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Chapter 1

Introduction

1.1 Some significant developments of FQHE

The last two decades, beginning with the discovery of quantum Hall effect by
von Klitzing, Dorda and Pepper[l], witnessed the emergence of QHE, both
integral and fractional, as one of the major branches of Condensed matter
Physies.

The experimental observations on two dimensional electron systems sub-
Jjected to a strong magnetic field are - a nearly vanishing longitudinal resis-
tance and a quantized Hall conductance, oy to an extremely high degree of
accuracy independent of the magnetic field and the microscopic details like
geometry and purity of the sample.

o
T = @ 7 (1.1}

The plateaus observed in the hall resistance is the hallmark of IQHE. Qur

understanding of this phenomenon comes from adiabatically deforming in-




teracting electrons in presence of disorder into noninteracting electron states,
Further disorder localizes almost all states except those that are peaked
around landau energy levels of an electron in a magnetic field. Hence the hall
conductance remains flat when electrons get added to the localized states,

Fractional quantum Hall effect(FQHLE) was discovered in 1982 by Tsui,
Stormer and Gossard [2]. Tts plienomenology is same as that of intepral quan-
tum Hall state in almost every detail. There is a plateau. Both longitudinal
resislance and conductance in the plateau is zero. The Hall conductance in
the plateau is quantized in units of % The only qualitative difference be-
tween the two effects is the quantum of Hall conductance, which is a fraction
(¢ = 3 for the one observed by Tsui el. al.) instead of an integer. Yet the
fractional quantum Hall state is not adiabatically deformable to any non-
interacting electron state but is an unprecedenied strongly curre.]a.!.ed new
state of matter.

Laughlin [3] proposed the following variational ground state to deseribe a
correlated incompressible electron liquid at all filling factors » = ﬁ and
not only succeeded in explaining the 5 effect observed by Tsui et al., but
also predicted a fractional quantum Hall state at L, which was later found

experimentally by Chang et. al[4].
bu({zh) = T1/(z - z) vl (1.2)

1
The lowest Landau level dictates [ Lo be a analytic function, electrons
force [ to antisymmetrize and conservalion of angular momentum makes
[Tis; flzi—=,) a hemogeneous polvnomial of degree M, where M is the total

angular momentum. f{z} then becomes =21 and is left reallv with no
= &L B



variational parameters. When the norm of Laughlin wavelunction is written -

as a partition function of a classical statistical mechanics problem

(B = eV (1.3)

where @ = - then V(£}) becomes the classical potential enerey for
2z P cJ"

ntl?
plasma in two dimensions; particles of charge (2n + 1) interacting with a
logarithmic potential in a uniform neutralizing background. Plasma costs
a huge amount of energy unless neutral everywhere. Neutrality condition
determines the density of electrons, j = E'I'{E:I—n+1:| Hence any deviation from
p makes the norm of Laughlin wavefunction almost vanish and thus in turn
makes the electrons to be in an incompressible liquid state.

The ﬁ-ﬂlﬁ states also support quasiparticle excitations which are obtained
by adiabatically piercing or removing an infinitesimally thin solenoid carry-
ing one flux quantum. The wavefunctions for these quasiparticles, given by
Laughlin[3]. are found to carey fractional charge. The construction of guasi-
hole suggested not only a different interpretation of Laughlin wavefunetion
but also generalizations valid for other filling factors.

An important feature of Laughlin state is presence of the gap in ils ex-
citation spectrum. Girvin et. al. [6] obtained the gap for the neutral intra-
Landau collective modes of FQHE {magnetophonons) using single-mode ap-
proximalion projected onto Lowest Landau Level(LLL). This gap agreed with
the excitation gap evaluated from numerical diagonalization by Haldane and
Rezayi [T].  Also the sum of the encrgies of quasihole and quasielectron
1s nearly equal to thal of the collective mode, which can be viewed as a

quasiparticle-quasihole bound state.



Girvin and MacDonald[5] observed that the Laughlin states have alge-
braic off-diagonal long range order (ODLRO). Performing a singular gange
transformation on the Laughlin wavefunction, they obtained a bosonic wave-
function and showed that it has ODLRO. Since ODLRQO is the hallmark of
superfluidity, its existence suggested the idea that there should be a Landau-
Ginzburg theory for FQHE. Read[9] constructed an order parameter which
is a composile of electron ereation operator and  Laughlin quasihole oper-
ator, and showed that this operator has a non-vanishing expectation value
between the Laughlin ground states and also proposed a classical Landau-
Ginzburg theory for FQHE. Zhang, Hanson and Kivelson [§] mapped the
interacting electrons in an external magnetic field onto an interacting boson
problem with an additional gauge interaction described by Chern-Simons
field and constructed a Landau-Ginzburg theory and also derived Laughlin’s
wavefunction and Girvin-MacDonald’s ODLRO.

An electron in two dimensions can be viewed as a composite boson which
is & composite of charged boson with odd number of flux quanta, ¢y = Ir—"
atlached to it. When two composite hosons are moved around each other,
each boson sees the flux attached to the other and picks up Aharonov-Bohm
phase which accounts for the statistics of the original electrons. Incompress-
ihility of electrons at v = Eri]lﬁ has a nice picturization in composite boson
theory. I we btk (21 + g flux to each boson in the direction opposite
to the external magnetic feld and uniformly smear the fux tubes, which is
taking a mean-field approximation, then the net effect is charged bosons see
no magnetic field and form a Bose-Einstein condensate. Any change in the

local density causes [lux penetration inle this charged Bose superfluid and



gets expelled out due to Meissner effect. Hence the particle density remains
constant and electron fluid is incompressible.

Jain[10] introduced the composite fermions wherein an even number (2r)
of flux quanta are attached to an electron. The composite fermions then
experience, to a mean-field approximation, a magnetic field B* = B — 2npdy
mstead of the external field, B. This led to adiabatically deforming a ground
state at filling factor v to that at +~ which are related as

A
 2awe -I-T (1.4)

and to an understanding of FQHE at other filling factors.

1.2 Spin and Skyrmions

1.2.1 Theory

The Zeeman energy of a free electron (gyromagnetic ratio g = 2] 15 exactly
equal to the eyclotron energy and hence, the spins get frozen when the elee-
trons are restricted to LLL and their kinetic energy quenched. However in
Gads, malerials in which quantum Hall systems are realised, the small effec-
tive mass in the conduction band increases the cyelotron energy by a factor
of 11, Also theeflfective coupling of the spin to the external magnetic field is
reduced by a factor of =5 (i.e.; g = —0.1) making the Zeeman energy about
70 times smaller than the cyclotron energy and turning spin into a relevant
degree of freedom.

Initial calculation by Chakraborty and Zhang[11] showed that the low




energy quastparticles in experimental systems are spin reversed. “The incom-
pressible ground states (at filling factor v = ﬁ-;} are strong ferromagnets
and, hence, the low lying spin excitations could be described by the spin
field in Non-linear Sigma model (NLSM). Aparl from the spin wave excita-
tions there exist higher energy topologically non-trivial textures in the spin
field known as Skyrmions. Lee and Kane[12] extended the Landau-Ginzburg
Chern-Simons theory to include the spin of electrons and then argued that
the quasiparticles could be extended spin textures that are deseribed by topo-
logical solitons of the non-linear sigma model (NLSM): skyrmions. Sondhi
et. al. [13] studied the quasiparticles at v = 1 by varying the ratio of Zee-
man energy to interaction energy(g¢®) and found a change in their character.
When g° is large the quasiparticles are spin flip excitations and for small g*
the relevant quasiparticles are skyrmions. Unlike the spin wave excitations
(magnons) which are neutral, skyrmions are charged low-lying spin excita-
tions and exhibit a nontrivial spin order. At the boundary of a skyrmion the
local spin takes the ground state value while it is reversed at the center and
along any radius it interpolates smoothly between these two limits.

The effective NLSM used by Sondhi et. al [13] is

&1
Leprlz) = r'rA{r‘i}-f};ﬁ-{-cr’?ﬁ?ﬁ-l—yﬁ_uﬁf{:r}-H—;f gle)V{z—a")g(2") (1.5)

where 1) is a unil vector pointing in the direction of spin polarization, 4 is
the veetor potential of a unit monopole, g(x) is the topological charge density
and o, o' are parameters fixed by requiring that it vields the correct spin
wave dispersion and that it describes correctly the uniform precession of the

ferromagnet in a tilted magnetic field, The scale invariant second term is due
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to the exchange part of the Coulomb interaction. The first three terms-would
be present for any ferromagnet; however the last term. which is responsible
for Lthe macroscopic character of the skyrmion, is specific to the quantum
Hall problem and is obtained from the Coulomb term upon replacing the
density fluctuation dp{z) by the topological charge density g(z). This spin
charge relation is also verified by Moon et. al. [14] with more than heuristic
arguments. The size of the skyrmion is dictated by the competition between
the Zeeman term and the Coulomb term. The gap for creating a skyrmion-
antiskyrmion pair at g° = 0 is half the gap for creating a single-particle
excitations [13]; hence the skyrmions are the relevant quasiparticles in GaAs
semiconductors where g* is small.

The skyrmions in terms of electrons, e{x), can be constructed by rotating
spins locally into a hegde-hog fi{z) = (0(x), ¢(x)) where @ depends only on
|z| while ¢(x) = @, |z| and ¢ are polar coordinates of z. Under such a

rotation

B L e 1
corla) = E't,li:rjj — i'.-'lg,,.,lfirrﬂ{-?.‘} . = EUE{E} | SII'I[-)_:'t |
—sin( % je'® cos( %]

When restricted to the lowest Landau level we get

:
£, = W -+ W)

where

b |

f
= /; '-_I'_.':;[J';'{'UHI:E}'T:'I{I} ty = fa,:-f[.i.‘}esiu{t

I

Je ™l x)

and w(r) are the LLL eigenfunclions. Fertig. et. al.[15] took the follow-

ing state [} with w and v as the variational parameters and showed hy

e |



Hartree-Fock calculations that the skyrmion energy is always smaller than
the localized spin § quasiparticle energy suggesting that adding or removing

charge [rom a filled Landau level rapidly degrades its spin polarization.

) = J[ci10) = 11 (u;c?? + 1,';-:?IT,F_U') |0} (1.6)
- f=n IZD

Abolfath et. al. [19] have compared energies ol single skyrimion states
obtained from the classical NLSM with Hartree-Fock approximation, exact
diagonalization calculations and many-body trial wavefunctions, They have
numerically evaluated saddle point solution of NLSM, including the Coulomb
and the Zeeman terms, to obtain the energy. They have also calculated the
energy from exact diagonalization of Hamiltonian for 8 particles in a spher-
ical geometry containing 9 LLL orbitals. They calculated energies using
Hartree-Fock approximation on [i_) states given in equation (1.6) taking a
few thousand particles. Finally they considered modified variational [1_ Y04,
s0 as to make spin and not just total angular mementum a good quantum
number, and estimated the energies. Their caleulations using various tech-
niques reveal that for large skyrmion states (with spin quantum numbers
greater than 10) NLSM approach agrees well with the results obtained by

the other methods and raises questions which are stated in the next section,

1 2. Exﬁériment

Barrett et. al.[l6] measured the Knight shiflt of "'Ga nuclei located in n-
doped GaAs quantum wells using optically pumped NMR. for filling factor
0.66 < v < 1.6 and temperatures L5354 < T < 20K. The nuclear reso-

nance frequency depends on effective magnetic field as seen by the nuclear

)




moment. These nuclear moments when coupled to the conducting electrons,
through hyperfine interaction, see an additional magnetic field proportional
to the polarization of the electrons. This displacement in resonance, called
knight shift, measures the spin polarization. The knight shift data was the
first direct measurement of the electron spin polarization in a quantum hall
system, as a function of » and temperature, and shows that the quasiparticles
carry a spin more than 3.5 times that of an electron which agrees well witly
Fertig. et. al.[15] results.

Schmeller et. al.[18] employed tilted field magneto-transporl measure-
ments of the energy gap at v = 1, 3 and 5 and determined the spin of
thermally excited quasielectron-quasihole pairs. At v = 1 their data show
that as many as 7 electron spin flips accompany such excitations while at
v = 3 and 5 only a single spin flips. Aifer et. al. [I17] also provided the
experimental evidence for the presence of skyrmions by magnetoabsorption
spectroscopic observation of the rapid decay in spin alignment over small
changes in magnetic field. More recently ([20], [21]) skyrmions with spin
as large as 50 have been observed by drastically reducing ¢, All these ex-
periments support the prediction that the charged excitations of the v = 1
ground state are finite-size skyrmions, with an effective spin reflecting the

competition between the Coulomb energy and the Zeeman energy.

1.3 An overview of the thesis

In this thesis we address the following questions and answer them.

L. What is the limit in which this classical approximation is exact?



2. When does the theory itself become Classical (i.e., not just the energetics
but the kinematical description itself)?

3. What is that Classical theory?

4. How do we get the LLL Classical theory?

5. How do we give a semiclassical description to quantum skyrmions?

6. What is the effect of Landau level mixing on skyrmions?

In chapter 2, we work in the composite boson formalism [8] as it is the
obvious choice of the formalism to use to address the question of the classical
limit. Since we want to impose the LLL condition, which is a condition on
the quantum states, we develop a coherent state formalism for composite
bosons. We systematically do the bosonization wherein the electronic theory
1s written in terms of bosons attached to fluxes of Chern-Simons fields. The
electron operators and the procedure of flux attachment becomes very trans-
parent in terms of coherent states. So we first define the Hilbert space of the
composite bosons and construct the coherent state basis for it. We then con-
struct gauge invariant anticommuting operalors that create and annihilate
flux carrying bosons which are then used to represent the electron creation
and annihilation operators and, thus, obtain the explicit mapping between
the electronic Hilbert space and observables and the gauge invariant states
and observables in the bosonic theory, We also derive the path-integral rep-
resentation of L'lll{;‘ evolution operator and obtain the standard Chern-Simons
gauge field theory coupled to matter field.

In chapter 3, we project the composite hoson coherent states on to the
gauge invariant sector and calculate their wave functions. The wavefunctions

unveil many interesting aspects. The coherent states which are labeled by

10



the values of the bosonic spinor field and the Chern-Simons gauge field when
projected to the gauge invariant sector depend only on gauge invariant com-
, binations of these fields. The wavelunctions reveal another local invariance
| that relates the transverse part of gauge field to the magnitude of the bosonic

fields. Though this transformation is not unitarily realised, it nevertheless
. implies that the physical states can be labeled by a single bosonic spinor

field. We also find LLL condition is equivalent to an analyticity condition on
| the parameters labeling the colierent slates.

In chapter 4, we evaluate the matrix elements of the ohservables hetween
the projected coherent states in the limit of small amplitude, long-wavelength
density fluctuations, which we refer to as the hydrodynamic limit. We find
that electric charge density is proportional to the topological charge density
if and only if the LLL condition is satisfied. We also study the effect of
Landau level mixing on the spin charge relation.

In chapter 5, we examine the quasipariicle states which can be describee
by projected coherent states. We show (in the hydrodynamic limit) that
the projected coherent states can be labeled by physical observables, that
| they can be resolved into unity and that their overlaps are nonorthogonal
and continuous in the parameters labeling them. Thus we find the projected
coherent states to satisly the properties of generalized coherent states param-
eterized hy r.lu"x-'a]m-:s of physical observables. This gauge invariant coherent
state basis enables a pauge invariant bosonization.

In chapter 6. we give a classical theory for composite bosons. We get
NESM with a Hopl term upon imposing the LLL condition in this classical

theory. We show that il we consider the set of states corresponding to classical

11
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configurations characterized by a length scale-), then they become orthogonal
in the limit of A = ca. This implies that a system of Skyrmions will behave
classically in the limit of their sizes going to infinity and thus we are able to
prove that the classical description of the Skyrmion is exact in the limit of
large Skyrmions. We make use of classical-quantum correspon dcnc{_: of the
coherent stales to derive the ground states of quantum hall system and get
them to be Laughlin states.

In chapter 7, we give a complete kinematical deseription of the LLL
skyrmions in terms of their collective coordinates. We determine the overlaps

for these skyrmions and also construct finite spin skyrmions.

We conclude by summarizing our work presented in the thesis in chapter



Chapter 2

Composite Bosons

In this chapler, we do the usual bosonization wherein the electronic theary
1s writfen in terms of bosons attached to fluxes of Chern-Simons fields. The
electron operators and the procedure of flux attachment is verv transparent
in terms of coherent states, So we first define the Hilbert space of the com-
posite bosons and construct the coherent state basis for it. We derive the
path-integral representation of the time evolution operator in gauge-invariant
subspace of this composite boson Hilbert space to see the equivalence with
the standard Chern-Simons Lagrangian. We then construct the electron op-
erators and obtain the explicit mapping between the electronic Hilbert space

and observables and the gauge invariant states and observables in the bosonic

theory.

13



2.1 The Composite Boson Hilbert Space

The bosonic degrees of freedom are described by the spinor field operators
$olz), ¢l{r), ¢ = 1,2 and the Chern-Simons gauge fields, a;(x), i = 1,2.
The ¢¢ operators act on the Hilbert space, Hu and satisfv the canonical

commultation relations,

[2e(2) ¢h(y)] = Gowd?(z—y)
(8o (), Eer(y)] = [B3(2).80(w)] =0 (2.1)

The Chern-Simons gauge fields act on the Hilbert space Heg and satisfy,

fie
[ai(z), aj(y)] = \/;fi_jﬁzfi'—y] (2.2)

< [f we define the complex fields, a(z) and a(z) as,

where g = m

as(x) + fﬂ,[;r} 5

V2 he
a(z) = ﬂ;[;x}—:;ﬂ;{;r]\/g (2.3)

then the commutation relation between them is given by,

alx)

[a(z),a(y)] = 6%z — y) (2.4)

The full Hilbert space of the composite boson theory is the direet product of

the above two spaces and we denote it by,
Hep = Hp @ Hes (2.5)

We denote the gauge invariant sector of this space by H,u, C Heg. Hoky

consists of the states which respect the Chern-Simons Gauss law constraint,
Gla) [8)ny =0 (2.6)

14



where E;'r'{ =) are the generators of gauge transformations given by,
G(z) = &V x ii(x) — ept(z)p(x) (2.7)

We will refer to the gauge invariant observables, the operators that comimute

with G(z) as physical observables.

2.2 Coherent State Basis

In this section, we construct the coherent state basis for Heg, The displace-
ment operators are defined to be,
Dia) = ttf:[frﬂrllﬁirl—utrlﬂ{r}]

(o) = eldet@lta)-az)a=) (2.8)

where, a(r) = ELE"—'EI\/% The coherent states |a, p), parameterized hy

the gauge field a(x) and the spinor field () are then given by,

lv, ) = Ulp)D(a)|0) (2.9)

where,
a(2)0) = ¢, (2)|0) = 0 (2.10)

The states defined in equation(2.9) can be interpreted as gaussian wave
packets peaked around the classical lield configuration (af{x), (). They

salisly the three standard properties of colierent states [23] namely,

L. Resolution of unity:

/'D[n,;| lo@)ayp] = 1 (2.11)

-



where I)[m.:p] = Tk do{z)dalr) des(r)dEa{z)

V" =i il

2. Continuity of overlaps:

(oo, o1, ) = c'%ﬁfs5'[I}“&”{"je_%ﬁfz{ﬁ’{"}"&?m}z

ez LInzlat-atze=)] -1 [ lefz)-ein)l? (2.12)
3. Values of Observables:

(ool 1 O(a,a,5,8") : lo,0) = Ofa,a,¢,p") (2.13)

The coherent states are not gauge invariant. Under gauge transforma-

tions,

laip) — eded G |, )

"

—  ein [ Fz)xVR(z) o — ?ﬂ,apc_ﬁﬂ) (2.14)

We will now construet a projection operator thal projects any state into

the gauge invariant subspace, H,,. Consider,

|. [ -
pP= E_[ﬂ eie [ M=)G () (2.15)

where () is the generator of gauge transformations, as given in equation(2.7)
and Viz = [, is the volume of the gauge group. Shifting the integration vari-

able €1 by 7 inthe projection operator P,

ez ARG p _ p (2.16)

Taking @ — 0,
M) P =0 = Ge)PlY) =0 (2.17)

16



This proves.that P is an operator that projects any state into Hphy-
The above three properties (2.11 - 2.13) and the projection operator de-
fined in equation(2.15) can be used to derive the path integral representation

of the gauge invariant evolution operator.

2.3 The path integral representation

[n this section we derive the path integral representation of the partition
function by splitting the time interval ¢ into N segments of length ¢ and take
the limit € — 0, N — oo such that eN = t. And at each intermediate step
we insert the resolution of identity (3.2) of H,, |

Z = Tre®Mt = JrleT N (2.18)

N

hr
z=1] _[ [T {eas10nsr| Pe™ e Pl ) (2.19)

n=0 '-'!n.l.?n.ﬂn n=0
where (ans1,@v41) = (G0, @o)
Since H commutes with P and P* = P, after explicitly acting P on
|onign) and making use of gauge invariance of |ap){ap|, we get

z:ﬁ]

=0~ n il

N
L (2.20)
]

=

by = et R LA 0GB R o5 g v, Varipne” helftatinly
(2.21)

To the order ¢ auyy = a, +tdy, Qg = O + ef2,, and gl = a6,

And if we choose 3, = 3, + 0,4, then to the order Oe) t,, is:

L, = ebf L anlnxvae)

1T



|

(n — VB — Vi + ety — V), {00 + e[ 160 — h LT )

|an — V8, — VL, e w0ty
Using the fact that ¢3, = 3, — But + O(*) and

i € :

(at e, o+ 0ple® o, o) = (a+ der, o+ doer, )1 — IE{&':,D[Hlﬁirﬂ:}] +O0(e*)
(2.23)

where da ~ Ofe) and d ~ Ofe) the above expression for ¢, | after defining

e = ﬁm"r ¢, and making use of gauge invariance of H, we get
Py exp[ j{ =Cuwn i (x)8 an(x) + eags(x) @), (1) —
['T:J" 553‘“{.1‘] ¥n 'E}"iprt( ] - [F'rn ﬂn}]‘] (224}

[f we now take the limit ¢ — 0 the partition function becomes (after calling
a by a)

£ f Dlao(e, 1) Dfai(x, )| Dlip(a, t]]er ] 0 (2.25)
where L{z,1) is the standard lagrangian of matter fields coupled to Chern-

Simons gauge fields, This confirms the equivalence of our formalism to the

standard lagrangian formalism.

2.4 Bosonization

We will now construct gange invariant anticommuting operators that create
and annihilate flux carrying bosons. These operalors satisly the fermionic
canonical anticommuitation relations and can hence be used to represent the

electron creation and annihilation operators in Hen. We will thus be able to

15
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map the gauge invariant sector of the composite boson Hilbert space, H,;,
to the Hilbert space of the electronic system, H,. The mapping is then used
to map the observables of the elecironic system to gauge invariant operators
in Hem.

We define ¢! () as
c}(z) = D(z)¢l(z) K (z) (2.26)

We have used D{x) as short notation for D(a®). o is the classical confizu-
e I (=]

ration of a vortex with a delta function flux density at the point z.

KV x @i(z) = ed*(z — z) {

5\3
[
e |

D(z) therefore creates a gaussian wave packet peaked around this classical
vortex configuration. When ¢'(2) acts on a state, @} (x) creates a hosonic
particle at = and D(z) attaches Chern-Simons flux to it. The operator i'(x)
gives the Aharanov-Bohm phase corresponding to all the other particles al-

ready present in the state. Il is defined as,
I{{I} — ef['ﬂﬂ'l"lh\][; ﬂ{l‘—l'q&r{::ll,ﬂ:] {2‘23'}'

where 0(ir) is the angle the vector, z, makes with the x-axis.
Using the commutation relations given in equalions{2.1 and 2.2), it can he

verified that the following canonical anti-commutation relations hold good.
{ea() el (w)) = Bourd i — y) (2.29)

{eal®)icor(y)} = {el(x).cllw)} =0 (2.30)
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Hence ¢! (z) and ¢, () provide a representation of the electron creation and
annihilation operators in Heg.

Under gauge transformations,

Palz) = ciﬁn[r}[racr[z} 1 ':r':'a{j )= e~ Eol J {:c}
a(z) = ailz) +3Q(z) ,  D(z) = "I D(2) (2.31)

We see that ¢,(z) and ¢! (z) are gange invariant.
We are now in a position to map H,. into Howy. We map the state
with 0 number of electrons, [0).; to the vacuum state of Hep, defined in

equation(2.10), projected to Ha,.
0> — PlO) (2.32)

Since ¢, () are gauge invariant, they commute with P. Then from equation(2.10)

it follows that,
e () P0) = 0 (2.33)

The state with N electrons at (2, x5, ... zx) with spins (o}, 03, ..., o8 ), [{ 0o End,

is then mapped onto,

H{#ns on}n) — 1__[( (za) P|0) (2.34)

Singe the states in the RUS of equations(2.32) and (2.34) form a basis for
Her, these equations specily the explicit mapping of M. into Houhy

[tis now easy to map the observables as well. The density is given by,

pla) = el(w)es(x) = @l (2),(2) (2.35)
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The spin density is, -

52(2) = 36l () rawrtor(2) = 30 ()0r () (2.36)

The current density is,

Je) = Se@)-ind - SAe)e(s) + ho)
= SBM)=ihd, — Sai(x) - SAa))n(2) -
“el(2)6e(2) [ ali=)0() + o) (2.37)

The last term acting on physical states is zero. Thus for matrix elements

between physical states, we have,

Jilz) = %:,&1{1:][—1'?15; - En;{z} — ;41[':1"]];3;,{1.’} + h.c (2.38)

Similarly, the kinetic energy density, T{r} is compuled to he,

T(e) = 5@ (e)-ihd - Sai(e) - “Ae)Ppnla)  (239)



Chapter 3

Coherent State Wavefunctions

In this chapter, we study the coherent states projected onto Hpwy- We show
that these states form a basis of Huhy- Their wavefunctions and expeciation
values of observables are computed. The LLL condition can then be seen to
be equivalent to an analyticity condition on the parameters. We then discuss
the relation between the charge density and the topological charge density.
Finally, we describe the parametrization of the projected coherent states in
terms of a single complex spinor field W, {(z) discussed in the end of section

L and derive expressions for the observables in terms of W, (x)

3.1 Projected coherent states
Consider the set of coherent stales. projected to H

pliy s

]ﬂ!‘.:rd"ﬁ}jlf Fl|ﬁ~."pﬂ} (1[}

B



Using the fact that P* = P and equation(2.11); we have,

[ PlelDls!1Dle] o oleol = P (3:2)

F is the identity operator in H,;, so the projected coherent states form a
basis for it.

The coherent states are not eigenstates of the number operator. Thus
they have a non-zero overlap with states containing any number of particles.
The wavefunction in the N particle sector is the overlap with the states given

in equation(2.34),

bnv({zis0:}) = ({=i, oibwle, @)y (3.3)

Using equations (2.15), (2.26) and (2.34) we get,

U {wi,00}) = L} fc”rf G s UIH[I‘; ()0 (x) DM 2:)]la=VQ, e re! £
(3.4)

Using the fact that,
PGoelai) K(x;) = it 1izi—) {2;)ds; (2:) (3.5)

and (0| K (z) = 0, we can pull all the K”'s to the left and rewrite equation

(3.4) as,

bnl{zino)) = e 3l |»={rJPH,_,_errm:ﬁtr.-r;rif i [ RENT G
. 137 1:6‘ i

H% (2])e~% oy 51{.1'.;{__—%&;:(2:\;' Fr(r))x(d(x) - =)
i=1

o1 [AEE -V -0 antay (3.6)
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We now write,
o (2) = €98, fn(2) (3.7)
where,
—.V2 [u(z) = ez — z.1) (3.8)
form=1—N.
The zero momentum mode of the @ integral will make the wavefunction

vanish unless the total number of flux quanta equals the total number of

particles. ie.

va x @(x) = eN (3.9)
The {1 integral is gaussian for the other modes and can be done exactly Lo
give,
1 & ~ e .
const X exp[—-— f (@(z) — 3 d2))? (3.10)
dhetz 1=1
We then write the wavefunction as,
Unl{ziei}) = const x e_;lT..r, lie(x)]? H[eiﬁ'ﬂri-ﬁ}]hH
i3
N (T e L) -
[Tlips (we)e™ mar et s LS Lo ey 1 1)
i=1

We also have,

/ dlfZde) = f V(). V [l 2)
=~ [ @)V ula)
= SQp(zn) (3.12)
P
Using the fact that the solution of equation {3.8) is,
. |
falz) = _hEE In|a — ] (3.13)
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and proceeding as in equation (3.12), we have,

[an(z)@n(x) = Zfulzn)

2
1
= —S—lnfzn—az, (3.14)

e

So we have the resull,

N 2 N
i — = gt 1
f{m[r] SRR = f‘?ﬂq-{z].\?ﬂ?{x} e P
x : r [
1=1 msn
e N
—2— Y Qp(w,) + const (3.15)
- m=1
The (infinite) const comes from the m = n terms
Finally the wavefunection is written as,
Un({zi,oil) = const x =1 [ Vel o= 3 J, 9 (=) Vi)
N
w H{21. = zJill'ITH-I H{;_Iﬂl{i_:_]e;:—:{ﬂ-g-{r,:l—iilLI:I]}Ia.lﬁ}
1>y i=k
where = = (#; +iz;). We express the above equation in a convenient form.
bn({zn0i}) = const.em7 [ =35 [ Vriz) Fileiz)

N )
” H[‘Pu,-[:I.'}ﬂ;_‘{nr‘r'j_nﬂf']_'m[TL”]‘-"’LH-T’{}} (3.17)
1=1
where oy ({r; )4 is the Laughlin wavefunction.

el {xi)) = [I(z—=)* Hemaz 4ot (3.18)

1>
o has been wiitien as
ai(x) = e;dQe(x) + 0.0 () (3.19)
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and Qp(z) = —’;—"%f:- Note that when ,(z) = constant and Qp(z) =
Qp(z) = V x &= B, the wavefunction reduces to the Laughlin wavefunc-
tion. Thus the "mean field” state is the Laughlin state. In this case the
{1 integral in equation(?7?) is equivalent to an N vertex operator correlation
function in a e=1 conformal field theory. These wavelunctions are exactly of

the form written down by Ezawa [24].

3.2 Parameterization and LLL condition

Apart from an overall factor that only affects the norm, the wavefunction
i equation(d.17) depends on the parameters a and  through a spinor field

W, (x) defined as,

Wo(z) = g, (z)exe@rE)-frle)-if (=) (3.20)

We(z) and hence the wavefunction is gauge invariant (as it should be), since

under gauge transformations,

ﬂ-;- |[.'!' ) b ¢ ”;{.’1}

Qr(z) = Qplz)+ Q=)

o lr) = g (a)ereis) (3.21)
v and @ have a total of 6 real field components. The gauge mvariance of the
wavefunctions reduces the number of parameters to 5. There is another local
mvariance of W, ie

'”T{r] — ﬂ;{d‘] +4 ‘t{!]l
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Qu(z) — Qg(z)

valz) = pa(z)e X (3.22)

Only the norm of the state changes under this transformation and the phys-
ical state remains the same. Clearly this transformation is not unitarily
implemented in Heg. Nevertheless it reduces the number of independent
real fields that parameterize the states to 4, the components of the spinor
field W. Thus we can define the normalized projected coherent states, that

are parameterized by W as,
1 i
W) = spleved (3.23)

where, N' = ,(a, @|a, @), is the norm of |a, ).
From equations (3.17) and (3.20) it is clear that the LLL condition is

equivalent to the condition that W is analytic,
d:W,(z) =0 (3.24)

Thus the LLL condition is easily implemented in this formalism as it is

equivalent to an analyticity condition on the parameters.

[}
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Chapter 4
Hydrodynamic Limit

In this chapter, we evaluate the expectation value of observables in the limit
of long-wavelength and small density fluctuations, an approximation we refer
to as hydrodynamic limit. We then discuss the spin charge relation and the

regime of its validity.

4.1 Observables

We will now compute the expectation values of gauge invariant operators in

the projected coherent states. This is given by,
(0) = (W]|0o[W) (4.1)

where () is a gauge invariant ohservable,
We da all our calenlations in the limit of W,(z) being a slowly varying
function of & (over a length scale of ). As we will see, Lhis is also the limit

of small density fluctuations. We refer to this limit as the hydrodvnamie
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limit. We note that this is also the limit in which the analytic calculations
of Murthy and Shankar [25] are done.

Just as in the case of the Laughlin wavefunction, the computation of A’
reduces to the computation of the partition function of a classical 2-d plasma
problem. Except that here, the plasma density is coupled to an external field
which is a function of W. We first evaluate the norm, MW, Qy], in the

hydrodynamic approximation. It is given by,

=1

NIW, Q] = Hf. [on({zi, o))

~d= . .
= c’misf x ¢~ = Wale)Wolz)e e T ”Plr”e'mﬂvﬂ?‘t:}-vﬂr[:}

f 2o I Walz ) Wolz )+ 255 30 Orlo)+(2n41) )7 In{rqﬁ'b}

As in the case of the Laugh]in wave function, the norm has the form of a
classical partition function of a 2D plasma. Here, there is also an "external
potential” which is a function of W{z)W (2) and Qr(x). In the hydrody-
namic limit, we write this partition function as a functional integral over Lhe
density field and evaluate it using the saddle point approximation.

When we change the variables from {x;} — 5, where,

N

plr) Z Mz — ;) (4.3}

i=1

then for any Muhction F of {x,}. we get

N
I_I [deFad) = [ D11 (1.4)

where the jacobian of the transformation is the entropy factor,

S| = elilitei=atzh o) (4:5)

29




Hence the norm can be written as,

- B2 z)=fip(= -
NIW, 7] =  const x e~ J; WelalWalzje™ac BrtHI=8r=

= J.: Vir(z)Vir(z)
x [ Dlple<t1 (4.6)
where,

Slpw] = -/;[—ﬁ{.r}—i—ﬁl:r-jlnﬁ{z}-—,FJ[J‘]I]JI{W{,[:E}{-Vd[:J:]}

2.5 (@) () — 2n(20 + )p(e) gyila)] (4.7)

We evaluate this functional integral in the saddle point limit. Dropping ln

term when compared to jgzp and substituting the solution of the saddle point
equation,

H(2) = f— ———— TV In{W, (2) W, (z)}

4.8
47(2n + 1) (4.8)
we gel equation,
NW, Qr] = eonsixe” I, w'[‘”1"{"]"-Emrw_ﬁﬂ:]}e_fc'f; Vir(r)-Vite(x)

E-mgfﬁr L[Jn{wu:}wm;+zﬁ1‘t-r:ﬂ]v1;1n[wr{m]n’:xnﬂf;r.t-r[liu_g}

Expectation values of observables similarly reduce to the computation of
expectation values in the plasma problem. We evaluate the values of density
and spin density by proceeding along similar calculational steps employed in

evaluating the norm. The density is given by,

pla)

(W) W)

I N

= m H (] dr; Z) rf',n;[ {zi, e }) g;ﬁ[:r — )N (i o))

i=] LA

| S q
— | D351 e=SEW
E jD[ﬁ]lﬂl:Ii}f
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()

= W:—I-H}w'“{w (2)Wo(2)} + (4.10)

where 2 = [D[p]e~SlEW] and j is the mean density.

The spin density is,
Se) = {H"|"“{-r}|!-4f')

= 565 (-
N W Q) (.[dI ) "4"-"[{1-&:'”% a7 (1)d(z — zi)ibn({zi, 00 })

LW, (), MrWa{ x), .
2 Woulz)Won(x) =) (4.11)

where 7 are Pauli spin matrices.

The current density is,

Ji(=)

I

(W|J;(x x)|W)

: M|
T NW, nT}H(fr. Z ) "’"”"“*“‘“ZE‘”I"*“")

[— ihd:,, c (z,)]n({zn o))
+ h.e

I

pl)RLY(2) = =(A;(x) = a(2))] (4.12)

where ¢ is the particle index and j is the coordinate index. a is defined

through the lc]d,tmn KV x a(z) = eplz) and L] = A Z210;Z — hoe) for j =1
and 2

The kinetic energy density is,

T(r) (WIT ()| W)

1 N

ml} (,/”r'r Z) L Db {zi, e D))
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= fuy

Js (J-
oY {

) ) “(4.13)

-u-'b-l-l

where D = ds + -];Zi and z =

]
To summarize, the following are the expectation values of some of the

observables. The deviation of density from mean density 5 is

plx) —p

il

4—-7_(2” 3 1]? In(W'(z)W(z)) (4.14)
The spin density is computed to be,

8izl= @ZWE}T“Z{I] (4.15)
where we have denoted the normalized spinor by Z
Zo(z) = W—Em— (4.16)
Wz )W (z)
The current density is, computed to vield,
Ji(z) = pla) L) = =(Ae) — () (4.17)

where L} = L(Z'9,Z — h.c) and k¥ x @(z) = ep(x
The kinetic energy density is,

AW, ()W, (o
T(r) = hw.p(z) “HKWL;;V”'{;:] ) (4.18)

Note thal the kinetic energy density is zero when W is analviic

4.2  Charge and Topological Charge Densities

The effective NLSM, equation (1.5), for quantum Hall systems has a term

which is obtained by replacing, in the Coulomb term, the deviation of the
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charge density from its mean value by the topological charze density. This
equivalence of charge and topological charge densities was first pointed out
by Sondhi et. al. [13]. A proof of this result is given by Moon et. al.
[14] about which, in this section, we briefly comment and then provide an
clegant alternate proof which has the added advantage of being able to study
the effect of Landau level mixing on the charge-topological charge relation.
In general, spin and charge are independent degrees of freedom and hence
spin density and charge density operators commute. But when these opera-
tors are projected to the LLL they cease to commute and thus the dynamics
of spin and charge gets entangled. When we rotate spin, charge gets moved
and as a consequence of which spin textures carry charge. Moon et. al. de-
fined the spin texture states as [y[A(z)]) = e7O|ihy) where © is an operator
which reorients the local spin at # from the Z-axis to an axis along the direc-
tion f(x) and O is O projected onto the LLL, [#g) is the S7 = 5 member
of the spin multiplet. O is assumed to be small and 7 (x) is assumed to be
slowly varying. For such states they find dp(x) = —vx topological charge
density. Working with LLL projected operators can ohscure certain aspects
regarding Landau level mixing, We derive the charge density - topological
charge density relation and also find charge - topological charge relation when

there is Landau level mixing,
The topological charge density is given by

gle) = I\;—quﬁ.{ﬂ'} - i) % di(r) (4.19)

where fi(x) is the local direction of spin polarization, §(x) = spla)ale). In
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terms of Z, it is given by,

4, = ﬁ?f;}-aiz*[zjajZ(z} (4.20)

As can be seen from equations (4.14) and (4.20), the topological charge den-
sity 1s not necessarily proportional to the electrical charge density. In fact, in
general, they are independent of each other since Wi{z)W (&) and Z,(z) are
independent variables. However, if the LLL condition is satisfied, then the
analyticity of W, () relates the modulus and the phase of each component,

Then WH(2)W(x) and Z,(z) are no longer independent. In fact if we use

the analyticity condition, W, (x) = —ic;0;W(z), in the RHS of equation
(4.14), we get,
_ ! :
ﬁ(rJ"P——2ﬂ+ Ta(z) (4.21)

Thus the topological charge density is proportional to the electrical charge
density if and only il the LLL condition is satisfied. The relation (4.21) will
therefore not be true in presence of Landau level mixing.

When the densities are proportional, the total excess charge, ), will of
course be proportional to the total topological charge, (}1.,,. However, the
total charges could be proportional without the densities being so. We will

now investigate this possibility. Integrating equation (4.14) over all space.
we have,

: 1 o |
Q= Trln + 1] 1};_?(;{37'5,-1-(?} In{ Wz )W (x)) (4.22)

where the contour is at infinity. If W is analytic at infinity, then the RHS of

equation (1.22) can be written as,

_ | P3N L e e .
¢ = _?T-‘{E?? + 1) fri,r E{JT{J"HJL#J{J ) — ai/:t{‘r}z[‘i'”
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1 i
- — I+ 1 Qtap {4*23‘]

Thus if there is no Landau level mixing in the ground state, the total charge
15 always proportional to the topological charge. Note that Z and hence g(z)
is well defined only if p(z) is non-zero everywhere. So all our considerations
are true only in this case. They will not hold for polarized vortices where

pl(z) will vanish at some point.




Chapter 5

Gauge Invariant Bosonization

In chapter 3, we saw that the projected coherent states are labeled by a spinor
field W, and that the expectation values of observables could be computed in
the hydrodynamic limit in terms of W. The states can therefore be labeled
by the values of the physical observables, the density p(z) and the normal-
ized spinor Z.{x). In this chapter, we will show that these states themselves
satisfy the generalized coherent state properties [23] in Hyp,. Namely, the
resolution of unity and continuity of overlaps. This implies that, in the hy-
drodynamic limit, the original electronic theory can be expressed completely
in terms of bosonic field operators corresponding to p(x) and Z,(z), Thus

in this limit, the theory can be bosonized in a gauge invariant way with no

redundant degrees of freedom.
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-5.1 Gauge Invariant Bosonization

5.1.1 Resolution of Unity

The fact that the idenfity operator in Hps, can be resolved in terms of the
projected coherent states has already been shown in equation (3.2). Here we
express this same equation in terms of the gauge invariant parameters. We

perform the following change of variables in equation (3.2),
ai(2),po(z) — (), (), Wo(z) (5.1)
Further, using equations (3.23) and (4.9), we get

I = _[I}[ﬂ':v '::"J] !&:‘F}ﬂ ].,(tt, ‘r'-"
= const fﬂ[ﬂT(r}]D[ﬂL(m]]ﬂ[W]e_L ReBTE AT, Q7] |WH W]
= const f DIWIG[W]|W (W] (5.2)

where the factor e~ %) is the Jacobian due to the change of variables

o= W,
W] =] d“’”':';iﬁf“m (5.3)
and
GIW] = f D[] e B2 A1, 0y (5.4)

We evaluate G[W] by deing the O integral in the hydrodynamic limit. The

saddle-point approximation of the integral gives

GIW] = const x e~ Jx R E N W, ] (5.5)




where Q7 is the solution to the saddle-point equation which, in long wave-
length limit (V2 ln WW < ln WW) s,

I:.T] ﬂ'r{zr} + i ln{W (x)W.(z)} (5.6)

When this value for Qr is substituted in equation (5.5) we gel

k]

GIW] = const H T E}I‘VI:I P (5.7)

We now make another change of variables from W, (r) to p(x), Z

s}, defined
by equations (4.14) and (4.16), to get,

I = const fﬂ[ﬁ']ﬂ'lz] e, Z){p 2| (5.8}

where,

= [ dp(z) DZ] = H.&:m (z)sing(z)d0(z)dp(z)dp(z)  (5.9)

Z has been parameterized as

: e
= {casiet{iﬁﬂ},sxniﬁ'[%]]

(5.10)

5.1.2  Overlaps

The overlap of two gauge invariant coherent states [WW,) and |1V,), obtained
by procecding with steps similar to those involved in evaluating the norm, is

N

1 .
1 1A s (.r; ML 1L T
— \/—"'-".fl‘iﬂ-ﬂ'rl}.f\"'{ W2, Q) |]:-——]; (f f Z) Vil (i aid)

Ty

1l

o~ FrmTy Ja{2) PR N (w) = L0 (2) V2 L1 ()=} )92 oz ()] (5.11)
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where - -

fa(z) = In{W,, () Wi (z)} 'lL?ﬁ Q(z) (5.12)

If we express W in terms of p and Z we get the overlap to be
(WiWa) = o~ wrzary J, {21 () 2:(2)) V0] Z[{(2) Za ()
et Lozl o) n{z] () Z2(=)}

pamlntl] [{eu=)=rale)) Fr o) =ral=)) (5.13)

Making use of the relation, Z,,7,, = ez%0® "72}(3—*&;1.'—’11};‘ where (i), 7iy) is
the area of the spherical triangle with vertices at 7y, i, and a third point on

the unit sphere, in the above equation we get the following equation.

(Wi W) = e FlonZiea)

b m{{pm“ﬁﬂ+]"E%&}}W{ﬁ’{ﬁl,ﬁg}+1n(1_+%ﬂ}}
~1 ) + g, nz}-_[;ﬂl{t )+ o)

_—{zn+l}f (ol x}—p;{rj}{'rl Judpr () — paly)) (5.14)

where (1, 7,) is the solid angle subtended by the geodesic triangle with
ni,tiy and some third point on the unit sphere as vertices. Note that the
overlap smoothly goes to | as (py, 7)) — (pa. Za).

[n the folloWving chapter, we construct the classical theory for Compos-
ite bosons and shall see the importance of gauge invariant coherent states.
The coherent states we constructed inlerit the classical-quantum COrrespon-

dence property which tells us that classical theory completely determines the

quantum dynamics.




Chapter 6
Classical Theory

A classical description of a system is specified by introducing a phase space
and Poisson brackets (i.e., a manifold along with a Symplectic siructure),
While a quantum description is effected by introducing a Hilbert space and
operators acting on that Hilbert space. A correspondence between the quan-
tum theory and the classical theory can be given by constructing a coherent
state basis for the Hilbert space which are labeled by classically interpretable
variables. The correspondence relates the label space of the coherent states
and the phase space manifold. Operators in the Hilbert space, through the
matrix elements in the coherent state basis, get related to the functions on
the phase space. Commutators of operators are related to the Poisson brack-
ets of corresponding functions on the manifold. The Poisson brackets (or
the Symplectic structure) can be extracted from the overlap of two nearly

coherent states,

For simple Hamiltonians, a coherent state remains a coherent state un-



_ der time evolution. The parameters labeling the coherent states will evolve
~according to the classical equations of motion. In addition to the parame-
ter evolution, the states accumulate a phase equal to the exponential of the
classical action. Hence, the classical dynamics completely determines the
evolution of the quantum states.

In the following sections, we give a classical theory for the composite
hn.mns We also give a classical theary when the composite bosons are re-

stricted to the LLL. We then discuss the limit where the classical theory

- o0, € —+ () while their product remains fixed, Ne = {. Between every

splitting when we insert the resolution of unity, equation (5.8),
I = const j DIW] (W)W

there, W = (p+ Z) and D[W] is the integral measure, we gel
= M= = Tpi [N

= 11 [oiw.] [T (Waiale™ 1)

l:-i'UN-mozN t
]:[f'D[H*n] TT(0Woca W)L = (00, [H]W,))(6.1)

=0, ﬁ"—;:-: el =i
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. We keep only the terms linear in € as we shall be taking the limit ¢ — 0.

Since Wiy = W, + ed, IV, we get
(AW, W) = In(W, . [W,) (6.2)
Finally we write the formal path integral as
7 = [ (W] ¢ [ dtl-itaww)—Hw)] (6.3)

where H(W) = (W|H|W).
The classical action,§[W], on the manifold parametrized hy W gets de-
fined as
S[w] = [ dt[—i(BW|W) — H(W)] (6.4)
The expression for the first term is obtained from the overlap of nearby
states, equation(6.2), while the Hamiltonian function H(W) is given by the
matrix element (W[H|W). In the expression for overlap, equation (5.13),
we put pa(x) = p(z), pa(z) = plx) + Drple), Zao(z) = Zu(x) and Zy, (z) =

Zo(T)+ €diZy(x), 50 as lo get the overlap for nearby states

(W + B, W|W) = emic | st Lit=1+0(7) (6.5)

or
(O W|W) = —:’tfp{mjﬂ?{;zr} (6.6)
where L = 3(Z'8,Z —h.¢). We make use of the above expression in equation

(6.4) and obtain, after rewriting Z in terms of #.0,¢ as given in equation

(5.10), the following action
5wl = fda‘ —%fp[m}{:,i’[.r.}-{- Bz )casO(z)) — H{W))
= jn‘! [] }—1[1,": + dheos)p — _lli”tﬁ-' — l],uq'minf,h‘} — jl—ll.ums{i'f,ﬁ 0}
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We get the second step after doing integration.by parts and neglecting the

total derivative terms.

The classical action is first order in time derivatives and is an example of

the form

S = f _, e, = H(z)] = /ru - / Hiz)dt (6.8)

where w = Jw, de* A dz”, w,, = dua, — Oa,. The least action principle

produces the following equations of motion
aull = w,, " (6.9)

and the Poisson brackets can be defined by
{f.9} = 0. fB.g (6.10)

where w™ is the matrix inverse of w,,.

The antisymmetric matrix w,, is a 4 % 4 matrix for the action given in

equation (6.7).

i wpp  Waw  Wai Wg l - 0 _% 0 _% cos -
» Wyp Wy Wes Wyg | : 0 0 ()
= W,  Wpy Wep  Waa - 0 0 () % psint
| Whe Way W Wy | | geosf 0 —gpsind ] J

The determinant of this matrix detw,, # 0 and hence the inverse matrix w*

exisls,

W gl e 0 2 (0 0

W Wbl e =2 § =&k g
w{i';b wﬂii' L 0 teard 0 __g
[ RN

wﬂlﬂ' wq‘r[‘ L 0 i k. il
o L nsin A
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The Poisson brackets of the functions f = f(p,¢,0,4) and g = g(p, 1, 0,¢)
are obtained by substituting w*” in equation {6.10). The Poisson hrackets
take the familiar form for conjugate variables in terms of @ = |/pZ and
®! =  /pZ! when substituted in equation(6.5). But then the observables are
complicated functions of @ and @',

In general, the resolution of identity of the coherent state basis is sufficient
to define the classical action though this does not necessarily imply that the
coherent states inherit the classical-quantum correspondence property [26].
The classical dynamics will not be able to capture the complete quantum
dynamics if there 1s a "gauge invariance” in the parameters labeling the
coherent states[27]. w,, will not have an inverse in which case the solutions
to the equations of molion are not unique. Since the gauge invariant coherent
states we constructed have no redundant variables in their label space, they

do inherit the classical-quantum correspondence property.

6.2 LLL Classical theory

I we now impose Lthe LLL condition, then the charge density fluctuations

get tied up to the the spin density [luctuations. i.e..

|
2+ 1

plr) = p— qlx)

= p— e L) (G.11)

2m(2n + 1)
The theory can then be expressed in terms of spin fluctuations alone: The

expression for the overlap in equation (6.5) then gets written as,

{H"' | r{-jr].y“.p} = F—"u"_lr, L3 (e} ﬁlﬂrn II,""'“’I":'i”""r‘i“}"OWF (G.12)




The first term in the exponent is the solid angle term given in equation (1.5). -
The second term in the exponent in the RHS of equation (6.12) is the Hopf
term. Thus the theory, when restricled to the Jowest Landau level is a NLSM

with a Hopf term in the action.

6.3 The classical limit

We will now show that for large skyrmions, the theory becomes classical.
Consider the set of states corresponding o conligurations characterized by a

size parameter, d. We parameterize them as,

| T
ila) = ot 500(5)
Z=) = 2(3) (6.13)

Substituting pi(z), Z% (r) and pé(z), Z2 (x) in equation (5.14) and changing

the variable &+ — dx we get,
{H‘G |Wg> = EJ—:[dzﬁln{ 1+ﬁ2 : :|+D{du]] {514]
%ln['l—*ﬂ,,j—”lj is zero 11y = np and negative otherwise. Thus for W £ W,

Lim (W3] Wy) =0 (6.15)

The coherent states thus become orthogonal when d — oo, Il can also be
shown that the off-diagenal matrix elements of the observables in the coherent
state basis, vanish in this limit, Hence the set of states corresponding to a

system of skyrmions will hehave classically in the limit of the skyrmion sizes

tending to infinity.



6.4 Laughlin Ground states

In this section we shall derive the ground state of quantum hall system using

coherent states and their classical limit.

Let |#) be a normalized state which in the coherent state basis is given

N iV - 5
Wy = [ a(w)|w) (6.16)
The expectation value of Hamiltonian in state |¢) is
hHY = MalW) (W' 7
(6 H ) fwr fw a(W)a(W’) (W'|H|W) (6.17)
In the classical limit when the overlap (W’|W) becomes orthogonal only the
diagonal matrix elements of the operators are non-zero, Hence we get
witly) = [ [ awyaw) B, w) 5w - w)
i H.r
= /;  la(W)P HOW, W) (6.18)
where H(W, W) = (W|H|W). Since the above expression is sum of positive

quantities the ground state corresponds to the coherent state [W) for which

H(W, W) is minimum,

The expectation value of coulomb energy in the classical limit is

(VW)

[

]”{-.-V[aﬁm Viz — y) Apy) W)
]1 . f (WIAM) WY V(z — y) (WA W)

= [-ﬁpur{-ﬂ} Viz — ) Apwl(y) (6,19
L o 1

I

The second step in the above equation is abtained by inserting resolution of

identity of the colerent states and the thivd step is ablained upon taking
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classical limit and integratipg W'. V(z — y) is the interaction potential and
Ap, given in equation (4.14), is

Apw(z) = pla) — p = m—'mv‘*rntwft W(z)) (6.20)

We get the total energy from equations (4.18) and (6.19) as

HWW) = ho, [ sz }a;f Ef{,w_{m + [ Bpw(a) Viz —y) Apw(y)

(6.21)
The kinetic part of the energy vanishes for any analytic W and when W =
const the coulomb energy too becomes zero. Since the Hamiltonian is positive

definite W = const gives the minimum energy. We have already seen in

section (3.1) that the constant W state is the Laughlin state. Thus we

obtain the ground state at all » = L +1 to be the Laughlin state independent

of the form of interaction.



Chapter 7

Skyrmions

In this chapter we give a complete kinematical description of lowest Landau
level skyrmions in terms of their collective coordinates. We study the overlap

of skyrmions and also construct finite spin skyrmions.

7.1 LLL Skyrmion States

We characterize the skyrmions in the LLL by the set of states {|A, f2)} labeled
by two complex parameters, A and 7, related to the size, orientation and
position ol the skyrmions. These states are a subset of the gauge invariant

coherent states {[W)} we constructed with the following choice for W,

W = (7.1)

In the next two subsections we evaluate the overlap for the states |A, )

in order to study the collective coordinates of a skyrmion.
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7.1.1 Skyrmions positioned at origin -

We shall first consider a special case where B coordinates are frozen. The
overlap of [A) = |Ay,0) and [A2) = | A5, 0) is obtained by substituting W, =
AL 3 T _ :
and W, = in the expression for coherent state overlap given

z z
in equation (5.11). We get the overlap as

(Ar|Ag) = e“W;M-TJLlﬂ'*fr}viﬂi?{ri—%fllﬁf}'?zﬂu[f}—%ﬂziﬁrl?iﬁ'z:irli
w Em_{,[m{r]—%mtirl—%su!x}l] (7.2)
where
gat(x) = In[A. Ay + 22 (7.3)

We do the above integrals in the polar coordinates since the integrands are
angle independent and put an upper cut-off, L, for the radial coordinate. We

then get the following expression,

(J‘IP‘E} =g ziz.:+‘]'| {la BA[A =22 4R 0 —Apag) {?4}

The exponential of the overlap contains a divergence when L — oo, We shall
now irace the origin of this divergence by evaluating the overlap at ¢ = |
without any approximation. The wavefunction of the coherent states as given

i equation (3.17) is

ol

(e W) = const % [] Wo () dn({a}) (7.5)

=1
where ¢ ({x,}) is the Laughlin wavefunction. For v = 1 the Laughlin wave-

function is the slater determinant of the analytic LLL wavelunctions (=)

v({z) = Y(-1)" T erdzr) (7.6)
P I

44




where the sum is over all the permutations P. Hence the coherent state

overlap for v = | becomes

i) = const (X [ ) 00z (ool

&y

= consl H[ H[]“Vi (2:)Wo(z)] [r({z:})?

= const Hf H[]-VJ. (i)W ()] Z[—IJP{—I}QHn,ﬂ}'{&?pr]cp;{xm]
b o i

= const’ ] [ TIIWH, () Wor (21)lii (1) 1(1)
g SR Y

Thus we obtain the overlap for [A) and |A2) after using the LLL wavefunction

property zpi(z) = VT4 Lpgy(2) as
NlAD = st N ]:[f:[mz + 22)pp(2)e(2)
= const x [[[MAa+ (I +1)] (7.8)
I
Therefore we get the overlap for the normalized |[A;) and |Ay) as

(AlAg) = eXalnihdat(ten)}=3 Ind 1)) -5 el +4 1)) (7.9)

The sum in the exponential diverges and hence the long-wavelength approxi-
mation where sum is replaced by integral is not the cause for this divergence.

In fact, the spin also carries the same log divergence which can be seen from

the following expression.

1 =
([ @@ +0% = T ey

From the equation(7.4) for Ay # Ay due to the logarithmic divergence in the

AE

T (7.10)

cxponent

Jim (A fdg} = 0 (7.11)
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Hence the A-coordinate can be completely treated classically. This- limit
acquires a further physical significance if we consider a modified state |X; &)

with W now given as

JI -
W = (7.12)
zfirix)
where f(r;«) is a function chosen so as to remove the log-divergence in the
gap integrals and in the limit & — 0 the states |A;x) — |A}. Hence for finite
o we are allowing mixing of higher Landau levels and thus x specifies the
amount of Landau level mixing. We can thus conclude that the A-coordinate
of skyrmion goes classical when resiricted to LLL. The phase of the overlap

tells us A and A are conjugate variables and hence behave like the guiding

center coordinates of a charge particle in a magnetic field.

7.1.2 Overlap for a more general case

We shall now examine a more general case for the overlap between [A, R;)
and |Ag, fy). We assume the phase difference between A, and s to be zero,
We also shift the origin in the overlap integrals to the center of mass{CM)
of Hy and [ty Although for complex integrals of multivalued functions (log-
function) one should make sure whether one can analytically continue the
origin to the M, we shall not do so here. The price we pay is lase out
information on the phase part of the overlap. We shall instead evaluate the
phase separately from the overlap of infinitesimally nearby states which is

sulficient to identify the conjugate variables.




We notice that one of the integrals in equation(7.2) can be written

‘/Igu[:.r]?.‘!gm{z} = ‘1]:?1‘1[:”’ B-Hzgm{:rj = —4La£§1z(-'ﬂ}a:§m[$]

s .
s 4[[_{)1“ - ] (7.13)

where D, = jqﬁnz-i-l:é——}{c. H} It is then suflicient to evaluate f =— since
a derivative w.r.t (A Ay) will give us [ oy and an integration w.r.t {ir}nz}
will give us [, gia2(z). After cumbersome but straight forward integration in

polar coordinates with a upper cut-ofl L in the radial coordinate we get

frﬂ%z :fri-,a2+;—lﬁ}{~ 5

1 {L“+—+Mz+\/-‘5*+ + A = MA 2
= mlin
Bt + 5 = A

7.14)

!

f I R o 20 =By R s
|A|2+| -5 24, 1

and making use of above equalions and their derivative w.rt (A X;) and

integrals w.r.t (A As) we oblain

1
j;[.'-'}'u[ﬂ . %911{1']' = 5!{22{3’}]

i ¢ i? *
= =7 l{h1hj FT].{,E:-\])\:} )'. }Lg {- J'u )'-1 } f?{)ﬂ }L? - T) i‘ {E - }L L ]]

— mlh =AM Inl + %:r [A.'*lnrz:aﬁ] = AT Jat In(2452= .‘ag"] (7.16)

/

; | 1
lna (=) Viga(e) — ’Eﬂ“[ ) Vi r) - —5’21[ )V gaa( )]

(| |
L=



2 2
= 4r lll’l{% 4 }uljﬂz + |% = }'IA?E} - % 111{2);.2} = % ID[‘Z)LQE}:[

B 1

+ 4 [ﬂ{}tl};g - T} = E

s BE- Ll..ou R
0" = =) = 50(% —T}] (7.17)

where 0(t) is the theta function which is I when the argument is positive and
0 otherwise.
In the above expression if we put £ = 0 we get the expression (7.4) we

derived earlier. For A; = A; = A we get the following expression

- 452\ T 2
[On, Bafde, Bp)| = 7w (F) E(RT_J‘Z]
i
+ et ﬁ'{f—%l (7.18)

where It = |1ty — Ral.

A is a length scale associated to the size of the skyrmions and R to the

distance between two skyrmions, When the skyrmions are close (H < 2))

the overlap falls off exponentially while for A > A there is a power-law decay,
We shall now determine the phase for two infinitesimally nearby states

|A, ) and [A 44X, R+ 4R). Expanding [ g1z and [ g2V %12 to linear order

in 44 and 41 we get the phase of the overlap

1 ki AR £
(200 +i;|’Wt [’.awj'f}' - Tjﬁ]

% I f(2=R) PP rE=-R)
_[‘JH+I}£R [E—f B % ['_J,r}'a_ (7.19)

where ) = [AP+|z—R|?. The value of first integral is given in equation (7.15)
il we replace R by 2/, The second integral is obtained by differentiating the

first integral twice w.rl. [A[Y. The other two integrals are evaluated from

%)




the following identity. *

d r(z—R) g 11
w5 = W[ (7-20)

Integrating the right hand side w.r.t 2 will give us the third integral. While

differentiating twice wor.t |A|? and integrating w.r.t ff will give us the fourth
g B g E

integral. Finally we get the phase to be

1 - | 2
S | T
Gy o InL T Ty OR (7.21)

In the corresponding classical theory the Poisson brackets of functions of

A A R and R as given in equation (6.10)

{fi9} = w™0.fdug (7.22)

where the non-zero w™ are

. Pin ) )
. WhR = _ RR _ og9y, 4 1) (7.23)

Hence A is conjugate to A and 17 is conjugate to [,

7.2 Finite spin skyrmions

[n this section we construct eigenstates of spin operator which describe fi-
nite spin s]c}frn;.irmﬁ, We shall determine the LLL skyrmion coherent states
evolution under rotation in ordinary space and spin space and determine the
cigenvectors as a linear combination of {|A)} states with frozen K.

Ry is the unitary operator associated to a rotation in the two dimensional

space by an angle § and its action on the basis states in the N-particle sector

-

u ‘1



is given as
‘R@ Hlﬂi,ﬂ"i}} — r.‘ix I{:E,'E'-ﬂ~o'g}} I:T.24:]

where x is an arbitrary phase as symmetries are implemented by unitary

operators only up to a phase. We choose y such that

Ry e} = i) (7.

=J
[}
g |
e

where [101) 1s the Laughlin state with all the spins pointing down.
U, 15 the unitary operator associated to a rotation about the z-axis in

the spin space by an angle  and its action on basis states is defined as

N

Uo aiod) = e 1 G N (7.26)
The phase y is set such that _
Uy ) = [e) (7.27)
We can now find the action of Ry on the LLL skyrmion state |A).
R = RI(T]) Wit eson)
= R T[] e e
= Lo e Aim rlfed) Haw o))
= [|4e") (7.28)
Similarly we find the action of Uy on |A)
LAY = |Re=) (7.29)
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The skyrmion states |A) are unaltered by the combined action-U,R., and
hence as expected are eigenstates of total momentum operator. We now
construct a linear superposition of the skyrmion states as an eigenstate of

spin. Consider the following state

ls) = ]Asﬂ,[h) |A) (7.30)

Upls) = [ @3 ey = [ wi(re?) ) (7.31)

For the following choice of normalized wavelunctions

2a() 1 I Y i g
o, = — 3 e s
V220 + 1)k V2rst(2(2n +1)k)3

we gel
.-_’,f,_n|¢,-} = g |~:} {?,33]

The states |s) are thus eigenstates of spin & and give vs finite spin. These

states are also orthogonal (s'|s) = d.,.
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Chapter 8

Conclusion

The motivation of this work was to examine the microscopic basis of the
semiclassical NLSM for skyrmions at v = 1/(2n + 1). Therefore, we have
developed a coherent state formalism of the composite boson theory. Specifi-
cally, we have addressed the questions stated in 1.3, Of particular importance
1s the question of the existence of a classical theory for Skyrmions and find-
ing their phase space. It is also important to know how to impose the LLL
condition in Lhe classical phase space because, in the systems of interest, the
energy scales are such that the dynamics predominantly takes place in the
LLL.

We showed__l!-ha.l. the coherent state basis of Hpg, when projecied to the
physical subspace Hppy, can be parameterized by a spinor field that we de-
noted by W (x). In the hydrodynamic limit we have shown that these states,
|7} themselves satisfy the coherent state properties of the resolution of unity

and continuity of overlaps. The LLL condition is equivalent to the condition

=]
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that W, (i) are analytic functions.

The charge density is determined by the modulus of W i.e WHaz)W(z)
and the spin density by the normalized C' P, spinor, Z,(z). In general these
are independent quantities and therefore the charge density is independent
of the spin density. However if W(xz) is analytic, the modulus and phase of
each of its components get tied up. We showed, that consequently, the excess
charge density becomes proportional to the topological charge density which
is determined by the spin density. Thus this proportionality will cease to
hold in presence of Landau level mixing. We also showed that the condition
for the total charge density to be proportional to the topological charge is
weaker. It is sullicient if W(x) is analytic at infinity. ie. that the ground
state does not have Landan level mixing.

We have given a classical theory for composite bosons. We showed that
if we consider the set of states corresponding to classical configurations char-
acterized by a length scale d, then they become orthogonal in the limit of
d — oo. This implies that a system of skyrmions will behave classically in the
limit of their sizes going to infinity. We have exploited the classical-quantum
correspondence of the gauge invariant coherent states and derived the ground
states for quantum hall systems. We have finally given a complete kinemati
cal description of the LLL skyrmions in Lerms of their collective coordinates
and constl'lld:f:wi finite spin skvemions. We lind the collective coordinate A
becomes classical in LLL.

Our results show that the coherent state formalism we have developed
can be used to study large skvemions classically. While the LLL condition

can be imposed easily, the formalism can also deal with the states where this
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is not done. The computation of energies etc. does nol pose any additional
calculational complication. Thus it can be used to study the effects of Landau
level mixing in skyrmions. It could also be used to study the system in an
external (slowly varying) potential. We will be addressing these problems in

future.
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