; I)
an be expressed as su
ha restri
ted transition system TS 0 = (Q;E; T; qin; '; I; bI) by setting bI = f(a; a0) ja; a0 2 �; a 6= a0g, provided that every two events e and e0 whi
h have the same labelare dependent.In the proof of unde
idability of
he
king for simulations in Chapter 3, observethat any two events of the same label are indeed dependent. Hen
e simulation
he
king for the restri
ted
lass is unde
idable as well.Now we show that the
ontroller synthesis problem is also unde
idable for this
lass by redu
ing the simulation-
he
king problem to this problem.Let TS p = (Qp; Ep; Tp; qpin; 'p; Ip; bIp) and TS s = (Qs; Es; Ts; qsin; 's; Is; bIs) be twosu
h systems. We will
onstru
t TS 0p and TS 0s su
h that there is a simulation fromUf (TS p) to Uf (TS s) i� there is a
ontroller for (TS 0p;TS 0s).We �rst expand our alphabet. TS 0p and TS 0s will be �0-labelled transition systemswhere �0 = �? [�1, where �? = � [f?g and �1 = fa0 j a 2 �?g. Thus, for everya
tion a in �? we have introdu
ed a new a
tion a0.

Appendix : 140Assume without loss of generality that �0 as well as 2�0 are disjoint from Qp, Qs,Ep and Es. Then de�ne TS 0p = (Q0p; E 0p; T 0p; qp0in; '0p; I 0p; bI 0p) as follows:� Q0p = Qp [fqa; qa0 ; qa;a0 j a 2 �g [fX j X is a nonempty subset of �1g [fq?; q??g� E 0p = Ep [�0 [fea0 j a 2 �?g [f?00g� '0p(e) = 'p(e) if e 2 Ep; '0p(e) = a if e = a 2 �0; '0p(e) = a0 if e = ea0;'0p(?00) = ?.� qp0in = qpin� T 0p = Tp[f(q1; a; qa); (q1;ea0; qa0); (qa;ea0; qa;a0); (qa0 ; a; qa;a0) j q1 2 Qp; a 2 �?g [f(q1; a0; fa0g) j q1 2 Qp and a 2 �?g [f(X; a0; Y) j X; Y are non-empty subsets of �1 and a0 62 X andY = X [fa0gg [f(q1; ?00; q?) j q1 2 Qpg [f(q?; ?00; q??)g� I 0p = Ip [f(a;ea0) j a 2 �?g [f(a0; b0) j a 6= b and a; b 2 �?g:� bI 0p = bIp [f(a; a0) j a 2 �?g [f(a0; b0) j a 6= b and a; b 2 �?gTS 0s is de�ned in a similar way. Note that the
onstru
tion preserves the propertyrequired to stay within this
lass.Again, using the basi
 properties of asyn
hronous
ontrollers, we
an prove thatany
ontroller for (TS 0p;TS 0s) must be the trivial one whi
h allows all system movesat all times. We
an use arguments similar to those in the proof of Theorem 3.2 toshow that there is a simulation from Uf (TS p) to Uf(TS s) i� there is a
ontrollerfor (TS 0p;TS 0s).

Publi
ations
[MT98a℄ P. Madhusudan and P. S. Thiagarajan. Controllers for dis
rete eventsystems via morphisms. In Davide Sangiorgi and Robert de Simone, editors,CONCUR'98, Con
urren
y Theory, 9th International Conferen
e, Pro
eedings,volume 1466 of Le
ture Notes in Computer S
ien
e, pages 18{33, Ni
e, Fran
e,September 1998. Springer-Verlag.[KMTV00a℄ O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Opensystems in rea
tive environments: Control and synthesis. In Pro
., CONCUR'00, Con
urren
y Theory, 11th Int. Conf., volume 1877 of LNCS, Penn. StateUniv, USA, September 2000. Springer-Verlag.[MT01a℄ P. Madhusudan and P. S. Thiagarajan. Bran
hing time
ontrollers fordis
rete event systems. To appear in CONCUR'98 Spe
ial Issue, Theoreti
alComputer S
ien
e, 2001.[MT01b℄ P. Madhusudan and P. S. Thiagarajan. Distributed
ontrol and synthesisfor lo
al spe
i�
ations. In Pro
., ICALP '01, 28th International Colloquium onAutomata, Lang. and Programming, volume 2076 of LNCS, Crete, Gree
e, July2001.

141

Bibliography
[AD94℄ R. Alur and D. Dill. A theory of timed automata. Theoreti
al ComputerS
ien
e, 126(2):183{236, 1994.[ALW89℄ M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable
on
urrent program spe
i�
ations. In Pro
. 16th Int. Colloquium onAutomata, Languages and Programming, volume 372 of Le
ture Notesin Computer S
ien
e, pages 1{17. Springer-Verlag, July 1989.[AM95℄ M. Antoniotti and B. Mishra. The supervisor synthesis problem forunrestri
ted CTL is NP-
omplete. Te
hni
al Report Te
hni
al ReportTR1995-707, New York University, NY, USA, November 1995.[AMP95℄ E. Asarin, O. Maler, and A. Pnueli. Symboli

ontroller synthesis fordis
rete and timed systems. In P. Antsaklis, W. Kohn, A. Nerode,and S. Sastry, editors, Hybrid Systems II, volume 999, pages 1{20.Springer-Verlag, 1995.[AMPS98℄ E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis fortimed automata. In Pro
. IFAC Symposium on System Stru
ture andControl, pages 469{474. Elsevier, 1998.[APR91℄ D. Salman Azhar, Gary L. Peterson, and John H. Reif. On multi-player non-
ooperative games of in
omplete information: Part 1 - de-
ision algorithms. Te
hni
al Report TR CS1991 -37, Computer S
ien
eDepartment, Duke University, Durham, NC 27706, O
tober 1991.[Bed88℄ M. A. Bednar
zyk. Categories of Asyn
hronous transition systems.PhD thesis, University of Sussex, 1988. Te
hni
al Report No. 1/88.142

Bibliography 143[BL69℄ J.R. B�u
hi and L.H. Landweber. Solving sequential
onditions by�nite-state strategies. Trans. AMS, 138:295{311, 1969.[BL97℄ G. Barrett and S. Lafortune. Using bisimulation to solve dis
rete event
ontrol problems. In Pro
eedings of the Ameri
an Control Conferen
e,pages 2337{2341, June 1997.[CGP99℄ E.M. Clarke, O. Grumberg, and D. Peled. Model Che
king. MIT Press,1999.[Chu63℄ A. Chur
h. Logi
, arithmeti
s, and automata. In Pro
. Interna-tional Congress of Mathemati
ians, 1962, pages 23{35. institut Mittag-Le�er, 1963.[CKS81℄ A.K. Chandra, D.C. Kozen, and L.J. Sto
kmeyer. Alternation. Journalof the Asso
iation for Computing Ma
hinery, 28(1):114{133, January1981.[CL99℄ Christos G. Cassandras and St�ephane Lafortune. Introdu
tion to Dis-
rete Event Systems. Kluwer A
ademi
 Publishers, 1999.[CLR92℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion toalgorithms. MIT Press and M
Graw-Hill Book Company, 6th edition,1992.[DR95℄ V. Diekert and G. Rozenberg, editors. The Book of Tra
es. WorldS
ienti�
, Singapore, 1995.[DTV99℄ M. Daniele, P. Traverso, and M.Y. Vardi. Strong
y
li
 planning revis-ited. In S. Biundo and M. Fox, editors, 5th European Conferen
e onPlanning, pages 34{46, 1999.[EC82℄ E.A. Emerson and E.M. Clarke. Using bran
hing time logi
 to syn-thesize syn
hronization skeletons. S
ien
e of Computer Programming,2:241{266, 1982.[EJ88℄ E.A. Emerson and C. Jutla. The
omplexity of tree automata andlogi
s of programs. In Pro
. 29th IEEE Symposium on Foundations ofComputer S
ien
e, pages 328{337, White Plains, O
tober 1988.

Bibliography 144[EK70℄ Ja
k Edmonds and Ri
hard M. Karp. Theoreti
al improvements inalgorithmi
 eÆ
ien
y for network
ow problems. In R. K. Guy,H. Hanani, N. Sauer, and J. S
honheim, editors, Pro
eedings of the Cal-gary International Conferen
e on Combinatorial Stru
tures and theirAppli
ations, pages 93{96. Gordon and Brea
h, New York, London,Paris, 1970.[Eme90℄ E.A. Emerson. Temporal and modal logi
. Handbook of Theoreti
alComputer S
ien
e, pages 997{1072, 1990.[Eme97℄ E. A. Emerson. Model
he
king and the mu-
al
ulus. In Neil Im-merman and Phokion G. Kolaitis, editors, Des
riptive Complexity andFinite Models, volume 31 of DIMACS: Series in Dis
rete Mathemati
sand Theoreti
al Computer S
ien
e,
hapter 6. Ameri
an Mathemati
alSo
iety, 1997.[ESW01℄ K. Etessami, R. S
huller, and T. Wilke. Fair simulation relations,parity games, and state spa
e redu
tion for B�u
hi automata. In Fer-nando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Au-tomata, Languages and Programming, 28th International Colloquium,volume 2076 of Le
ture Notes in Computer S
ien
e, pages 694{707,Crete, Gree
e, July 2001. Springer.[Fit96℄ M. Fitting. First Order Logi
 and Automated Theorem Proving.Springer Verlag, New York, 2nd edition, 1996.[GPSS80℄ D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysisof fairness. In Pro
. 7th ACM Symposium on Prin
iples of Program-ming Languages, pages 163{173, January 1980.[Hen96℄ T.A. Henzinger. The theory of hybrid automata. In Pro
eedings of the11th Annual Symposium on Logi
 in Computer S
ien
e, pages 278{292.IEEE Computer So
iety Press, 1996.[HKR97℄ T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation.In Pro
. 8th Conferen
e on Con
urren
y Theory, volume 1243 of Le
-ture Notes in Computer S
ien
e, pages 273{287, Warsaw, July 1997.Springer-Verlag.

Bibliography 145[Hoa69℄ C. A. R. Hoare. An axiomati
 basis for
omputer programming. Com-muni
ations of the ACM, 12:576{580, 1969.[HP85℄ D. Harel and A. Pnueli. On the development of rea
tive systems.In K. Apt, editor, Logi
s and Models of Con
urrent Systems, volumeF-13 of NATO Advan
ed Summer Institutes, pages 477{498. Springer-Verlag, 1985.[HU79℄ John E. Hop
roft and Je�rey D. Ullman. Introdu
tion to AutomataTheory, Languages, and Computation. Addison-Wesley, Reading, Mas-sa
husetts, 1979.[HW91℄ G. Ho�mann and H. Wong-Toi. The
ontrol of dense real-time dis
reteevent systems. In Conferen
e on De
ision and Control, pages 1527{1528, Brighton, England, De
ember 1991.[JL91℄ B. Jonsson and K. G. Larsen. On the
omplexity of equation solvingin pro
ess algebra. In TAPSOFT, volume 493 of Le
ture Notes inComputer S
ien
e, pages 381{396. Springer-Verlag, 1991.[JN00℄ M. Jurdzi�nski and M. Nielsen. Hereditary history preserving bisimi-larity is unde
idable. In Pro
., 17th Annual Symposium on Theoreti
alAspe
ts of Computer S
ien
e (STACS 2000), volume 1770 of Le
tureNotes in Computer S
ien
e, Lille, Fran
e, 2000. Springer.[JNW96℄ Andr�e Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation fromopen maps. Information and Computation, 127(2):164{185, June 1996.A preliminary version appeared in Pro
eedings of Eighth Annual IEEESymposium on Logi
 in Computer S
ien
e, pages 418{427, Montreal,Canada, June 1993. IEEE Computer So
iety Press.[KG95℄ R. Kumar and V.K. Garg. Modeling and
ontrol of logi
al dis
reteevent systems. Kluwer A
ademi
 Publishers, 1995.[KG96℄ O. Kupferman and O. Grumberg. Buy one, get one free!!! Journal ofLogi
 and Computation, 6(4):523{539, 1996.

Bibliography 146[KGM91℄ R. Kumar, V. Garg, and S. I. Mar
us. On
ontrollability and normal-ity of dis
rete event dynami
al systems. System and Control Letters,17:157{168, 1991.[KMTV00a℄ O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Opensystems in rea
tive environments: Control and synthesis. In Pro
.,CONCUR '00, Con
urren
y Theory, 11th Int. Conf., volume 1877 ofLNCS, Penn. State Univ, USA, September 2000. Springer-Verlag.[KMTV00b℄ O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Opensystems in rea
tive environments: Control and synthesis. Te
hni
alReport Te
hni
al Report TCS-00-03, Chennai Mathemati
al Institute,Chennai, India, 2000. Available at http://www.
mi.a
.in.[KS83℄ P.C. Kanellakis and S.A. Smolka. CCS expressions, �nite state pro-
esses and three problems of equivalen
e. In Pro
. Se
ond ACM Sympo-sium on Prin
iples of Distributed Computing, pages 228{240, Montreal,Quebe
, August 1983.[KS95℄ R. Kumar and M.A. Shayman. Supervisory
ontrol of nondeterministi
systems under partial observation and de
entralization. SIAM Journalof Control and Optimization, 1995.[KS97℄ Ratnesh Kumar and Mark A. Shayman. Centralized and de
entralizedsupervisory
ontrol of nondeterministi
 systems under partial obser-vation. SIAM Journal on Control and Optimization, 35(2):363{383,Mar
h 1997.[Kup97℄ O. Kupferman. Augmenting bran
hing temporal logi
s with existentialquanti�
ation over atomi
 propositions. Journal of Logi
 and Compu-tation, 7:1{14, 1997.[KV96℄ O. Kupferman and M.Y. Vardi. Module
he
king. In Computer AidedVeri�
ation, Pro
. 8th Int. Conferen
e, volume 1102 of Le
ture Notesin Computer S
ien
e, pages 75{86. Springer-Verlag, 1996.[KV97a℄ O. Kupferman and M.Y. Vardi. Module
he
king revisited. In Com-puter Aided Veri�
ation, Pro
. 9th Int. Conferen
e, volume 1254 of

Bibliography 147Le
ture Notes in Computer S
ien
e, pages 36{47. Springer-Verlag,1997.[KV97b℄ O. Kupferman and M.Y. Vardi. Synthesis with in
omplete informa-tion. In 2nd International Conferen
e on Temporal Logi
, pages 91{106, Man
hester, July 1997.[KV99a℄ O. Kupferman and M.Y. Vardi. Chur
h's problem revisited. The Bul-letin of Symboli
 Logi
, 5(2):245 { 263, June 1999.[KV99b℄ O. Kupferman and M.Y. Vardi. Robust satisfa
tion. In Pro
. 10th Con-feren
e on Con
urren
y Theory, Le
ture Notes in Computer S
ien
e.Springer-Verlag, August 1999.[KV00℄ O. Kupferman and M. Vardi. �-
al
ulus synthesis. In MFCS: Sympo-sium on Mathemati
al Foundations of Computer S
ien
e, volume 1893of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2000.[KV01℄ O. Kupferman and M. Vardi. Synthesizing distributed systems. In 16thAnnual IEEE Symposium on Logi
 in Computer S
ien
e, pages 16{19,Boston, Massa
husetts, USA, June 2001. IEEE Computer So
iety.[Lam80℄ L. Lamport. Sometimes is sometimes \not never" - on the temporallogi
 of programs. In Pro
. 7th ACM Symposium on Prin
iples ofProgramming Languages, pages 174{185, January 1980.[LP81℄ H. R. Lewis and C. H. Papadimitriou. Elements of the theory of
om-putation. Prenti
e-Hall, New Jersey, U.S.A., 1981.[LP85℄ O. Li
htenstein and A. Pnueli. Che
king that �nite state
on
urrentprograms satisfy their linear spe
i�
ation. In Pro
. 12th ACM Sym-posium on Prin
iples of Programming Languages, pages 97{107, NewOrleans, January 1985.[LV95℄ Nan
y Lyn
h and Frits Vaandrager. Forward and ba
kward simula-tions: I. Untimed systems. Information and Computation, 121(2):214{233, September 1995.

Bibliography 148[LX90℄ K.G. Larsen and L. XinXin. Equation solving using modal transitionsystems. In Pro
. 5th Symposium on Logi
 in Computer S
ien
e, pages108{117, Philadelphia, June 1990.[M
N93℄ R. M
Naughton. In�nite games played on �nite graphs. Annals ofPure and Applied Logi
, 65:149{184, 1993.[Mil80℄ R. Milner. A Cal
ulus of Communi
ating Systems, volume 92 of Le
tureNotes in Computer S
ien
e. Springer Verlag, Berlin, 1980.[MP81℄ Z. Manna and A. Pnueli. Veri�
ation of
on
urrent programs: Thetemporal framework. In R.S. Boyer and J.S. Moore, editors, The Cor-re
tness Problem in Computer S
ien
e, pages 215{273. InternationalLe
ture Series in Computer S
ien
e, A
ademi
 Press, London, 1981.[MSS86℄ D.E. Muller, A. Saoudi, and P.E. S
hupp. Alternating automata, theweak monadi
 theory of the tree and its
omplexity. In Pro
. 13thInt. Colloquium on Automata, Languages and Programming. Springer-Verlag, 1986.[MT98a℄ P. Madhusudan and P. S. Thiagarajan. Controllers for dis
rete eventsystems via morphisms. In Davide Sangiorgi and Robert de Simone,editors, CONCUR'98, Con
urren
y Theory, 9th International Confer-en
e, Pro
eedings, volume 1466 of Le
ture Notes in Computer S
ien
e,pages 18{33, Ni
e, Fran
e, September 1998. Springer-Verlag.[MT98b℄ P. Madhusudan and P. S. Thiagarajan. Controllers for dis
rete eventsystems via morphisms. Te
hni
al Report TCS-98-02, Chennai Math-emati
al Institute, 1998. Available at http://www.
mi.a
.in.[MT01a℄ P. Madhusudan and P. S. Thiagarajan. Bran
hing time
ontrollersfor dis
rete event systems. To appear in CONCUR'98 Spe
ial Issue,Theoreti
al Computer S
ien
e, 2001.[MT01b℄ P. Madhusudan and P. S. Thiagarajan. Distributed
ontrol and syn-thesis for lo
al spe
i�
ations. In Pro
., ICALP '01, 28th InternationalColloquium on Automata, Lang. and Programming, volume 2076 ofLNCS, Crete, Gree
e, July 2001.

Bibliography 149[MW80℄ Z. Manna and R. Waldinger. A dedu
tive approa
h to program syn-thesis. ACM Transa
tions on Programming Languages and Systems,2(1):90{121, 1980.[MW84℄ Z. Manna and P. Wolper. Synthesis of
ommuni
ating pro
esses fromtemporal logi
 spe
i�
ations. ACM Transa
tions on Programming Lan-guages and Systems, 6(1):68{93, January 1984.[Ove94℄ A. Overkamp. Supervisory
ontrol for nondeterministi
 systems. InG. Cohen and J.-P. Quadrat, editors, 11th International Conferen
e onAnalysis and Optimization of Systems - Dis
rete Event Systems, vol-ume 199 of Le
ture Notes in Control and Information S
ien
es, pages56{65, London, 1994. Springer-Verlag.[Ove97℄ A. Overkamp. Supervisory
ontrol using failure semanti
s and par-tial spe
i�
ations. IEEE Trans. on Automati
 Control, 42(4):498{510,1997.[Pnu77℄ A. Pnueli. The temporal logi
 of programs. In Pro
. 18th IEEE Sym-posium on Foundation of Computer S
ien
e, pages 46{57, 1977.[Pnu85℄ A. Pnueli. Appli
ations of temporal logi
 to the spe
i�
ation and ver-i�
ation of rea
tive systems: A survey of
urrent trends. In Pro
.Advan
ed S
hool on Current Trends in Con
urren
y, pages 510{584,Berlin, 1985. Volume 224, LNCS, Springer-Verlag.[PR79℄ G.L. Peterson and J.H. Reif. Multiple-person alternation. In Pro
. 20thIEEE Symposium on Foundation of Computer S
ien
e, pages 348{363,1979.[PR89a℄ A. Pnueli and R. Rosner. On the synthesis of a rea
tive module. InPro
. 16th ACM Symposium on Prin
iples of Programming Languages,Austin, January 1989.[PR89b℄ A. Pnueli and R. Rosner. On the synthesis of an asyn
hronous rea
tivemodule. In Pro
. 16th Int. Colloquium on Automata, Languages andProgramming, volume 372, pages 652{671. Le
ture Notes in ComputerS
ien
e, Springer-Verlag, July 1989.

Bibliography 150[PR90℄ A. Pnueli and R. Rosner. Distributed rea
tive systems are hard tosynthesize. In Pro
. 31st IEEE Symposium on Foundation of ComputerS
ien
e, pages 746{757, 1990.[Rab69℄ M.O. Rabin. De
idability of se
ond order theories and automata onin�nite trees. Transa
tion of the AMS, 141:1{35, 1969.[Rab72℄ M.O. Rabin. Automata on in�nite obje
ts and Chur
h's problem.Amer. Mathemati
al So
iety, 1972.[Ram96℄ R. Ramanujam. Lo
ally linear time temporal logi
. In 11th AnnualIEEE Symposium on Logi
 in Computer S
ien
e, pages 118{127, NewBrunswi
k, New Jersey, July 1996. IEEE Computer So
iety.[Ros92℄ R. Rosner. Modular Synthesis of Rea
tive Systems. PhD thesis, Weiz-mann Institute of S
ien
e, Rehovot, Israel, 1992.[RW89℄ P.J.G. Ramadge and W.M. Wonham. The
ontrol of dis
rete eventsystems. IEEE Transa
tions on Control Theory, 77:81{98, 1989.[Saf88℄ S. Safra. On the
omplexity of !-automata. In Pro
. 29th IEEE Sym-posium on Foundations of Computer S
ien
e, pages 319{327, WhitePlains, O
tober 1988.[SC85℄ A.P. Sistla and E.M. Clarke. The
omplexity of propositional lineartemporal logi
. Journal ACM, 32:733{749, 1985.[SVW87℄ A.P. Sistla, M.Y. Vardi, and P. Wolper. The
omplementation problemfor B�u
hi automata with appli
ations to temporal logi
. Theoreti
alComputer S
ien
e, 49:217{237, 1987.[Thi94℄ P. S. Thiagarajan. A tra
e based extension of propositional linear timetemporal logi
. In 9th Annual IEEE Symposium on Logi
 in ComputerS
ien
e, pages 438{447, Paris, Fran
e, July 1994. IEEE Computer So-
iety.[Tho90℄ W. Thomas. Automata on in�nite obje
ts. Handbook of Theoreti
alComputer S
ien
e, pages 165{191, 1990.

Bibliography 151[Tho95℄ W. Thomas. On the synthesis of strategies in in�nite games. In E.W.Mayr and C. Pue
h, editors, Pro
. 12th Symp. on Theoreti
al Aspe
ts ofComputer S
ien
e, volume 900 of Le
ture Notes in Computer S
ien
e,pages 1{13. Springer-Verlag, 1995.[Tho97℄ W. Thomas. Languages, automata, and logi
. Handbook of FormalLanguage Theory, III:389{455, 1997.[VS85℄ M.Y. Vardi and L. Sto
kmeyer. Improved upper and lower bounds formodal logi
s of programs. In Pro
. 17th ACM Symp. on Theory ofComputing, pages 240{251, 1985.[VW86a℄ M.Y. Vardi and P. Wolper. An automata-theoreti
 approa
h to au-tomati
 program veri�
ation. In Pro
. First Symposium on Logi
 inComputer S
ien
e, pages 322{331, Cambridge, June 1986.[VW86b℄ M.Y. Vardi and P. Wolper. Automata-theoreti
 te
hniques formodal logi
s of programs. Journal of Computer and System S
ien
e,32(2):182{221, April 1986.[WN95℄ G. Winskel and M. Nielsen. Models for
on
urren
y. In S. Abram-sky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logi
 inComputer S
ien
e, volume 3. Oxford University Press, 1995.[WW96℄ K. C. Wong and W. M. Wonham. Modular
ontrol and
oordinationof dis
rete-event systems. Dis
rete Event Dynami
 Systems, 6(3):241{273, July 1996.[Zie87℄ W. Zielonka. Notes on �nite asyn
hronous automata. RAIRO Infor-matique Th�eorique et Appli
ations/Theoreti
al Informati
s and Appli-
ations, 21:99{135, 1987.[Zie98℄ W. Zielonka. In�nite games on �nitely
oloured graphs with appli-
ations to automata on in�nite trees. Theoreti
al Computer S
ien
e,200(1{2):135{183, 1998.

