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Chapter 1

Introduction

A many-body system (with say 10% particles) which is closed and ergodic will, given suffi-
cient time, reach a unique equilibrium configuration. The approach to such an equilibrium
configuration is by and large fairly well understood (1, 2, 3]. However the vast majority of
systems observed in nature are open and subject to external forces which drive it far from
equilibrium. Being dissipative such svstems evolve over long times to settle into complex
steady state behaviours. A variety of phenomena in Atmospheric Sciences (cyclonic patterns
[4]), Geology (glaciation, mountain ranges [5], river networks [6]) and Biology (pattern for-
mation in embryonic cells, morphogenesis of cellular structures [7]) constitute examples of
such behaviour (Fig. 1.1). The classification of generic behaviour exhibited by such systems
is currently a subject of intense research and very far from complete.

An important step in the classification program was the construction of the simplest
possible dynamical model, the ‘hydrogen atom’ of many-body interacting systems, which is
both driven and diffusive — the so called Driven Diffusive Lattice Gas (DDLG) models [8].
Several studies, using a variety of theoretical techniques like numerical simulations, mean field
approximations and dynamical renormalisation group, have been devoted to understanding
its ‘dynamical phase diagram’ under different external conditions.

The DDLG models studied so far are purely diffusive and driven and do not possess
any inertia. Most systems of N particles however obey, in the absence of dissipation and
external driving, a dynamies which is inertial. i.e., they are governed by Newton's laws.
Inertial dynamics of course conserves energy, as opposed to dissipative dynamics (which

results in energy loss) and external driving (which results in energy gain). This thesis is a
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study of the interplay between inertia, dissipation and driving on the dyvnamics of many-body

systems in d-dimensions.

Figure 1.1: Examples of driven. dissipative systems with inertia. (a) Hurri-
care ‘Bonnie’ photographed over the western Atlantic from a space shuttle (cour-
tesy:  hitp://www-pace.mit. edu/~emanuel/geosys /nodel . himl). (b) Himalayas moun-
tain range viewed from the top of Mt Everest. (¢) Trails of a meandering
river in the flood plain in Alaska (courtesy: hitp://www, geology. wive. edu/~hsui/elasses/
geol16/lectures/wkifolder/WaterAetn himi). (d) Pattern formation in surface tension driven
Benard convection (courtesy: http://chaos. ph.uteras. edu/research/schatz /home. hitml).

Let us start with a text book example of a driven. dissipative single particle system [0].

Consider a particle in a potential V(z) = 5r#* + Tux?, where 7 can have arbitrary sign and
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u > 0 (Fig. (1.2)).

r>0 V(%) r<0
!
| VO

(A) (B)

Figure 1.2: Particle in a potential V().

The dynamics, given by Newton's equation ¥ = =V'(z) = —rz — ux?, conserves energy
(inertial dynamies). The ‘phase-trajectory’ (z(t), v(f) = #(t)) is an ellipse signifyving periodic
motion with constant amplitude, Fig. (1.3a). Introducing dissipation in the form of a
frictional force —(i, will dampen the particle motion leading to a loss in energy (inertia
+ dissipation). The oscillations have a decaying amplitude, Fig.(1.3b), and eventually the
particle will cease to move. We now drive the system with a periodic external force A cos(wt),
thus & + (& + rx + uz® = Acos(wt). The equations of motion may be rewritten as three

autonomous equations

I =
1 = —(v—rr—uzr + AcosQ,
| Q = w, (1.1)

. making it convenient to analyse the (x(f),v(t)) ‘phase-portraits’ of this 3-dimensional dy-

namical system. For » > 0 and small x(t) < 1 (harmonic), the external driving dominates

after a short transient, and the particle oscillates with frequency w and an amplitude given

! by A. Fig. (1.3¢). When z(t) > 1 (anharmonic). the particle still oscillates with a frequency
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w but with an amplitude which depends on the initial conditions, Fig. (1.3d). When r = 0.
the nature of the phase-portrait changes significantly. For a certain range of  and A val-
ues, the time evolution becomes aperiodic and chaotic, Fig. (1.3e). This chaotic dynamics
persists when r < 0 (provided » > 1 so that it hops to the other well) for a special range of
values of  and A4, Fig. (1.3f) [10]. Note that in this chaotic regime, the trajectories densely
fill a bounded region in phase space. We introduce an additional diagnostic of chaos, one
which is more convenient to portray for the many-particle systems we shall encounter later
than these phase space plots. In the chaotic regime, the power spectrum computed from
the time series z(t), i.e., P(w) = |&#{w)|?, should decay as a power law or remain constant.
Figure (1.3g) is a plot of P(w) for the single-particle example, showing that it is roughly a
constant (the fit improves with better data). This chaos may be ‘controlled’ by applying a
perturbation which prevents x from becoming large [11]. If the motion is restricted to small
r (s0 as to neglect the x% term in Eq. (1.1)), the chaotic motion ceases resulting in the usual
forced oscillations, Fig. (1.3h). Thus we see that the interplay between inertia, dissipation
and driving leads to a rich ‘phase diagram’ even in this simple 1-particle system.

Leaving this driven single particle system behind, we ask for examples of many-body
systems where the joint action of inertia, dissipation and driving can lead to complex be-
haviours. There have been several beautiful studies of such systems which include complex
fluids (e.g., liquid crystals, polymers and surfactant aggregates) subject to constant shear
rates, driven interfaces (flux-lines in super-conductors and domain walls in magnets), and
Rayleigh-Benard convection of fluids sandwiched between two plates held at different temper-
atures. In the spirit of DDLG models, we search for the simplest model many-body system
which exhibits these three features. It is clear that Ising-like systems do not satisfy these
requirements, since their dynamics is purely dissipative (being generated by contact with a
heat bath). The simplest example of a many-body spin svstem possessing inertial dynamics

is the Heisenberg model in which the spins precess in response to the local magnetic field.
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Figure 1.3: Plots of v = & vs x. (a) Inertial dynamics without dissipation (¢ = 0) and
driving (A =0) for r = 1 and u = 1. (b) Introduction of dissipation ({ = 0.04) slows down
the particle which eventually ceases to move. (c¢) Particle is driven with a periodic force
(A =256 and w = 1) and the motion is restricted to small amplitudes (¢ = 0). Here r = 236
and ¢ = 3.2, (d) Large amplitude (u = 0.01953) motions are allowed and after the transient
dies down, the particle chooses one of the two amplitudes depending on the initial condition.
Plot is for r = 0.3906, { = 0.125, w = 1 and A = 1.024. (e) At the critical point (r = 0),
chaotic motion arises when, u = 1. { = 0.05, w = 1 and 4 = 7.5. (f) Chaos persists for
negative values of (= —0.2), when u = 0.5333, { = 0.04, w = 0.2 and 4 = 0.8. (g) Plot of the
power spectrum P(w) for the example (f). P(w) is roughly a constant over 3 decades, which
indicates chacs. (h) Restricting the motion to small amplitudes (keeping only the linear

terms in the dynamics) results in periodic motion. Plot shown for, r = 0.2, { = 0.04, w = 0.2
and A =0.8.
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In the classical Heisenberg model, sping S; are arranged on the sites i of a regular lattice
in d—dimensions. Each spin is a vector with three components and each component can
assume continuous values. The energy of a configuration is given by,

E=-J ) 8;-8;, (1.2)

i

where J is the strength of the exchange coupling between the nearest neighbour spins ¢
and j. At high temperatures. the equilibrium phase is a paramagnet with the equilibrium
magnetisation M =< 3,8, >= 0. At temperatures below the critic;'a.l point T, (T. = 0
when d > 2), the equilibrium phase of the system is a spontaneously broken symmetry phase
which is ferromagnetic (M # 0) if J > 0, or anti-ferromagnetic if J < 0. Since we will be
interested in physics at length scales much larger than any microscopic length (typically of
order lattice spacing a ~ 10 A), it is convenient to work with ‘coarse-grained’ magnetisation
variables J{r, t) which is an average of S; over a coarse-graining length [, where a << [ < £,
the spin correlation length. A systematic way of realising the coarse-graining is by using the
Hubbard-Stratonovich transformation [12], and then taking a continuum limit to obtain the

Landau-Ginzburg free-energy functional,

-

Figl = [ |[Z(VoP+ 138+ 569 (13)

u
4
The parameters o, r and u are related to T, J, a.d and z (the coordination number). The
parameter 7 is proportional to T — THMF (TMF = mean field critical temperature) and so

when 7 < 0, the minima of the above frec-energy density are at a nonzero magnitude of &

and infinitely degenerate. As in the single particle example. we arrive at equations of motion

for the spin starting with a Heisenberg spin model interacting with a heat bath (consisting
- of phonons or electrons) — the resulting equations of motion have both inertia and dissi-
pation and ofcourse thermal noise. We first analyse the interplay between dissipation and
inertia by studying the ordering dynamics of this spin model as it approaches equilibrium
following a quench from the high temperature phase [13. 14, 15]. Next we study the effect

of external driving on a Heisenberg magnet in the presence of both dissipation and inertia
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[16, 17]. In the last problem we drive the Heisenberg spins by an external thermal cur-
rent generated by sandwiching the spin system between two different heat sources [18]. Note

that in the last two problems the spin system is driven far from its eguilibrium configuration.

1.1 Phase Ordering Kinetics of Heisenberg magnets

Clonsider a regular lattice of Heisenberg spins in a «— dimensional bc;x in contact with a
heat bath at temperature T'. We start with an equilibriumn configuration at 7' > T, given
by an average magnetisation (¢(r)) = 0 and a spin correlation function (@(r + x) - @(x)) ~
exp(—r/&(T)), where the bulk correlation length £(T)) is of the order of a few lattice spacings.
The spin system is quenched from this paramagnetic phase to a temperature T < T,, as
shown in Fig. (1.4). The spins now evolve very slowly towards equilibrium, since the infinitely
degenerate equilibrium states with broken continuous symmetry compete with each other to

establish order. How do we mathematically describe this dynamics towards equilibrium 7

n
A
B
./\
0 TC
—_— T

Figure 1.4: T-h phase diagram of the Heisenberg model for d > 2. Arrows show quenches to
(A) T < T, and (B) T =T, starting from the paramagnetic phase.

It would seem that the derivation of the coarse-grained equations of motion for the spin
density starting from a microscopic Hamiltonian describing the coupling of the spin system
with the heat bath, is a hopeless task (this program has nevertheless been successfully carried

out in a few simple cases such as (a) a two-level system coupled to a heat bath of harmonic
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oscillators [19] and (b) an Ising system coupled to a heat bath of phonons [20, 21]). Instead
of going through a tedious calculation, we shall provide an impressionistic derivation of our
final coarse-grained equations based mainly on symmetry and simplicity.

The heat bath which may consist of either a collection of electrons or phonons interacting
with the local spin is a source of dissipation and noise. In general the Hamiltonian can be
written as H = H,i + Hpgen + Hinp, where Hyyin, Hygen are the spin system and heat bath
contributions to H respectively, while Hi,, arises from the interaction of the heat bath with
the spin system. To arrive at the effective equations of motion for the spin system, we need to
make assumptions on the nature of the heat bath ; the heat bath variables are assumed ‘fast’
with relaxation time scales well separated froimn those of the slower spin system variables. This
allows one to integrate out the heat bath variables (for calculational convenience represented
as an assembly of simple harmonic oscillators linearly coupled to the local spins) to arrive
at effective equations of motion for the spin variables, This has the form of a generalised
Langevin equation

w = [nertia + Dissipation + Noise, (1.4)
where & = 1, 2, 3 denotes the vector components of the spin. The first term {Inertia) describes
the Hamiltonian dynamics of the spins; thus r;":u = {¢a: Hipin} = [{@n, @5} F /s where the
eurly brackets denote the Poisson Bracket between two classical variables defined on phase
space [2, 19]. In the last identity we have identified H,u;, with the continuum free-energy
functional Eq. (1.3). With the usual Poisson Algebra for the spins ¢,, the inertial term may
be easily evaluated to obtain the well known Larmour precession formula q_:: = {; X ﬁ,,.ﬂ;,
where the molecular field H,, = —d0F It rhq_;

Both Dissipation and Noise originate from the coupling of the spin system to the heat
bath, and serve to guarantee that the spin configuration approaches equilibrium at late
times, The form of the interaction between the spins and the heat bath variables depends
on the nature of the heat bath. For instance, the heat bath could be a collection of phonons ;
in this case the interaction between the local spins and the phonon bath (at low enough

temperatures [22]) does not effect the total spin. On the other hand. if the heat bath were

a collection of electrons, then the spin of the electron could couple to the local spins. This
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would result in a change in the total magnetisation of the spin system. Thus depending on
the nature of the heat bath - spin system interaction, the total spin may be conserved or
not conserved during the dynamics. A reasonable choice for the dissipation, which ensures
that the spin system evolves towards equilibrium, is [ V*(dF [.:5];' d,) when the total spin is
conserved or — ' F [qE;] [ddbs when the total spin is not conserved. Here I is the spin mobility
obtained on integrating out the heat bath variables.

The heat bath is also a source of Noise, whose statistics is simplified if we make an
additional assumption (First Markov Approximation [19]); the future time evolution of the
spin system will depend solely on the values of the spin variables in the present. This makes
the noise term local in time. We make the further simplifving assumption that the noise
is a random variable taken from a Gaussian distribution, independent and uneorrelated in
space and time, with zero mean and a variance equal to D. To ensure that the spin system
approaches equilibrium at late times we need to make D o« I' (Fluectuation-Dissipation
Theorem) [23, 24].

Starting from the paramagnetic phase, the generalised Langevin equation (Eq. (1.4))
describes how the local spin density evolves in time following a quench across T.. The
paramagnetic configuration can be shown to be linearly unstable; the spin configuration
at a later time consists of large patches of the nearly ordered degenerate phases separated
by regions where the spins deviate strongly from the ordered phases. Such spin excitations
may in general be decomposed into two parts - a smooth part qT:r;,,, coming from spin-wave
configurations (Fig. 1.5) and a singular part :53,-"5. coming from topological defects. Spin-
waves are low energy excitations with a dispersion g ~ k%, where the wavelength is 27/k.
Any smooth spin excitation can be written as a superposition of spin-waves of different
wavelengths. On the other hand, topological defects in Heisenberg spin systems in d = 3
are hedgehog or monopole configurations (Fig. (1.5)), where ¢ ~ 7 except in a core region
- of size &, (Order of a lattice spacing) surrounding the centre of the defect, where the order
parameter is undefined. These are massive excitations and cannot be destroyed by smooth

local changes in the spins.
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Figure 1.5: (A). Topological defects in the Heisenberg model - a monopole and anti-monopole
pair is separated by a distance L(t). (B). Spin-waves which represent low energy excitations
in the Heisenberg system.

The Heisenberg spins relax via a variety of scattering mechanisms — spin-wave-spin-
wave scattering, spin-wave-defect scattering and the mutual annihilation of defect-anti-
defect pairs. In the purely dissipative systems with no inertia studied so far [1], the lifetime
of spin-waves is short and so at late times the only surviving spin excitations are defects
dressed by their interaction with spin-waves. At late times the dressed defects organise in a
statistically self similar spatial pattern, which in most svstems is characterized by a single
length scale (L(t) > &(T)) which typically grows algebraically in time L(t) ~ t'/%, The
dynamical exponent z can be derived for various models using scaling arguments [25] -
for the Heisenberg model, z = 2 (purely dissipative, nonconserved dynamics) and = = 4
(purely dissipative, conserved dynamics) in dimensions three or higher. A simple scaling

argument can be used to determine the z exponent for the conserved model; the extension to
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nonconserved dynamics is not straight forward since the mobility picks up a scale dependence
demanding a more careful analysis [26, 25]. The conserved dynamics can be written as a

continuity equation

8 = = _
EE—+?-; =1 I:I.D]
where
= —rf’?—'ﬁ{ =TIV, (1.6)
de

is the spin current. The chemical potential, i seales as L= which follows from the Gibbs-
Thompson relation [1] for vector order parameters when there is local equilibrium. Since
the current j is proportional to the ‘velocity' (dL/df), it follows readily from Eq. (1.6) that
L{t) ~ t'* or z = 4. We will make use of similar arguments later when we include inertia
in the dynamies.

The statistically self similar spatial distribution of domains is reflected in the scaling
behaviour of the equal-time correlation function C(r,t) = {¢(r + x.1) - (x, £)) ~ fr/L(t)).
where (- - ) denotes an average over initial configurations and thermal noise [1, 3]. The
system also exhibits a slow decay of memory of the initial configurations which shows up as
an algebraically decaying autocorrelation function, A(t) = (&(x, 1) d(x, 0)) ~ L{t)=*. These
observations imply that viewed over a length scale L(t), the physics is statistically self-
similar. Over this length scale microscopic details are irrelevant ; this gives rise to the notion
of universality characterised by the exponents z, A and the scaling function f(z) [1]. Some of
the aspects of the system that define a universality class are spatial dimension, conservation
laws (spin, energy) and symmetries of the order parameter. Most other microscopic details
and system parameters are irrelevant. In particular, as long as the system is quenched
- to below T., the temperature is an irrelevant parameter, merely modifying the values of
surface tension ¢ and equilibrium magnetisation M. This is best pictured schematically as
a Renormalisation Group flow diagram [26] showing fixed points at T = 0, T. and oc (Fig.
(1.6)). The universal characteristics of the dynamics following a quench to low temperatures

is therefore controlled by the zero temperature fixed point (ZFP).
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Figure 1.6: Flow diagram showing the fixed points and flows on the temperature line.

As mentioned above, this scenario works when the spin-waves relax fast leaving behind
slowly moving defects. It is conceivable that the situation may be altered when we include
inertia in the dynamics of the spins. giving a longer life span to spin-waves. We therefore
ask if the inertial (precession) terms are relevant and whether the above picture is still valid.
This is the subject of the first chapter. Our results are summarized below.

In the Neneconserved case, we find that the precession does not affect the asymptotic
growth laws and scaling functions, and is therefore irrelevant at the ZFP. However preasymp-
totic correlation funetions show features coming from the precession. We argue that these
preasymptotic features can be understood as arising from the interaction of the long lived
spin-waves with slowly evolving defects [13, 14].

In the Conserved case, we find that the precession dominates the dynamics after a
crossover time t, ~ 1/¢* (where g is the coefficient of the Larmour term). Inertial terms are
therefore relevant, driving the dynamics to a new ‘torque-driven’ fixed point with z = 2 and
A = 5.05. Crossover scaling forms describe physical quantities at late times (like the inter
defect distance L(t, g) and correlation functions C(r, t,g) and A(t, g)) for all values of g [15].

To understand these features analytically, we attempt a perturbative expansion about
the g = 0 {purely dissipative) and the g = oc (purely inertial) fixed points. From an analysis
of the approximate Gaussian Closure Scheme [1], we argue that the crossover features cannot
be understood by a theory which does not include the interaction between spin-waves and
defects. The crossover phenomena leads to another question — if the torque dominates
the asymptotic dynamics when the order parameter is conserved, then can one drop the
dissipation and consider the ordering dynamics due to spin precession alone ? We find that
there is a close analogy between this Pure Torgue model and the dynamies of the Random
Field Ising model. We argue that dissipation is a dangerously irrelevant variable at the

‘torque-driven’ fixed point and therefore should not be set to zero apriori.
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For quenches to the Critical Point, we find that the torque is irrelevant when the dy-
namics is nonconservative, but relevant below d = 6 when the dynamics is conservative. In
the latter case, a diagrammatic perturbation calculation shows that z =4 —¢/2and A =d
(where £ = 6 — ) at the new fixed point. The result A = d is more general and can be seen

to hold to all orders in perturbation [13].

1.2 Dissipative Dynamics of Driven Heisenberg mag-
nets

In our next chapter, we introduce an external driving to the inertial and dissipative dynamics
of the Heisenberg model. External driving may give rise to steady states, very different from
equilibrium configurations distributed as exp{(—8H) [8], where H is the Hamiltonian and
= 1/kgT the inverse temperature. Consider a driven diffusive lattice gas model (DDLG)
[8] in one dimension, where particles interacting via hard core repulsion can hop from a site
to the nearest neighbour sites if vacant with probability p to the right and ¢ to the left. at

every time step At (Fig. 1.7) (assume periodic boundary conditions).

9 P

NN S\
0—e——0O0—0—0—0—8—0—0

I+ |

Figure 1.7: Hopping rules for the model. Black spheres indicate particles and white spheres
are the vacant sites.

The probability that a particle is at site ¢ at time ¢ can be described by a master equation.
However to understand the long time and long wave-length behaviour, it is convenient to
| derive a coarse-grained equation for the densities from the master equation and study it in

the continuum limit. The time evolution of the local density p(z,t) (or to use the Ising
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language, the local magnetisation defined by ¢(x,¢) = 2p(z,t) — 1), will have the form of a

continuity equation
96 8 oy .
— =, 1.
‘ 5 " or o (L.7)
since the total number of particles is conserved. We have included as part of the current, a

conserved gaussian white noise 1 whose correlator is,

(n(x, t)n(z', 1)) = 2kgT Dé(z — 2')a(t — 1), (1.8)

In the absence of driving (p = ¢), the current j has the form

dp

j=jdiss=r|g1 Elﬂ]

where pp = —0F /b is the chemical potential and F is a coarse-grained free-energy functional,
The resulting continuity equation breaks time reversal invariance and is therefore dissipative.
The Fluctuation-Dissipation Theorem (FDT) demands that the dissipation and noise should
be related, i.e., [' = D, to ensure that the system reaches equilibrium at late times. This can
be seen by writing the associated Fokker-Planck equation for the probability distribution of
p[24]
%3 = chiﬂ‘%(%% + ?%)P (1.10)
It is clear that canonical distribution P, o exp(—3F) is a stationary solution of the equation.
The presence of the drive (p 3 ¢) gives rise to an extra piece jiwe in the total current.
The form of ji. can be obtained starting from the microscopic rules, but the route is
cumbersome in general. Most often the form of the current can be derived by appealing
to symmetry principles and conservation laws. The drive explicitly breaks (i) ¢ — -
(reflection) symmetry. However the dynamics should respect (ii) a joint inversion symmetry,
@ = —¢ and r <= —ux, which means that a particle (¢ > 0) moving to the right is
‘equivalent to a hole (¢ < 0) moving to the left, Invoking (i) we can write down a general
form for the current

.?Iriri'w: - amna;?ﬁé'n T E’nffﬁﬂ 1 I:I.l]._:l

~where repeated indices are summed over. Dropping the derivative terms in jg.,. as being

Arrelevant in the ‘hydrodynamic’ limit, we find that to lowest order in nonlinearity jirive =
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by + bed*. Now invoking symmetry (ii) we see immediately that there can be no linear
contribution. This can be seen even without using (ii), since we can get rid of this linear
term by making a Galilean shift,  — = — bt and £ —+ ¢, Thus the coarse-grained Langevin

equation takes the form

de 4F

b=l ]-_‘32_ J'I'l 2 i ;
o v 5g TA0P I (1.12)
The corresponding Fokker-Planck equation reads,
ar d f16F D& A 5o
at f 56 ra¢+r5¢, TT iﬁ5¢iﬂ¢ ] (1.13)

Clearly exp(—gF) is not a stationary solution of Eq. (1.13); the steady state is no longer
an equilibrium configuration. Therefore the FDT relation which ensures that the stationary
distribution is the canonical distribution need not hold, implying that the presence of the
external drive will in general result in a breakdown of the FDT.

Our aim is to introduce inertia in the above driven dynamics. To bring in effects of
inertia in the dynamics we attach a Heisenberg spin S; to each particle in the DDLG model.
‘The external driving produces a particle current which feeds into the dynamics of the spins
via the inertial term S x H,,,;, where H,,; is the local molecular field. Our analysis for an
arbitrary d-dimensional system, where the external drive is along say the x direction, shows
that the driving appears as AS x @, in the coarse-grained Langevin equation for the spins.
In addition the Langevin equation possesses a ‘temperature-like’ parameter v. At late times
we study the ‘non-equilibrium phase diagram’ of final states at ‘high temperature’ (v > 0},
‘eritical temperature’ (v = 0) and ‘low temperature’ (v < 0). The high temperature phase
is paramagnetic with zero magnetisation (S) = 0 and exponentially decaying spin-spin cor-
relation functions. At the critical temperature, the dynamics exhibits scale invariance and
the universal behaviour of the system may be determined by the fixed points of the dy-
namical renormalisation group equations. For instance, the spin-spin correlator obeys the
“anisotropic scaling form C(xz,t) = ;r]"?xF (¢/zf, z./ rﬁ] The exponents y, z,{ and the scaling
function F'(z,y) may be evaluated within an e-expansion about the upper critical dimension
of the driving term, d, = 4. For d < 4 there is a nontrivial, driving induced, stable fixed
point, and the exponents to O(¢) are given by z = 2—16¢/35, ( = 1 —2¢/15 and y = 1 —d/2.

The low temperature behaviour of this model turns out to be most interesting. The system
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is driven to a chaotic attractor by the external current which manifests in a scale invariant
1/w* (w is the frequency) behaviour of the power-spectrum of the total magnetisation and
the energy density. This spatio-temporal chaos may be ‘controlled’ by fixing the projection
of the spins along the anisotropy axis. Furthermore we may target [11] this helical steady
state ; the spins then settle into an inhomogeneous helical configuration which is dynami-
cally stable. This chiral configuration possesses a massless Goldstone mode, generated by
continuous global rotations of the spins about the helical axis which destabilises the chiral

steady state configuration when d < 2.

1.3 Dynamics of Heisenberg magnets in the presence
of a Temperature gradient

In the last chapter we investigate the nonequilibrium dynamiecs of Heisenberg spins driven by
a temperature current — the phenomenon of heat conduction where all three effects, namely,
dissipation, driving and inertia are present. To introduce the problem let us start with an
experiment Fig. (1.8). Place a rod of size L in between two heat baths of temperatures, T
and T, (with Ty > T5,).

Figure 1.8: Typical heat conduction experiment
After some time a steady state will set in the rod, characterised by a decreasing temperature

profile from the side 1 to side 2. The local temperature T'(x,t) satisfies a phenomenological
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equation known as the Fourier equation [27, 24],
a7 (x, t)

= iﬁ (R(T)T(x.))

= =) (1.14)
pc

where p is the density, ¢ is the specific heat per unit mass, x(T) is the conductivity and
J(x,t) = —s(T)VT(x.1) is the local heat current. In the steady state the temperature field
T(x.t) becomes time independent, which implies V-J = 0or J = const. If the conductivity
K is finite in the thermodynamic limit, then J ~ (T} —=T3) /L. Extensive éxperimental studies
carried out over the years are in agreement with all the above facts [28, 29]. The theoretical
challenge is to understand how one arrives at these facts starting from microscopic equa-
tions, like Newton's laws. To date there has been no satisfactory explanation. Since there
are some excellent reviews [30] on this topic, we mention only the salient features here. To
derive Eq.(1.14) one may start from the Boltzmann transport equation [27] along with two
basic standard assumptions, (i) molecular chaos, (ii) presence of local equilibrium. With
these one can derive Fourier’'s law in the low density limit. The thermal conductivity pro-
portional to /T can then be obtained from the Kubo formula [31] within linear response at
a fixed temperature. The validity of the basic assumptions may be checked by studying sim-
ple models either numerically of (if lucky) exactly. The study of such simple models would
tell us what are the basic ingredients needed to achieve local equilibrium and Fourier’s law,
However, most simple models studied so far fail to vield such essential properties as local
thermal equilibrium (LTE). Consequently Fourier's law of heat conduction is not realised in
1-dimensional systems like a chain of simple harmonic oscillators [32] or Fermi-Pasta-Ulam
(FPU) oscillators [33] or particles with hard core repulsion. Most of these models are in-
tegrable; for such systems there exist an infinite set of conserved quantities apart from the
energy, which break the phase space into isolated pockets preventing LTE [34]. In all these
models the order parameter is scalar, an extension of such a study to vector order parame-
ters might allow for faster equilibration and may give a better understanding of the origin
of LTE and Fourier's law. We therefore investigate the dynamics of Heisenberg spins held
ﬁ_‘jetween two different temperature baths, T}, T, at the boundaries [18]. The spin dynamics

in the bulk is reversible precession (inertia)., while the boundary spins are allowed to dissi-
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pate energy at the temperature of the bath. The temperature gradient drives the system
to a nonequilibrium steady state. The nature of the steady state depends on the boundary
~conditions ; (i) non-zero spin flux across the boundaries (non-conserved) or (i) no spin flux
across the boundaries (conserved). In the conserved case, the temperature gradient sets up
an energy current which drives the spin system to a steady state configuration. In the non-
conserved case, the energy current couples to the spin current leading to novel steady state
configurations. We discuss whether LTE holds and determine the scaling of the thermal

conduetivity with system size,

1.4 Note on Format

Each chapter starts with a short Introduction and a chapter wise break-up. After this follows
a detailed analysis to the problem. Details of the calculations have been relegated to the
Appendices for ease of reading. Every chapter ends with a summary of results, experimental
implications, directions for future work and a bibliography. We therefore do not have a

‘thesis summary’ at the end.
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Chapter 2

Dynamics of Ordering in Heisenberg
magnets

In this chapter we study the dynamics of phase ordering of a Heisenberg magnet when the
spins precess around a local magnetic field (inertial dynamics) and dissipate into a heat bath
_L[:ﬂissipative dynamics). The dynamics may either allow the total magnetisation to change in
time (nonconserved model) or conserve the total magnetisation (conserved model). In Section
9.1 we investigate the phase ordering dynamics following a quench to zero temperature by
numerically simulating the Langevin equation (2.1), This is done {or both the nonconserved
model (Section 2.1.1 A) and the conserved model (Section 2.1.1 B). Next we propose a
study of the dynamics using a perturbative analysis about two different limits — (i) we
%‘mt.dissipatiun as a singular perturbation over the purely reversible torque dynamics, and
{n]we treat the torque as a perturbation over the purely dissipative dynamies. The latter

perturbation scheme reveals the importance of the interaction between spin-waves and defects

are presented in the three appendices that follow.
- As discussed in the Introduction, the generalised Langevin equation [1] for the dynamics
of Heisenberg spins including inertia is given by,

Oda(r, t 'y r
P = L 060} g
—F{—t’?}*‘ﬁf;{—}:_t] + Malr,t) . (2.1)

24
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where ¢, is a 3-component spin order parameter, F is a coarse-grained free-energy functional
as in Eq. (1.3), {-,-} is the Poisson bracket, and 7, is the noise. The first term on the right
hand side describes inertia, while the second is the usual dissipation, with ¢ = 2 or 0
according as whether the order parameter is conserved or not. The noise 1, has mean zero,
and the correlator (r.(r, ) ns(r'. #')) = 2T kpT 8,5 (-i?]“:ﬁ"{r —1')é(t —t') is proportional
to the temperature T of the heat bath, a requirement of FDT. The spin components o,
= 1,2, 3) satisfy the usual Poisson algebra [1, 2],

{ba(r, 1), da(r', )} = Qp €ap, 6, (r.1) 8(r — ¥') 6(t — )., (2.2)

where €,4- is the completely antisymmetric unit tensor in three ‘spin-space’ dimensions and

{1; is the Larmour frequency.

It is convenient to scale space r, time ¢, the order parameter ti_; and the noise 77 as (we
apologise for this choice of notation; in this section vector r will denote the spatial position
vector while r will denote the coefficient of the quadratic term in the free-energy functional

F (Eq. (1.3)), we hope this will be clear from the context.),

q ) @2\ 172
r—uf];_[r t—}I‘|rF(| ') ¢, qa-u/'—;lq;s, ﬁ—>(2k TP("‘"') |r|) =)

to obtain the Langevin equation in dimensionless form,

o = V(Y - sgn(r) 8- @3- 9)6) + 9 (§x V%) +var, (29
'_fth the noise correlator,

(Ma(r:2) na(r', ') = bap (—iV)#6(r — 1) 6(t — 1) (2.4)

‘The dimensionless parameter g = (2/T)y/|r|/u is the ratio of the precession frequency
to the relaxation rate and o = 2k Tu(|r| /o) JTr?. To get a feel for the values assumed by

g, let us set Qp, ~ 107 Hz, T' ~ 10% — 10'® Hz, which gives a range of g ~ 10~* — 10.
g 4 g
21 Dynamics at T =0

Let us now prepare the system initially in its paramagnetic phase T > T, and quench to

zero temperature. This fixes @ = 0; the noise drops out, making the equations of motion
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completely deterministic. The initial conditions taken from paramagnetic configurations
are, however, random. As we discussed in Sect. 1.1, the universal features of the dynamics
following a quench to any T' < T, is controlled by the zero temperature (T = 0) fixed point
(ZEP), so it suffices to study this limit. Note that for quenches below T, r should be taken
to be negative.

From the solutions of Eq. (2.3), we calculate the equal-time correlator,
Clr.t) = (§(x,t) - d(r +x,1)), - (2.5)

and the autocorrelator,
C(0.ty = 0,15) = (f(r, t, = 0) - §(r, t2)), (2.6)

BI'E the angular brackets are averages over the random initial conditions and space. These

correlators can be measured in experiments like neutron scattering [3] or video micrography

times these correlators attain their scaling form

C(r,t) ~ f(r/L(t)) (2.7)
C(0,t, =0, ) ~ L(ts)~. (2.8)

Here L(t) is the length scale over which spins are correlated ; this grows with time as L ~ ¢/
z 18 the universal growth exponent. The dynamical exponent z can also be determined
he scaling behaviour of the energy density. Since the magnitude of the order parameter
iturates to its equilibrium value very fast, most of the contribution to changes in energy
es from the derivative term in the free-energy expression Eq.(1.3). Thus the energy

density scaling may be computed from the time dependence of

™

=7 [ar (Ve ). (29)

rector order parameters, the energy of a domain of size L scales as L%?, which imme-

gives £ ~ L(t)~* at late times (this may also be seen by using Eq. (2.7)).
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The existence of a single length scale implies that the dynamical exponent calculated
from these two different quantities are the same. Since the smooth spin-wave fuctuations
(see Sect. 1.1) relax faster than the typical time scale for defect-antidefect annihilation,
the length scale measured by both the correlator and the energy density is also a measure

of the distance between defects. Our analysis of the dynamics is based on computations
i_t;ff'the scaling function f(z), the growth exponent z and ‘the autocorrelation exponent A,
Since Eq. (2.3) is a nonlinear partial differential equation, we are forced to use numerical or

approximate methods.

2.1.1 Langevin Simulation

We discretise Eq. (2.3) both for the nonconserved (u = 0) and conserved (i = 2) dynamics
on a simple cubic lattice (with size N ranging from 40° to 60°) adopting an Euler scheme
for the derivatives [3, 10]. The space and time intervals have been chosen to be Az = 3 and

@'ﬁ = (.01 in the nonconserved case and Az = 2.5 and At = 0.2 in the conserved case. With

._t_il_ﬂ.ting the time dependence of the energy density of the spins. Figure 2.1 shows a log-log
nf the energy density as a function of ¢ for g = 0, 0.5, 1, 2 on a 60% lattice. The error
5 are smaller than the size of the symbols. Upto these times (¢ = 16000), there is no
o of finite size effects. The slight curvature seen in the data (especially for larger g)
ue to finite time corrections. The bold line corresponds to A/(¢ +1p) where A and ¢, are

d to give the best fit to the data. This shows that the data gathered over 1.5-decades
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y z = 2, independent of g.

e 2.1: log-log plot of the energy density ¢ versus ¢ for g = 0(o), ¢ = 0.5(0), g =
g = 2(x). The straight line fit (see text) gives z = 2.

 next calculate C'(r,t) at these late times for different values of g. Figures 2.2a-c
g plots of C(r,t) versus r/t'/? (see Eq. (2.7)) for g = O and g = 1 on a 40°
':;{:‘ﬁnite size effects manifest at ¢ > 12000). The domain size L(t), extracted from
= L(t),t) = C(0,t)/2, scales as t'/* where the exponent is again z = 2 (within
cal errors) and independent of g. Fig. 2.2a shows that the scaling function f(z)
ndependent of g, for g = 0, 0.5, 1, 2. This scaling function compares very well
in analytical scaling form for g = 0 (the bold line in Fig. 2.2¢) calculated us-
an approximate theory due to Bray, Puri and Toyoki (BPT) [9] which has the form
/27) [ B(2,1/2) 2 F(1/2,1/2.5/2:%) where v = exp(~z2/8) and B and F are
d the hypergeometric functions respectively.
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(c)

.2: (a) The scaling function f(z) versus ¢ = r/t"? for g = 0. Data taken at
), t = 3000 (A) and ¢ = 10000 (). Error bars are smaller than the size of
(b) f(zx) versus z = #/t"/? for g = 1. Data taken at ¢ = 2000 (o), £ = 5000 (A) and
0 (). Error bars as in Fig. 2.2a. (c¢) f(z) versus z = r/t'/? for different values of g

), 0.5(0), 1 (A), 2(%)). The data for g = 2 was obtained from a simulation on a 50°
‘averaged over 7 configurations, The continuous curve is the approximate analytical
bed in the text [9].

rger values of g, finite size effects become very prominent. This can be seen from
f the late time C(r,t) for g = 5 (Fig.2.3), simulated on a 50° lattice averaged

; al configurations. The correlation function crosses zero at large r. dips through a
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minimum, and then asymptotically goes to zero (ofcourse [drC(r,t) > 0). It is clear from
the figure that at these times, C(r/L(t)) for g = 5 would be qualitatively different from the
scaling function of Fig. 2.2c. However notice that the dip decreases with increasing time

This would suggest that the dip might disappear at late times, and that the resulting scaling
iflJ,Ilt'.tn:m would be identical to Fig. 2.2 ¢. We note that in order to make such a elaim, great

care should be taken to avoid finite size effects. The tail of the autocorrelation function gets

affeeted by the finite size of the lattice, earlier than the part of G‘[r._t].usad to calculate =

‘The decrease in the dip at g = 5 can only be perceived when the system size is large. In

T
==

OB -

asl L4

cirt)

sl A

0z - 5

e 2.3: The correlation function C(r,t) versus r for ¢ = 5 at various times ( ¢
0 (—), t = 5000 (= - —), t = 7000 (:-)).

Note that the dip gets smaller as time
gresses. Error bars as in Fig.2.2 a.

: late times, the order parameter field has totally relaxed with respect to defect
're-asymptotic configurations typically consist of spin-wave excitations interspersed
| slowly moving defects separated by a distance L(f) > £.re, the size of the defect
Decomposing & into a singular (defect) part qﬂ,mg and a smooth (spin-wave) part

sm; We calculate the pre-asymptotic correlation function within a perturbative analysis
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ndix [IB). The computed correlation function exhibits a dip at r*/t ~ (1 + g%)/¢.
ick disappears algebraically in time. The amplitude of this dip increases with increasing

g. The dip eventually goes away with a relaxation time that scales as,
T(9) =t(1+4%, - (2.10)

iere t, is the time at which the g = 0 correlation function first exhibits scaling. The
er time 7(g) is estimated to be (taking ¢. = 1000 for the 40° system) — (g = 1) =
T(g = 2) = 5000 and 7(g = 5) = 26,000. The crossover times for g > 5 are much
than the largest time reached in our simulation ! Figure 2.4 is a plot of pre-asymptotic
= Csing + Uy at a fixed time, where Ci;,,, is given by the BPT form [9] and C.,, takes
rm derived in Appendix IIB. Two adjustable parameters related to the length scale
e amplitude of the spin-wave have been tuned to obtain excellent fits to the numerical

a. Based on these arguments we conclude that the scaling function f(x) is independent

Clrt)

4: Pre-asymptotic C(r,t) for g = 1 and 5 (bold lines) calculated in Appendix I1B.
excellent fit to the simulation data for g = 1 (o), g = 5 (0).

‘compute the autocorrelation function €(0,0,t) and extract the exponent A (see
). The time ¢ ranges from 4000 — 16000 for the 60° lattice (averaged over 50 initial

tions). well into the scaling regime for the equal-time correlator.
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e 2.5: (a) log-log plot of the autocorrelation function C(0.0,t) versus ¢ for g =
o), 0.5(0), 1(A), 2(#). The straight line is a fit At + ¢,)~*2, where A has been chosen
e the Mazenko value 1.587. (b) Effective A as a function of 1/t for g = 0.

Figures 2.5a are log-log plots of C(0.0,) versus ¢ for various values of g = 0, 0.5, 1, 2.

1t is difficult to give a precise value of the decay exponent A, since as can be seen from Fig.

ical values listed above can be compared to the theoretically estimated value of 1.587
hen ¢ = 0 using the approximate closure scheme due to Mazenko [11] (we will discuss
approximation in great detail in Sect. 2.1.3. We see that to within error bars the values
e independent of g and equal to the value at g = 0. Note that these values obey the
lower bound A > d/2 derived in Ref. [12].

re ending this section, we comment on finite size effects which clearly set in at

mes. As discussed in [12], finite size effects will be relevant when the spread in
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! _m,ﬂl,t] (given by AC(0.0,t) ~ N=%2) is of order C(0,0,) itself. This will happen when

i~ N-32_ The fact that the numerically computed )\ increases marginally with g,

stated earlier, standard scaling with a single length scale L(t) holds at late times. We
nstrate the existence of a single length scale explicitly in Appendix ITA.

ZE‘]guIe 2.6 is a scaling plot of C(r,t) versus r/L(t) for various values of the parameter
g, where L(t) is extracted from the first zero of C(r,t). Note that the scaling function for
ﬂls very different from those for ¢ > 0; further the g > 0 scaling functions do not
to depend on the value of g. This suggests that the dynamics crosses over to a new
ue-driven’ ZFP, This is also revealed in the value of the dynamical exponent z. In Fig,
plot of L(t) versus t gives the expected value of = = 4 when g = 0 (see Sect. 1.1).
rg > 0. we see a distinct crossover from z = 4 when ¢t < t.(g) to z = 2 when t > t.(g).
ssover time t.(g) decreases with increasing g. The same =z exponent and crossover

btained from the scaling behaviour of the energy density = defined by Eq. (2.9) (Fig.
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Figure 2.6: Scaling plot of C(r,t) for N = 50°. The scaling function f(z) changes as g is
varied from g = 0(0) to g # 0(g = 0.1(x), 0.3(A), 0.5(0)).
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e2.7: (a) log-log plot of L(t). At g = 0(+) we find that z = 4 (line of slope 0.5 drawn at
for comparison). At g # 0(g = 0.1(x), 0.3(%), 0.5(0)), z crosses over from 4 to 2 (line

1.0 drawn at the bottom). (b) log-log plot of L(t). At g =0(+) we find that z = 4
slope (.5 drawn at the top for comparison). At g # 0(g = 0.1(x), 0.3(%), 0.5(0)). 2
over from 4 to 2 (line of slope 1.0 drawn at the bottom).
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To ensure that our results are not affected by finite size, we compute 3 relevant time

scales (shown in Table 1 below) — (1) .(g), the crossover time from a #'/* to a t'/* growth,

(2) t,(g), the time at which asymptotic scaling begins, (3) t,, the time at which finite size

data is to be free of finite size artifacts. A general rule-of-thumb is that finite size effects
start becoming prominent when the domain size gets to be .Df order 1/3 the system size, and

‘we see from Table 1 that Ly,,./N is comfortably less than 1/3.

Table 1
g telg) | tsly) Ly Linaz /N Simin
(1 - a00 > 7630 | 1/10 at ¢ = 7650 | —0.14

0.1 | 3150 | > 7650 | > 7650 | 1/6 at t = 7650 | —0.08
(0.3 | 500 | 1350 > 7630 | 1/4 at t = 7650 | —0.06
0.5 | 450 | 900 4950 1/3.7 at t = 4950 | —0.06

_'-_E last column in Table 1 shows fp,, the value of the scaling function evaluated at
-?§.=: minimum as a function of g. It is easy to see why fiin(9) < frin(g = 0), since the
sssion of the spins about the local molecular field would cause spins from neighbouring
ains’ to be less anti-correlated. This is borne out by computing the spin-wave correction
pproximate form of C'(r, t; g = 0) (given in Eq. (2.31) ; more on this later) to quadratic
in the spin-wave amplitude (see Appendix [IB).

‘The autocorrelation function A(t) is calculated for g = 0,0.2 and 0.3 (Fig. 2.8a). The
simulations have been done on a lattice of size 60 and averaged over 10 initial configurations
ve hiave to average over a large number of initial configurations for smoother data). The
nent extracted from the asyvmptotic decay of A(t) clearly suggests a crossover from
) to A = 5.05. The numerical determination of A is subject to large errors [12, 7] and
1§ very sensitive to finite size effects, and so we have to go to very late times and hence large

‘sizes to obtain accurate results.
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' 2.8: (a) log-log plot of A(t) vs t for g = 0(e), 0.2(+), 0.3(0). Solid line on top has

‘aftM* where A = 2.19 and z = 4 (corresponding to the g = 0 fixed point) while
below has a A = 5.05 and z = 2 (corresponding to the ‘torque-driven’ fixed point).
versus 1/t for g = 0.0(c), 0.2(%), 0.3(+). Finite size effects set in when ).;; starts
g a decreasing function of time. For g = 0 we do not see any finite size effects in A

‘make sure that we collect asymptotic data untainted by finite size. we compute two
seales (Table 2) — (i) t7i(g), the time beyond which A(t) can be fit with a power law
J7V%, (ii) t7,, the time at which finite size effects on A(t) become prominent. The
time 1. is displayed in Table 1.

etermine ty, we plot an effective exponent A.;; = —td(log A(t))/dt as a function of

of time, clearly a finite size effect. This estimate of ¢;; is not very sensitive to the
of 0t, changing by 1% (for g = 0.2) or 3.5% (for g = 0.3) as &t changes by 5 units.
1 it finite size effects in A(f) appear earlier than in C(r,t).

n from Table 2 that #5; < t5,, as it should if we are to have an accurate determi-
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Table 2

g | trelg) | tss A
0.0 [ 900 | > 9000 | 2.199 & 7.5 x 10~
0.2 (1500 |5376 |5.100+6.1 x 102
0.3]900 |5181 |35.010+2.3x 107

The last column of Table 2 lists the value of A as a function of g. The data presented

plot in Fig. 2.8a clearly support a crossover from A = 2.2 at g = 0 to A = 5.03 at

nclude, we have just seen that the torque term is relevant for the conserved dynamics
ves the system to a new g # 0 fixed point characterised by 2 = 2, A = 5 and a new
function f(z).

er Scaling Phenomenon

om the last section, that though the asymptotic dynamics is governed by the new
iriven’ fixed point, the dynamics at earlier times ¢t < ¢, follows the g = 0 behaviour,
sts that the dynamies for arbitrary g may be analysed as a crossover from the
_point, characterized by z = 4 and A & 2, to the torgue-driven fixed point where

le scaling argument encourages us to think of such a crossover seenario. On restor-
riate dimensions, the (noiseless) dynamical equation Eq.(2.3) can be rewritten as

y equation,

8g(r, 1) /0t =V -] (2.11)
“spin current” is
fo=-T ?g'iﬂ+&f $a Vb (2.12)
Ja 500 T odrPaVOy | - .

'ﬂna.l analysis where we replace j, by the ‘velocity’ dL/dt, we find

dL o) oM
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ghere M, o and T are the equilibrium magnetisation, surface tension and spin mobility
tively. Beyond a crossover time given by t.(g) ~ (I'/MyQr)* ~ 1/¢*, simple dimension
g shows that the dynamics crosses over from z = 4 to z = 2 in conformity with our

ical simulations.

:

g

<ty

y L g

<816

=0.18

§

2.9:  Scaling plot of y = Lit,g)/t'V* versus ¢ = tg° for g =
,0.05(3), 0.07(A), 0.09(e), 0.10(x). The solid line of slope 0.25 is the theoretical
of the asymptotic form of the scaling function as r — oo (see text).

The crossover physics is best highlighted by numerically demonstrating crossover scaling
omain size L(t, g) and the correlation functions C'(r,t, g) and A(t, g).

instance, the mean field Eq. (2.13) suggests that the domain size obeys the scal-
L(t,g) = t"Y*s,,(tg*) where the crossover function s,,(z) is determined from the

ental equation,
s, (z) = In(1 + 2'/%62) — 22 = 0. (2.14)

o shs 1 now argue (and then confirm numerically) that the above scaling form holds in
caling r — /b, t — t/b° and g — g/b¥%s, scales the domain size by

L(t,g) = bs(t/5", g/b%) (2.15)
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L{t. g) = t"*s(g/t%"%). (2.16)
Setting g = 0 gives L(t,g = 0) = tY/*5(0), telling us that z = 4. Thus the scaling form Eq.
(2.16) is governed by the g = 0 fixed point. We therefore need to evaluate y, at this g =0
point. We determine y, by noting that the g contribution to Eq. (2.3) is given by,

dé ” P
T~ g8 x6F18/55
= gdx i
~ g/L?, (2.17)

here the last relation is obtained by requiring local equilibrium (Gibbs-Thompson) on the
hemical potential i. Thus equating dimensions, [g] = [f7'][L*] = [L7***] = [L %] leads to

o = —2. The crossover scaling form for the domain size can now be read out from Eq.

L(t, g) = t"*s(g%) . (2.18)

The + — oc asymptote of s(x) can be obtained by demanding that we recover the ‘torque-

! fixed point behaviour; this forces s(x — o0) ~ x'/*,

We will now check whether this crossover scaling form emerges from our Langevin simu-

If the above proposal is true, then we should expect a data collapse onto the scaling

s(z) when L(t, g)/t'/* is plotted against tg*. Figure 2.9 shows the results of the numer-
ulation — the data collapse is not good away from the asymptotic regimes. To see a

er collapse of the data away from either fixed point, it is necessary to include corrections

ctions to scaling come from two sources — (i) finite time effects and (ii) nonlinear
tions to the scaling fields [13]. Finite time corrections can be incorporated by introduc-
te-time shift factors ¢ — ¢ —{g, which can be neglected in the ¢t — oo limit. Nonlinear
ns to scaling are incorporated by constructing a nonlinear, analytic function g(g) of
al fields g, such that it reduces to g in the limit ¢ — 0. The simplest choice for

ction is
_gteg

= / 2.19
14cg? (2.19)
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leading to a nonlinear scaling variable

Z = (3(g)*(t — to). (2:20)

ita plotted with respect to this nonlinear scaling variable shows a much better collapse
.10) when ¢ is chosen to be around —1.5 (in the Figs. 2.10 - 2.12, the finite time shift
taken to be 0). The simple ‘mean-field” estimate s,(Z) plotted for comparison (Eq.

;is exact only at the asymptotes.

Q-

o

i

S Fd

1l

oLy

s

| : Plot of y = L(t, g)/(t — to)'/* versus & for ¢ & —1.5. The point o on the y axis,
the value of y as 7 — 0.

s have seen from the discussion in the last section that the numerically computed equal-
relation function C(r,t, g) is unaltered when scaled with the domain size L — this

e following scaling behaviour
Clryt,9) = f(r/L,t/L7, g/L*), (2.21)

the dynamical exponent at the g = 0 fixed point and y, is the scaling dimension
The domain size L is given by the scaling form Eq. (2.18). This readily leads to a two
g [14],

Olrt.0) = F (st?) (2.22)
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C(r,t,g) versus & at p = 0.50,0.82and 150 for ¢ =

-:.ﬂﬁ.{o.], 0.07(0), 0.09(A), 0.1(+), 0.3(+) showing data collapse for ¢ &~ —1.2.

ar arguments suggest that the autocorrelation function satisfies the scaling form
Alt,g) =t~/ a(tg?) (2.23)

= 0) = ap is a constant, and Ay = 2.2 is the value of the autocorrelation exponent
5 7 —+ oo, the scaling function a(x) should asymptote to a(z) ~ z*/4=A1/2 where
) i '-ﬁie exponent at the ‘torque-driven’ fixed point. This expectation is borne out
imerical simulation (Fig. 2.12), where we have again used the nonlinear scaling

or better collapse.
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2.13: Flow diagram showing fixed points and flows on the I = £3* line.

the crossover and to arrive at an analytical theory for finite g, we ask
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2.1.2 Perturbation about g # 0 fixed point: The Pure Torque
Model

imply that we could drop the dissipation term from the equations of motion and still
er the same late-time behaviour 7 If so, can we use dissipation as a small parameter

perturb about this new fixed point 7 To answer this we study the dynamics of the pure

e model (inertial dynamiecs) given by

—

Zzib = go x Vg, (2.24)

this equation of motion has the following conserved quantities — (a) total energy, = =

- J' dr (V$)? (unless there is a contribution coming from the surface term S, = V! [doa-

510 prepare an initiol configuration with a nonzero correlation length. This we do in the
ing way — we start with an initial paramagnetic configuration (as in Sect. 2.1.1 B) and
‘o zero temperature ; the spins evolve via Eq. (2.3) upto a time 7 (T < t.. the time

en asymptotic scaling begins). The resulting spin configuration has a finite correlation

of defects and anti-defects. Energetics forces the magnitude of ¢ to vanish at defect
) cores [2]. Since the dynamical equation Eq. (2.24) conserves the magnitude of
spin, the locations of defects defined by |¢| = () remain static under time evolution.
ulting inertial dynamics is very different from the dynamics which includes dis-
efects do not move, spin-waves merely scatter off these stationary defects which

randomly in space. Apart from this “quenched” random scattering, spin-waves
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- off each other. A field theoretic analysis of this problem is hard ; we therefore resort
nmerical solution with a discretisation scheme as discussed below.
Any kind of discretisation needed to numerically solve Eq. (2.24) will affect the conserva-

; ws, especially the conservation of the magnitude of the local spin. We employ a second

ound it to be of order 1077 (zero in our single precision calculation !). As we verify in

14, the second order numerical scheme ensures the constancy of the energy density ¢

13— E

LELE

=hE

o i | i i i i I i
-] 1000 2000 3000 4000 G000 G000 YOO BOO0 00O

t

).14: Plot of = vs ¢ to show that = changes only to order (At)? over the timescale.

ve Eq. (2.24) numerically on a 50° lattice for a single value g = 0.05. This
ce to illustrate our point. We first compute the equal time correlation function
aged over 5 initial configurations. The first zero of C(r,t) provides a length scale
1 we find grows as t'/% after t > 3150. However C(r,t) does not seem to ezhibit
sealing within our simulation times ¢ < 8550. The scaling violations occur in the
< 1, where = = r/L(t) (Fig. 2.15). The violation of scaling in C(r,{) at small

equence of the conservation laws [15]. The value of the correlator at the origin,
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), cannot change with time, since @ - ¢ is a constant of motion. Further, the curvature

rigin, V2C(0,t) cannot change with time, since this is essentially the negative of the

ClirLt)

C(r.t) plotted against r/L(f) at times t = 4050(¢), 4950(+), 6750(0) and
scaling function f(z) (connected line with A) for the conserved dynamics

and torque is shown for comparison. Error bars are of the order of symbol
that the data for z < 1 do not show scaling but for x > 1 we recover scaling
g function is same as f(x).

gests that over these large length scales, the spins become more and more ordered
ses. Thus ‘coarsening’ occurs in spite of the dynamics being microcanoni-
‘energy is conserved ! Since the dissipative dynamics with torque (canonical
sures that the system will approach equilibrium, this correspondence of the
‘suggests that the long wave-length spin waves ¢y for |k| < 27 /L will even-

te under the pure torque dynamics. The higher wave-vector modes e for
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7/L act as a ‘heat bath’ - the nonlinear coupling between various k| modes gives
a flow of energy from the higher length scales to lower. This is analogous to the
ocanonical ordering dynamics of a quenched Bose Gas [16]. The ‘heat bath' provided by
h k modes are a source of dissipation and ‘noise’ (whose statistics may be non-trivial).
problem we have tentatively identified the mechanism of ‘noise’ generation with the
e scattering of the high k spin-waves off the 1'a_ndmr‘11y placed but stationary defects.
gth scales much larger than the typical separation between defects, these multiple
ng events mimic a ‘noise’ (examples of such multiple scattering events giving rise to
n-thermal’ noise at large length scales can be found in, for example, sedimentation of
| particles [17].

perform two numerical tests to vindicate the above claim (many more tests are needed
tablish this rigorously) ¢

fWe remove all defects from the initial configurations and then allow the spin-waves
ve via Eq. (2.24). '
numerical study (Fig. 2.16) suggests that starting from an initial smooth spin
ation (no defects) C(r,t) obtained by solving Eq. (2.24), does not show any signs of
g at any length scale. The spins settle into some stationary state which is not an

m configuration. We therefore conclude that the quenched defects are responsible

ilibration of spin-waves whose wavelength k~' > L. the typical distance between

1 of this steady state correlation function with the equilibrium correlation function

valuated at Ej in the constant magnetisation ensemble, shows that they are very

ig (2.17)).
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" The fact that the d = 1 pure torque dynamics does not lead to equilibration should come
surprise, since the equation of motion allows for solitonic solutions [8, 9] which give

y infinite number of conserved quantities [9] (we will return to this aspect in Chapter

ot

ol &,

Gl %-l“

C(r,t)
| ®
{r

16: C(r,t) vs r at different times following the dynamies (Eq. (2.24)) starting with
onfigurations without defects and a correlation length § ~ 5. Simulations are done
- El]“ lattice averaged over 5 initial configurations. Plots are displayed for ¢ = 0(+),
l"t], 7200(0) and 9000(c) showing clearly that the spins settle into a stationary state
t > 5400. There is no sign of coarsening unlike the dynamics in the presence of defects
15).
Tt is therefore clear that not all ¢ modes reach the scaling regime of the ‘torque-driven’
int. Dissipation, though irrelevant, seems necessary for the spin system to access the
iven’ fixed point. One can understand this intuitively in the following way. Starting
amagnetic configuration, where defects and anti-defects are seeded randomly in
pure torque dynamics ensures that these defect cores (located by the zeroes of
‘stationary under time evolution; i.e the defect mobility I'p = 0. The resulting
consists of spin-waves scattering off these randomly distributed immobile defects
ach other. This picture changes dramatically even if a minute amount of dissipation
i, the defects now move slowly and annihilate each other allowing the spin system to

s true asymptotic configurations . Hence a nonzero defect mobility T'p (proportional
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0 T) is necessary to reach the scaling regime. Only after the spin system has reached the

ng regime, we may set I'p = 0. Such an irrelevant variable is known as a dangerously
vant variable [20, 21].

CEE )
Cix)

e2.17: (a) Plot of C(r,t) vs r at different times when the system evolves according to a
torque dynamies (Eq. (2.24)) in d = 1. Simulation is done on a regular lattice of size L =
h Az =1, At = 0.001 and g = 0.1. Data are averaged aver 100 initial configurations,
C(r,t) at t = 0(+), 20 x 10%(x), 50 x 10*(0), TOx 10*(A), 75 x 10%(0), 80 % 10* (o) show
er some initial ordering the system gets into a stationary state for times ¢ > 70 % 107,

he stationary correlation function Cy(r, Ey) at ¢ = 75 x 10*(0) is compared with the
equilibrium correlation function C.o(r, Ej).

An analogous situation occurs in the quenched dynamics of the random field Ising model
1) [21]. Here, temperature is an irrelevant variable. However if we set T = () apriori,
omain walls which are pinned by the quenched field will be immobile, thus preventing
ng. A finite temperature is needed for the domain walls to surmount the pinning
_If_.barrier, this gives a nonzero wall mobility. Temperature, in the RFIM, is thus a
tously irrelevant variable [22]. Therefore in the absence of thermal fluctuations (at
) the interfaces remain immobile, very much like the defects in the pure torque model.
dissipation plays the role of temperature.

It 15 clear from the above discussion that a naive perturbation in terms of the defect
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mobility ['p as a small parameter would be invalid. For a nonzero defect mobility breaks
the conservation laws of the pure torque dynamics, viz. total conservation of total energy
:%ﬁie local spin magnitude. This suggests that the I'p # 0 dynamiecs cannot be obtained
‘smooth continuation of the I'p = 0 case. It is also clear that ' multiplies the highest
derivative in the equation of motion (Eq. (2.1)), therefore a perturbation in I'p would
"" t to performing a singular perturbation theory [23] :::n the pure torgue dynamics. We
to investigate this aspect in a future study.

- e a perturbation about the I' = 0 limit is far from simple. we ask whether we mav

serturb about the ¢ = () fixed point. This is discussed in the next section.

2.1.3 Perturbation about g = 0: The Gaussian Closure Scheme
|

To devise a perturbation theory about g = 0, we would need to have a reasonably accurate
of the purely dissipative dynamies. The Gaussian Closure Scheme introduced by
[11] has been considered a very successful approximate theory to compute scaling
ns and dynamical exponents arising from purely dissipative Langevin equations.
'iratinn for this method draws from the fact that at late times the order parameter
elaxes to its equilibrium value everywhere except at interfaces and defect cores. At late
, the distance between these defects cores (interfaces) gets to be much larger than the
ning length, consequently the defects can be assumed to be weakly interacting. This
that if we change variables from the strongly interacting order parameter fields to
y interacting defect fields, a systematic approximation scheme might emerge. It
hould be emphasized that the approximation formulated by Mazenko is non-perturbative
d not a perturbative expansion in the coupling between defects. We shall now present a
ission of the method tailored for the Heisenberg model and critically assess whether
od accurately describes the late stages of the dynamics of Eq. (2.1).
he method consists of trading the order parameter o(r,t) which is singular at defect

s, for an everywhere smooth field i(r, ) defined by a nonlinear transformation,

é(r,t) = & (m(r, 1)) . (2.25)
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Vo7 (m(r,t) = V' (3((r. 1)) , (2.26)
there V() = —F + (F- ©) £ Implicit in this choice is that smooth configurations such as
spin-waves relax fast and so decouple from defects at late times. The simplest nontrivial
jon of Eq. (2.26) is the hedgehog configuration,
mi(r,

t)
i(r, 1))

here 19(0) = 0 and (cc) = 1. The auxiliary field 77t now has the natural interpretation as

g (m(r,t)) = (i), (2.27)

ie position vector from the nearest defect core.

8C(12) = (—iVy)* [ViC(12) — (5(m(2)) - V!(a(m(1))) )]
1)

+g(F(r(2)) - F(m(1)) x ViF(m(1)) ) . (2.28)

ussian Closure Scheme assumes that each component of #i(r,t) is an independent
an field with zero mean at all times. This implies that the joint probability distribution

P(m(1),m(2)) is a product of separate distributions for each component and is given

ot B 1 ma(l) | ma(2)  2yma(l)ma(2)
9=V e | - 50— (550 + 5o /552 )b e

21r\/(1 B 1)S50(2)
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Cy(12)
S0(1)S0(2)
The joint distribution has been written in terms of the second moments Sy(1) = (ma(1)%)
ind Co(12) = (ma(1)ma(2)).
Using the above assumptions (Eq. (2.29)) and the form of () (Eq. (2.27)), the equal

v =(12) = (2.30)

:-'!Zr'g:-i correlation function can be written in the form [11}.

cun =2 (s @3)] P (335 -

z.y) and F(a,b.c;z) are the beta and hypergeometric functions respectively and
efined by Eq. (2.30). The functions v(12), Sy(1) and Sp(2) are to be determined by
gging this implicit form into Eq. (2.28),

ac(12)
Mt

(—iV)# lvﬂc{mj ST[ 3 a(q« J]
+y{F(m(2)) - F(m(1)) x V@(m(1))), (2.32)

the Laplacian is taken with respect to ry;. This equation does not yet provide au
orm for C'(12); we will do so for the case when g = 0. Setting ¢ = 0 in Eq.
‘we may determine v either numerically or analytically; C(r,t) is then evaluated by
uting this solution back in Eq. (2.31). This completes the calculation of the two point
srrelation function from the Gaussian approximation scheme.

¢ found a precisely formulated approximate theory at g = 0, we test it for consis-
d accuracy against known exact results or numerical simulations. It has been shown
QGaussian closure scheme is exact in the limit when the number of components of
rder parameter n — oc or the dimension d —+ o [10, 24]. To test this approximate
it finite n and d one needs to resort to numerical simulations, A variety of studies
ricted to scalar order parameters, have shown [11, 10, 7, 26] that this scheme
ately reproduces the two point correlation functions and dynamic exponents for
ed order parameter dynamics. Unfortunately the scheme has met with limited

en the order parameter is conserved [10, 25]. For our purpose the consistency and
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acy of the scheme should be checked both for g = 0 and g £ 0. We first carry out

matic numerical tests for the nonconserved dynamics.

A. Testing the Gaussian Closure Scheme for the NCOP Dynamics

We will do this by numerically solving the Langevin equation Eq. (2.3) by the method
ied in Section 2.1.1 A. Knowing éfr, t), one can compute m(r,t) by inverting Eq.

). This is facilitated by choosing

P 1T
w(lml) = 12l

——— 2.33
W1+ { )
i

ghich is consistent with the boundary conditions for 4»(z) mentioned earlier. The resulting

F(ri(r.t)) = w4 (2.34)

8y be easily inverted. We calculate both the single point probability distribution P(ifi(r, t))
e joint probability distribution P(12) in the scaling regime and compare with the
0 assumption. In what follows all probability distributions have been computed on a
i* lattice and averaged over 100 initial configurations. We have collected data in the scaling
from ¢ = 2000 to ¢ = 15000, after which finite size effects set in. Figures 2.18a and
, are the scaling plots of P(m,(r,t)) at g = 0 and g = 1 respectively. In accordance
e Mazenko assumption, the scaling variable has been taken to be my,/ \/.51._&) , where
= (mu(r,t)?) is seen to grow linearly in time, consistent with z = 2 (Fig. 2.19).

scaled distribution P(m,) for g = 1 is also seen to be identical to the g = 0 case
.18¢), suggesting that it is independent of g.

ugh the distribution grossly resembles a Gaussian at late times, closer inspection
tematic deviations at small values of m, (Fig.2.18¢). The distribution seems to be

na Gaussian when m; ~ 0. This is clearly visible in a plot of — In( — In [P(m2/Sy)] )

T

] .I‘rn.'. 5

erefore our numerics suggests that the Gaussian Approximation as formulated for

ved dynamics, is consistent but not very accurate. However one can in prineiple
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atically improve the accuracy of the method by taking account of corrections to the
an distribution [28].

1.2 T ™ T ¥ T

R, LY}

(c)

: (a) Single point distribution of P(m,) for ¢ = 0 at different times ¢ =
= 10000 (0), ¢+ = 15000(A) . The distribution scales in the variable m;/L.
= 4/5(t). (b) Same as Fig.2.18a, but for g = 1 for times t = 3000 (o), t =
), t = 15000 (A) . (¢) Scaling plot of P(m,) is independent of g. Data taken for
5000 (o), ¢ =10000(0)) and g =1 (¢t = 5000 (A), t = 10000 (*)).
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2.20: Plot of —In(—In[P(m}/S)]) versus In(m?/Sy) for g = 0 (¢t = 5000 (o), t =
) and g = 1 (t = 3000 (A), t = 10000 (#)). The line with slope —1 drawn for
n, highlights the deviation of the data from a Gaussian at smaller m,.

w study the joint probability distribution P(si(1),7(2)). Equation (2.29) implies

i (12) =L (Miﬂ) (So(1)8(2))7 ,

2\/S(1)  /S(2)
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he joint distribution can be written as a product P(12) = P(1.(12)) P(iit_(12)), where

P(fiy(12)) 1'[ VN exp{ (2.35)

Ms
(12 7)/Sa(1) Sol z]}

‘We numerically compute P{mq,,(12), m,_(12)) at ¢, = t, = ¢ in the scaling regime. A
of P(myy,my_) for |r; — ry| = 44/3 looks like a product of two Gaussian distributions
2.21a). Next we compute P(m,(12)) and P({m;_(12)) and scaling plots of P{m. )
and P(m;_) (Fig. (2.22a) and Fig. (2.22b) respectively) which indicate that the distri-
ution looks like a Gaussian, in accordance with the Mazenko theory. The scaling plots
est that the scaling function is independent of g. Figures 2.23a and 2.23b are plots
[—In(—In[P(mi.(12)/(miL(12)})]) versus In(m?,(12)/{mi.(12))). The deviation from a
traight line when my. & 0, indicates that the distributions differ slightly from a Gaussian.
that the data for small m4 in Figs. 2.23a, 2.23b do not quite scale and so it is likely
the computation of the joint-probability distribution, we have not vet reached the

caling regime. To verify the Gaussianess of P(ma, (12), ma_(12)) we calculate the difference
&{mu+{12}r Ma—(12)) = P(ma.(12), Ma-(12)) — P{mn+(12]jp{m-u-“2”1 (2.36)

ich should be zero everywhere if the Mazenko approximation were to hold. Figure 2.21b
a surface plot of the difference A(m,; . (12), m,_(12)), magnified 10° times. It is clear
hat A(my o (12),m,-(12)) is zero everywhere except in the region close to the origin, where

lie maximum deviation from 0 is around 1079 .
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(b)

2 2.21: (a) Joint probability distribution P(mi.(12),.(12)) for g = 0 at t = 5000 and
| =44/3. (b) Surface plot of A(my(12),m;_(12)) (magnified 10° times) for g = 0 at
0 and |r; — ry| = 4v/3. Plots are similar for g = 1.
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2: (_a} Sealing plot of P(my,/L.), where Ly = /(m% (r,t)), for g = 0 (t =
= 10000(0)) and g = 1 (t = 5000(A), £ = 10000 (x)). (b) Scaling plot of
swhere L_ = \/{mZ (z. 1)), for g = 0(¢ = 5000 (o), ¢ = 10000 (0)) and g = 1 (t =
— 10000 ().
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gure 2.23: (a) P(m, /L) shows deviation from Gaussian for small m.,. Data shown for
£ =5000 (o), t = 10000 (0)) and g = 1 (t = 5000 (A), ¢ = 10000 (+)). (b) P(m_,/L_)
deviation from Gaussian for small m_,. Data shown for g = 0 (t = 5000 (o), t =
0)) and g = 1 (t = 5000 (A), ¢ = 10000 (%))

We conclude with the following remarks. Based on our extensive numerical analysis,
e see that the Gaussian Approximation Scheme is consistent and accurate (in principle)
en g = 0. This implies that we can do perturbation about g = 1. We have tested that
ne approximate scheme is accurate for g = 1. Extending the Mazenko formalism to
produces Eq. (2.32). We see that the last term containing g should be zero within
ko formalism implying that g is irrelevant. This conclusion is consistent with the

ilation results of ours in Sect. 2.1.1 A, Now we move on to the conserved dyvnamics.

et. al. [27] for the case of a conserved scalar (Ising) order parameter. We will do
g =0, the g # 0 analysis follows similarly. The Gaussian Approximation provided

fith a form for the two point correlation function given in Eq. (2.31). We may expand
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lypergeometric function as a power series in v [17] and then take its Fourier transform.

Stt) = X [ dic . digps [y, (9t s (1)
£
Sl ey 4 < +k2ﬁ.1)] | (2.37)

where the spectral density -y is the Fourier transform of 7(r, ) and the expansion coefficients.

9 [Cp+1/2) ( 1)}“5 (2.38)

- o2z
= 872 T(p+ 5/2)p! 2

ire strictly positive for p > 0. If Eq.(2.37) has to satisfy the conservation law S(k = 0,¢) = 0.
lear that 7y (f) should be negative at some values of k. This is inconsistent with the

on Eq. (2.30) which implies v(t) > 0 for all k. This definition is a consequence of

ie Gaussian approximation.

]
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gure 2.24: The spectral density Y(k,t) at ¢ = 3600 becomes negative for 0 < k/k,, < 0.5
for 1.5 < k/ky, < 3.0 (inset).

ermine the range of values of k for which 7 is negative, we numerically evaluate
e Fourier transform of 4(r, t) after inverting Eq. (2.31). This is prone to numerical errors
of statistical errors in our computed C'(r,t). For instance, a numerical integration
r,t) gives a nonzero value whereas it should be identically zero because of the

ion law. This is reflected in large errors in v(k,t) at small k. We therefore adopt
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ving procedure. We fit a function C';(x) to the equal time correlation function C'(r, )

this to extract v(k,¢) from the Eq. (2.31). The fitting function has been taken to

(x/L) L
b is similar to the analytic form given in Ref. [30]. Note that only b and L are indepen-

gy = 0T [l—l—a (fﬂ explblz LI (2.39)

r

ent fiti "_g parameters, a is determined from the condition Sy(k = 0) = (. This function
- 1.5106 & 1.01 = 10" and b = 0.0202 = 2,14 x 10~ gives a very good fit to C'(r.t)
fourth zero of the function. We observe (Fig. 2.24) that the spectral density, which
'_"e a strictly positive function of its arguments, becomes negative for k/k,, < 0.3
is peaked at k,,) and in the range 1.5 < k/k,, < 3.0.

emonstration suggests that a purely Gaussian theory for the distribution of m
ally inconsistent. This may however be remedied by considering corrections to

purely Gaussian distribution, as suggested by Mazenko [28] for the scalar (Ising) order

. We now compute the asymptotic single point probability density P(m,(r.1)) on
tice averaged over 18 initial configurations for both g = 0 and g # 0. The probability
eys a scaling form at late times (Figs. 2.25a-b), P(m,t) = P(m/L(t)), where
scale L(t) = /{mf) ~ t'/%,

ar from Figs. 2.25a - b that the asymptotic distributions show marked deviations
ple Gaussian. To highlight these deviations, we plot the scaled log(— log{P(m))})
m%] (Fig. 2.26), a Gaussian distribution would have given a straight line with
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sure 2.25: (a) Scaling plot of the un-normalized P(z = m,/L(t)) for g = 0 at different
= 900(a), 3600(0), 6300(4A). Solid line is a fit to Eq. (2.40). (b) Scaling plot of the
rmalized P(z = m/L(t. g)) for g = 0(¢) and g = 0.3(+) at t = 4500 showing that the
butions are identical within error bars.
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2.26: Deviation of P(x = m, /L) from Gaussian (straight line) for g = 0. Data have
ected at times ¢ = 900(¢), 3600(+), 6300(0).

Figures 2.25a - b suggest that the deviations from Gaussian can be computed by expand-

m) in a Hermite polynomial basis H, (a strategy advocated in Ref. [28] for the scalar
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dynamics),
P(z) = Y paHalz) e, (2.40)

=0
ez = my(r,t)/\/So(r,t) and Hylz) = 1, Hy(z) = 2z and Hypi(c) = 22H,(z) —
nf ]_.[:'s:}. The dark line in Figure 2.25a is an accurate it to the g = 0 data, with py = 1,
33x 1073 6.0 x 1077, py = 0.2352 £ 3.8 x 107%, py = 1.55 x 10~* £ 1.5 x 1075,
By = 5.542 x 107% £ 7.0 x 107 Indeed the odd coefficients are zero to within numerical
ey, indicating that the distribution is even.

N v we perform the same checks for g # 0. As before in g = 0, v(k.t) picks up
e values for certain ranges of k. We have evaluated probability density P(m,.t) for

P [m,/ L{t)]

Scaling plot of the un-normalized P(x = m,/L(t)) for g = 0.3 at different times
(o), 3600(+), 5400(C). Solid line is a fit to Eq. (2.40).

o

A5 | Bfore the deviations from the Gaussian nature can be accounted for by introducing
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1t is conceivable that such corrections would be able to salvage the inconsistency issue
Both for g = 0 and g # 0, since an additive term to the right hand side of Eq. (2.37) would
ot allow us to assert that ;. should be negative for some values of k.

'pugh the remedy suggested cures the inconsistency problem. it will still give a zero
" the torque contribution in Eq. (2.32) as long a§ the probability distribution of
:-_-::nmpunent of /i is even and independent. We have already demonstrated that the
ing "._puint distribution is even. now we shall show that each cartesian component of 7 is
endently distributed.

-_g-numerically caleulate P(my(1),m2(2)) (which we label P(z,y)) at equal times ¢, =
4=t and arbitrary separation, say |r) — ro| = 4v/3 for g = 0.3 (Fig. 2.28a).

10° A(x, v

(b)

re 2.28: (a) Normalized joint probability distribution P(z.y) where & = mi(l), y =
g =03 at t = 2250 and [r; —rs| = 41/3 (averaged over 18 initial configurations).
fA(z,y) where 2 = my (1), y = ma(2) at ¢ = 2250 and |r; — ra| = 44/3 for g = 0.3.
ximum magnitude of A is of the order of errors in A(z, y).

show that the joint distribution is independent in each component, we plot the difference
{8y) = P(z,y) — P(z)P(y) for g = 0.3 (Fig. 2.28b) and find it to be zero within the

ey of our numerical computation.
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-'_:'_t us summarize the situation so far, The Mazenko approximation can be made consis-
and accurate for the conserved dynamics (both for g = 0 and g # 0) by incorporating

ystematic deviations to the Gaussian distribution. However, in the presence of the torque

ximation holds for the g # 0 dynamics, the g term in Eq. (2.32) vanishes and is there-
relevant, This is in direct contradiction with our numerical result (Section 2.1.1 B).
ggest a way out of this impasse. It appears that we are forced to admit that the order

eter {?; cannot be written in terms of @ alone (Eq. (2.25)). For in transforming the

f this is to compare Cy; = (d(1) - (H(2) x V24(2))) with the defect-only contribution
(m(1) - (m(2) x Vim(2))) (where 77 is computed by inverting Eq. (2.33)).

at even at late times, C, ; is non zero while the defect-only contribution Cyy is zero
jin error bars.
is suggests the following decomposition in terms of defect fields (singular part) and

n-waves (smooth part), b= G(mi) + . when g # 0. Such a decomposition gives rise to

-xat-inn in the conserved dynamics can be made consistent and accurate by incor-
systematic deviations to the Gaussian distribution both for the purely dissipative
mamics (g = 0) and for the dissipative dynamics with torque (g # 0). It is evident {rom our
al and analytic study that inertia is relevant in conserved dynamics which makes the
long-lived even at late times. This results in the failure of the standard Mazenko
ition when inertia is present in the dynamics. An accurate approximation scheme
0, should incorporate the interaction between defects and spin-waves excitations.

tend to work on this aspect in future.
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.29: (a) y = Cy(r) (O) and y = Cyz(r)(x) at ¢ = 3600 and r = |r; — 1y for g =0
0 within the error bars (averaged over 5 initial configurations). (b) y = Cyz(r) (O)
- Oy (r)(+) at t = 3600 and r = |r; — ry| for g = 0.3 are distinctly different (averaged
initial configurations). C,z(r)(+), which has contributions from defects alone. is zero
Lerror bars), whereas C, s(r), which in addition involves spin-wave excitations, is non

1

2 Dynamics at T =T,

study is the dynamics of ordering following a quench to the critical point T, This
is added for completeness; several results derived here have been presented elsewhere
The critical dynamics of the conserved model (called Model J in this context)
rated some time ago by Ma and Mazenko [31]. On the other hand, the dynamical
prmalisation group formalism for quench dynamics set up by Janssen et.al., has been
tudy Models A - C [32, 34].

nch the system from the high temperature paramagnetic phase to the eritical

d ask whether the spin precession given by the equation,

= ~T(~iV) (-V?6 + 16+ u(G- §)8) + U (8 x V2§) +7. (2.41)

o
L2,
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(Ma(x, s (x", ') = 2kpT T Go3 (—iV)*8(x —x")8(t — 1) , (2.42)

or 2 for nonconserved and conserved dynamics respectively] changes the late time
cal behaviour. Unlike the zero temperature quench we can set up a perturbation
here because of presence of small parameters in Eq. (2.41), namely u, the coupling
the ¢* term and g = Q7 /T the coupling of the torque term. First, let us consider Eq. (2.41)
ut the torque term. The linear part of Eq. (2.41) gives the engineering dimensions of
ables, [['t] = L¥ = L*** and [r] = L® = L~?, where L is any length scale. The scaling
ion of @ can be obtained from the free-energy (Eq. (1.3)), [¢] = L¥ = L-4/2+!, The
int of the scaling transformation for the linear equation is known as the Gaussian
i point [35]. The dimension of u at this fixed point is [u] = L-2¢-=t# = L4-* which
at d = d. = 4, d. is the upper critical dimension of the perturbation scheme. If
ate the corrections coming from the nonlinear part of Eq. (2.41) we will find that
nsions higher than d. the fixed point does not change from its Gaussian value ;
-0 oupling is irrelevant. In contrast, for d < d,, the Gaussian fixed point is no longer
table and the u-coupling takes the system to a new stable fixed point, in other words u is a
coupling. A dynamical renormalisation group scheme can be set up to calculate the
d points (stable and unstable) for d < d,. and subsequently the exponents and scaling
s at the fixed points [35, 32]. The new fixed point (stable when d < 4), known as the
isher (WF) fixed point, is given to O(e®) by #* = —(5/22)A%, u* = 87%/11 (A is

he scaling dimension of g is read out by power counting [g] = d/2 + 1 — z — 5/2.
fixed point z = 2 + ¢, where ¢ = 61In{4/3) — 1, and n = (5/242)€* to O(€?).
__he.s that above d = 2, the torque term is irrelevant. At d = 1 the torque is relevant,

e seen by an explicit solution of the Langevin equation Eq. (2.41) in one spatial

we turn to the conserved dynamics. Again power counting shows that the scaling
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imension of g is d/2 +1 — z+1/2. where the exponents take their WF values z = 4 — i and
1= (5/242)¢*. This implies that the torque g is relevant at the WF fixed point ford < 6

implies that z = (d + 2 — #)/2. Thus a calculation of z within perturbation theory
uces to a caleulation of 9 at this fixed point [31]. Likewise \ can b obtained from the

o

This is done within the Martin-Siggia-Rose (MSR) formalism [32]. For our problem the

erating functional is,

[, B = f D(S)D(J) exp { — J[6, 8] — Holdo]
+fﬂ dtfdk(hk~¢_k + Py - :b_k]} (2.43)
MSR action written as

I8, = fnmdffafk{gk- [ﬂr&'wk*i;—[_‘i]-
—|—fcik1 (Eﬁii{kf — (k= k)*) e, % B kl)]
Tk, - ;_k} . (2.44)

ression for the generating functional, the initial distribution of the order parameter
with the width = ;') enters the form of Hy = [ dk%(dx(0) - ¢4 (0)) [32].
‘counting reveals the presence of two different upper eritical dimensions coming
quartic term (d = 4) and the cubic torque term (d¢ = 6) in the action J. This
at we have to evaluate the fixed points and exponents in a double power series
nsion in e =4 — d and = = 6 — d [35)].
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e unperturbed correlation Cp(t),t,) = {ﬁk{tlj . E_k(tg}} and response G(t,.ty) =
;_k(tg}} functions calculated from the quadratic part of the MSR action, and the

—Th - to)
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: Unperturbed (a) response function G, (b) correlation function CJ, and the

e vertices u and g. Wavy and straight lines represent the q‘ik[f} and &fk{tj fields
(d) Primitively divergent diagrams '} |, 'Y | and T'},.

ain power counting shows that at d = 3, our perturbation expansion does not generate
erms other than those already contained in J, i.e. the theory is renormalisable.
er the perturbation theory gives rise to ultraviolet divergences which can be removed
ounter-terms to the action. The perturbation is done in the dimensionless bare
a8 = pt1u% and 3% = p9?"3¢% 4 is any momentum scale. To remove these
‘we introduce renormalisation factors (superscripts A and B denote renormalised
anities respectively), 3, (0) = (320)~/2, (0), FR(6) = Z-V2GB (1), an () =
R= z-1yP gR = Z;'g8, TR = ZZ'TP and 7ft = ZZ'7f. The one particle
correlation function [‘ﬁ 5+ with N external ¢y (t) fields, N external g (t) fields
al ¢y (0) fields is renormalised as
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F{R}ﬂﬁ* _ Z—H.Fzz—ﬁfi(zzﬂ}—ﬂ?fipiﬂ}ﬂﬁ ‘ (2.45)

 Note all the renormalised couplings are dimensionless. Since the dynamics obeys detailed
alance, it follows that the renormalisation factors Z and Z, are equal to their values calcu-
in statics. Further the conservation of the order parameter forces Z Z =1 to all orders.

Toorder 1-loop the Z factors are given by (calculation details are given in Appendix IIC),

Z=2Z=1, Z,=p""%1-3(n+8urfe), Z,=u""92(1— ¢5/192%),
Zp = u(1 + g%/192:%), Z., = Z/Z. (2.46)

Note up and gp are dimensionless, Now using the fact that the bare correlation functions

re independent of 1 we can write down an renormalisation group equation using Eq. (2.45),

158 N N_. M. :
#+{Fﬁp+mrﬂr+ﬁu5u+ﬁyay+E"H‘iﬂ—"r‘i"E_{T+TDJ+CTEjﬂTJ‘)FE.ﬂ:I = [,

(2.47)

[he A exponent can be computed from the response function Gy (t,0) = (6 (0) - i (2))
ice this is equal to the autocorrelation function =" {@k(t) - r,?;_k{l]]}, as can be seen from
st term in J on integrating by parts. It turns out this is the only two point correlator

ith a time at ¢ = 0 to be renormalised to make the theory finite [32]. The response function

enormalised to

Gi(1,0) = (2,22)"*GE(1,0). (2.48)
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i "".divergent contributions to G could come from two sources. Each term in the double
urbation series could contain the primitively divergent subdiagrams [9;, T8 v T,
which we have already accounted for by replacing these by their renormalised counterparts.
her divergent contribution could arise from the primitive divergences of the 1-particle
e vertex function I (k, #,0), defined by Gy(t,0) = [ Gy (t — /) T (k. ¥, 0) dt". The
vers icial divergence of the diagrams contributing to Gy (t,0) is D = V(d—4)+ 323,{9{ -6)-2
here ¥, (V,) is the number of u (g) vertices respectively). This is negative for all d. For (a)
the only stable fixed point is the Gaussian fixed point and so D = -2, (b)4 <d <8,
i irrelevant and so D = %l{d —6) =2 < 0 and () d < 4, D is clearly negative. This
i s that G (£,0) does not get renormalised and Z, = 1. Consequently A stays at its
eld value of d {Appendix IIC) for this conserved Heisenberg dyvnamics both with and
t the torque.

onclude this section by stating that we have shown that for quenches to T,. the
is irrelevant for the nonconserved dynamics at the Wilson-Fisher fixed point. In the
ved case the torque is relevant at the WF fixed point with exponents z = 4 — £/2 and
here £ = 6 — d). We found to all orders in perturbation theory that A = d which

llows as a consequence of the conservation of total magnetisation,

Conclusions and Future Work

study we have investigated the effect of inertia on the phase ordering dynamies of
berg magnet where the spins precess about the local molecular field. We consider the
hen the order parameter is either nonconserved or conserved. For the nonconserved
cs, we find that the inertia is irrelevant at late times both fora T=0and a T = T,
. The situation is entirely different when the order parameter is conserved. In this
rtia is relevant driving the zero-temperature ordering dynamics to a new fixed point,
rised by exponents z = 2 and A & 5. We find that at late times the dynamics
:bfla'__dmribed in terms of the dynamies of defects alone. which results in the failure
ndard Mazenko approximation. The torque term leads to longer lived spin-wave

ftations which interact strongly with the defects, leading to a different scaling behaviour.
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rate approximation scheme when inertial effects are present in the dynamics should
rate the interaction between defects and spin-waves. We intend to work on this
n future. In the limit when the dynamics is provided solely by inertia (pure torgue
amics) the short wavelength spin-waves scatter off the randomly placed immobile defects,
king a ‘heat-bath’ coupled to the longer wavelength spin-waves which coarsen in time.
ailed study to understand this dynamics is under progress. For quenches to T, we

ical renormalisation group arguments to show that the torque is relevant at the
onal Wilson-Fisher fixed point,



HAPTER 2. Dynamics of Ordering in Heisenberg magnets 71

Appendix ITA

is Appendix we explicitly show the existence of a single length scale and hence standard
g BEgs. (2.7, 2.8) in the late time dynamics of the conserved order parameter, Earlier.
oniglio and Zannetti [37] had explicitly shown that the late time dynamics of a conserved
ponent spin model in the limit n — oc reveals an infinit}r of length scales leading to a

lore complicated multiscaling form for the structure factor (Fourier transform of C(r. 1)),
S(k, t)(t)pthlkmid (2.49)

o the above multiscaling form, the structure factor grows in time, L(t) ~ t"* with a scale
fependent exponent p(x) = 1—(1—z?)% where z = k/k,, and k-! ~ (¢/In t)1/1 is the position

‘the maximum of S(k,¢). This gave rise to the speculation that this multiscaling behaviour

t) to the computed C(r,t) and then calculate the Fourier transform Si(k,t). The
netion for C'y(r, ¢) has been taken as {sin(r/L)/(r/L)}(1+ a(r/L)?) exp(—b(r/L)?)
similar to the analytic form given in [30]. Note that only b and L are independent
ing parameters, a is determined by the condition S;(k = 0,¢) = 0. We now plot S (k. t)
at fixed values of z = k/k,, (Fig. 2.31). The resulting straight lines labeled by
ent values of z all show a constant slope of approximately 3/4 (Fig. 2.31). Using
posed multiscaling form a plot of p(x) versus = (inset Fig. 2.31) shows that p(z)
tlustered around 1. The small spread of p(x) around 1 indicates that we have not quite
the asymptotic regime, and it is likely that the late time p(z) — 1 in agreement with
onal scaling. In addition, note that the form of p(z) is qualitatively different from
nward curving p(x) predicted by Coniglio and Zannetti [37]. We conclude then that

elation function C(r.t) for the n = 3 conserved model does not obey multiscaling
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andard scaling with a single length scale L(t) holds.

5.5 7 1.6 B 8.5 B

2.31: Plot of S(k.t) vs ¢ for x = 0.4(circle), z = 0.6(pentagon), x = 0.8(square).

triangle), x = 1.1{filled circle), r = 1.3(filled pentagon), = = 1.5(filled square).
filled triangle). A straight line of slope 3/4 is given for comparison. Inset figure
plot of p(z) with z. Note that the errors in p(x) increases as | x — 1 | increases because
mallness of S(k. ) near its wings.
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Appendix IIB

this Appendix we study the effect of spin-wave excitations on the time dependent pre-
symptotic equal-time correlation function. We would like to show that inclusion of such
ons in the correlation function C(r,t) leads to a dip at pre-asymptotic times when
which eventually relaxes. As suggested in Sect. 2.1.1 A, at very late times the order
field has totally relaxed with respect to defect cores. Pre-asymptotic configura-
ically consist of spin wave excitations interspersed between slowly moving defect
These defect cores are separated by a typical distance L{t) = £, the size of the de-
. In general one can decompose 5{1‘, H= qﬁ:‘mg[r, t) + Gym(r, t), where the singular
, parameterizes defect configurations while the smooth part @,m is a linear combi-
f spin-waves of wave-vector K, Gum(r,t) = V125 g8 (#)e™T. The pre-asymptotic
ation function will thus have three contributions : Ciny = (J,iﬂg{ﬂ,t} . &singfr,t]},
= (6m(0,1) - Gy (r,t)) and the scattering of spin-waves from slowly moving defects
: ;i@m{ﬂ,t] - Gsing(r, 1)), At late times of course g™ (t) — 0, and (sing Can be traded
he auxiliary field /m within the Mazenko approach. Thus the Cipg(r, ) part of the
on function is given by the solution of Eq. (2.32) or the BPT form [9].

smooth part of the correlation function Ci,,(r,t) can be estimated from a perturba-
ulation wherein the defects separated by a distance L > £ are taken to be static
‘post priori). We shall see that the dip is a result of this siooth part. Confining
tention to a single domain of size L, we can split the smooth @, into transverse and
inal components about the well-defined broken symmetry axis taken to be along
3. Thus 0" (r,t) = @eq daz + ua(r,t), where the equilibrium magnetisation ¢, = 1.

er an initial smooth localised pulse in the interior of this domain of the form
N Us(r,0) = m‘-;%)yqe*‘"ﬂf 7% and ws(r, 0) = ﬁ%e"ﬂf 4 where the widths
< L and u(0), u3(0) < 1. The equation for u, can be read out from Eq. (2.3),

itq
ot

= ‘G’ﬂun — €n a?gu = 21&35.:3
g g

—(ugug)bay — E{Hauﬁjﬁﬂa
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+ g€y sV Uy — Ugliglly. (2.50)

olve this equation perturbatively, we multiply the nonlinear terms in Eq. (2.50)

bitrary real parameter €(< 1) and express uq(r,t) as nf e"ul™(r,£). The initial
s for u™(r, 0) follow from u,(r,0). We are interestedﬂ: solutions that decay as
Convergence of the perturbation series at € = 1 is guaranteed by the smallness of
‘deviation and because higher-order terms in the expansion decay faster. To O[€"),

-waves do not interact and

uld
ot

V3 — geassViuy — 2udas. (2.51)

1] e equations for u%u} and uy" decouple in the variables u!’ = (u!” tmﬂ”] /2, giving rise

ecessing Goldstine modes in the transverse direction and an exponentially decaying

de in the longitudinal direction. Thus,

(0) (1 iu(0) . R
thy(m) 16(rt(1=ig))2 P\ 41 xig)t)
{0} u3(0) r?
1] = m——gp | ———2] ,
uy ' (r.t) EEE exp |~ £
(2.52)
mptotic solutions to O(e).
the dynamical equations in the transverse variables are given by,
ol 2, (1) (0 _ (0) (0) o2, (0) _ . (Oh2, (0)
F = [:1 :I:zg]‘i" Uy’ — 2?.!.3 Ui :btg[ua v Uy’ — iy v g }
~ (469 + P2y, (2.53)

last two terms are sub-dominant in 1/t and u(0),us(0) respectively, and so the

syense correlator to O(e) is given by
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CL(rf) = %{u+{x, B (% +158) (% £1, G 1)

A (Y AR P
P\ Ty ) T T PP T3 g

x {ms (4—?:(3’% 4 ?1'_.:"4) } , (2.54)

Ar ~ O(u(0)*) and A ~ O(u(0)*u3(0)) are constants depending on g and initial

ns. The cosine term in the above expression results in the observed dip of the total

ion function. The magnitude of the dip increases with increasing g.

The dynamical equation for the longitudinal component to O(e) is likewise given by

Quyy’
ot

= (V*-2)uf" - (4 u? + 3 (u{™)?)
+2ig {HEE} v2l? 0 "‘FEHTJ]
— (4uPu + @2 ) ud? (2.33)

-

As before, the terms proportional ta (uy")?, the gradient terms and the cubic term are

o inant, and so the decay of the longitudinal correlation funetion CJ| is given by

(T 1) = (@alx.t)ds(x +r, )
Bye~# e Bye e
@ P\ Ty ) T @ P (‘ 33 + )

Bg '?‘2
T PP ("4?{1 ¥ gﬂ)) : (08)

: O(ug(0)2,u(0)2), By ~ O(u(0)2uy(0), u(0)?) and By ~ O(u(0)") are functions of

1l conditions.

at C;;, evolves with a width that scales as £'/? and an amplitude which decreases
longitudinal Ol | decays exponentially fast. This decay is consistent with our
tion that the defects separated by a distance L(t) hardly move over time scales

¢ to spin-wave relaxation.
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The cross correlator Cle, coming from the scattering of spin-waves by moving defects
' calculated by treating oy, as “slaved” to ¢gy,. As the defects move they excite
aves which decay in a time scale smaller than the time taken by the defects to move
her. The dominant contribution to Cy., comes from the product of Eq. (2.52) and
t is easy to see that this term leads to the same cu-s:ine dip as in Eq. (2.54) but with

amplitude that decays algebraically in time. This is the source of the slow decay of the
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Appendix IIC

ent the details of the perturbative calculation for the eritical quench dynamics of
J for the n = 3 Heisenberg model. First we compute the superficial divergence or

gineering dimension D (in momentum scale) of a 1-particle irreducible graph I’ N

D =Vi(d—4) +2(d - 6) - T(d-2) —dm— 2, — [z Fd 4 (257)

eV, and V; are the number of u and g vertices, E = N+ N is the number of external legs.
o are the number of internal legs originating from the u and g vertices respectively,
= &y + 1 if 2, is odd, [z,] = 2, if z, is even. We will find that Ty g = 0
V = 0, which follows from the causal nature of the response function. This can seen
the following simple argument. The number of correlators in a graph if N = 0 is
+Vy/2 — E/2, and the number of loops in a graph is L = V, + V,/2 - E/2 + 1.
=C + 1. This means that at least a loop in the graph is made up of only response
which vanishes because of causality. Clearly Eq.(2.57) shows that there are two
imensions in the theory, df = 4 and d¢ = 6. Consequently we have three regimes.
The Gaussian fixed point (g* = 0, u* = 0) is a stable fixed point. Therefore the
exact here.

< 6 In this regime u" = 0 is the stable fixed point , therefore V, = 0, so all graphs
mputed at df = 6. The only divergent diagrams are Fﬁ and 1"53;1 with the degree
e 2 and () respectively.

4 Both u* and g* are non zero at the stable fixed point, and so the graphs are
ated at d = 4. I} with D =2 (when V, = 0) and D = 0 (when V, = 2) , I}
i D=0 and 1”5‘*,’ with D = 0 are the only divergent diagrams.

 separated the divergent diagrams we isolate the divergent piece of the graphs

fe— 0and £ — 0 or in other words perform dimensional regularisation of the

il



.0
n | a
— k0 b —

32: (I) shows the 1-loop contribution to the response coming from the u-vertex
and (III) give the contributions from the g-vertex at 1-loop.

arisation of Fﬁ’

ibution coming from Fig. 2.32(I) does not depend on external momenta; it there-

ponly changes the critical point .. The diagrams Fig. 2.32(I1) and 2.32(I1I) give

T2 dq dw
4 J (27)4 2n

(ke @)? ~ ¢*)(k ~ @)* ~ £)C (g,00) 0"k — @, — w1

(4" — (k= @P)(¢* — Kk — g — 1) C(g, 1)

2 _ (e — e\ 2 _ 12 2:["5!’1z
@ = = G e — a2 + )
2k —q)? ]
(Tg* — )Tk — q)® + (w —w1)?)

g Jﬂi I? r d% duw
B4 S (20)¢ 2n

+((k—a)* — ¢°)

L dig K ((k—q)* - ¢*)?
- 4 (27)4 Tk — q)*((k — q)* +¢)

d%q (k-q)*
= T [ @mi gk — q)((k — a)t + ')
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. da d-1 43

= 20°K'T cos*f, [ d* g

U f (27)d 1f @ +24(k - q) + AR
A=1/(1+i(z, — 22))

B Tg’k'T (d/2 —
= g { J'Jr }F{E d)"lzj -/: li:rl -/n.l d.'ﬂg;"‘ls dS? {205291

T 2 (2m)4 (A(1 — cos2, A)k2)3—dr2

B 20°5'T 1 Lo e d
= ju.d-'h/; dig A f{ﬂﬂ'}dcus (e

Tk -
— 1927 (2.58)

ds the recursion relation

2
[p=2lp =TS0 ——30 1y

iy an 9, w ko kw4,

(1)

(1), (II) and (I11) show the contributions coming from the g-vertex to the vertex
at 1-loop.
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e

The diagram in Fig, 2.33(1) gives

q dw
{2 J"’?
where, K = k; + k»

Iy =(k2—fl}2— (K -q)*

|.'1':3.'1‘!3G{q, WJG{J‘N + kg — oty =y — M}C[:kz — g — Lﬂ}

23 = (ks — q)° -
Ty =g° — K*
3 _[ diq ( 3i )
— J @rEtt\arg )

in Fig. 2.33(1I) gives

diq dw _
f {géd I Ty 29203G (g, w)G ke — g, wp — w)Clky + ko — qw) +wp — w)

where, K =k, + k,

&Iy = k? — q2

ry = K? - (K® - q)?
L j‘ d4q ( —i
= ] e zrqﬁ) '

diagram in Fig. 2.33(II1) gives

dlq dw _
f (27 )4 2 223G g w)G(ky — qwe — w)C(ky + by — gy 4wy — L)
where, K =k, + ks

z1 = (ko —q)* - (K —q)?

Ty = (ky + 2ky — q%)* — k3

z3 = (ki + 2ky — q)* —

oo ()
(27)d ' \4rgs /)

30

(2.60)

(2.61)

(2.62)
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Note that Diagram I + Diagram 11 + Diagram III = 0.

kil ot
B

_ 2
[ ot - 0)? - C(, )G — g, - )
1

The diagram in Fig. 2.34 II gives

_ 2
H“K [ a1 - @* - P (2.63)
—E’Uﬁ2 2
| #aden(a® = (1 = )C (0. )G s - g, — )
2
F““f [ e (s~ @ = ) . (2.64)

in, Diagram I + Diagram IT = 0. Hence there is no correction to the vertex function

Lloop and recursion relation reduces to the scaling relation of the bare coupling :

galp = p* 42 Cguly. (2.63)
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Regularisation of I‘3 )

ure 2.35: The divergent contribution coming from the u— vertex to the four point function
1-loop.

The diagram in Fig. 2.35 gives

36(n + 8)(ul')%k? f d¥g duw, 2¢°T (ky + ky — q)°
9 (2r)d 2x (T2(k; + ks — q)? + (w; + wy — w)2)(Tgt — iw)

ddq qz

= A+ 8Dk | R F e =2 1)

where. K =k, + ks

AE
d(g? — 24K - q + AK?)

= 4(n +8)(u’D)K2 _[ dz f

_ An+8)@TKLER—d/f2) rt - 42
= (4r)di2 fu (AK2(1 — Acos?f, )24/

3 [ﬂ-f—S1[1‘521:4‘:3’/‘ﬂfzq2

mie
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(2t i:ﬁmkﬁ . (2.66)

The recursion relation is therefore

_ 3(n+ 8)ug
- _ A-d
up = Zyun = p*~tup(l - ST 20R) (2.67)
From Eq.(2.59) and Eq. (2.65) we get the recursion relation in g,
d—df2 E?z
= ] — ———]). 2.6
95 = grp "1 = o) )
Operating by 7= on both the sides of Eq. (2.68),
dgp A [ 44 9%
—_— ==y — o (-
au v ”ay (# 9a( 19211'345] )
Ogr _E 95 3 ;
o 59R ~ T92,3 +Olgr) =8, . (2.69)
(2.70)

equation admits three fixed points, g* =0 and g = +=/ 9672, For d < 6 the nonzero
:;.j‘ the stable fixed point and for d > 6, g* = 0 is the stable fixed point. Operating by ,u-g%

dup . 8 44 _ 3(m+8ug
“ on Mo (,u (1 drie })
du 3(n+8

=b”3_;= "= {n:;;rz]uﬂ Rt Olug) = B,

(2.71)

g :atiﬂn (2.71) has two fixed points, u* = 0 (Gaussian fixed point) and u* = 47?/3(n + 8)
Wilson-Fisher fixed point). For d > 4 the Gaussian fixed point is stable, which for d < 4
lie Wilson-Fisher fixed point is stable. This follows from a stability analysis of Eq. (2.71)
bout the fixed points.
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The z exponent can be calculated from the relation z = 4 4+ {*. (* is calculated using
the fluctuation-dissipation relation which involves renormalisation of the composite operator
9% 9. Details of the calculation can be found in Ref. [33]. To O(z), (* = —£/2 which makes
=4 — /2. ‘

‘The mean field value of A is calculated by taking the Fourier transform of Cy(t.0) =
/) exp(~Tk't) at r = 0 which gives |

Alt) = % f dk exp(~Tk't)

2 1 d "
= 47,0(d/2) (I‘tl“) ’ )

fich implies A = d.
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Chapter 3

Dissipative Dynamics of Driven
eisenberg magnets

In this chapter we study the dynamics of Heisenberg spins in d—dimensions subject to an
external anisotropic driving (not derivable from a Hamiltonian) in the presence of dissipation
and inertia. We begin this chapter by deriving the equations of motion for the model (Sect.

31) both from symmetry arguments and by analysing a specific lattice model. We show

34) we study the ‘low temperature’ phase of the system which exhibits spatio-temporal
thaos. This chaotic phase may be ‘controlled’ giving rise to a steady state configuration
with broken chiral symmetry. Detailed calculations for Sections 3.3 and 3.4 are given in the
Appendices ITIA and ITIB respectively. While reading this chapter, it would be useful to

the results of the single particle study in Section 1.2.

31 Derivation of the Dynamical Equations

Qonsider a collection of particles each carrying a Heisenberg spin falling along one direction

sy along x) in the presence of a field which does not couple directly with the spins. Let
ask for the coarse-grained dynamics of the spin density, ignoring for the moment, the
fimamics of the mass and momentum densities. We make use of symmetry arguments alone.

lithe absence of driving the dynamics conserves the total spin; 8,8 is given by the divergence

88



CHAPTER 3. Dissipative Dynamics of Driven Heisenberg magnets 89

of a current J = T'O.fi + jiner, where [ = §F[S]/d8 is the chemical potential and j;n.r is the
current coming from inertia (F[S] is the Landau-Ginzburg frec-energy functional Eq. (1.3)
and T the spin mobility). The external drive would clearly break the z & —z symmetry of
the equations of motion, and so on general symmetry grounds one should include terms in
r e equations of motion containing an odd number of spatial derivatives. To lowest order.

the dynamics of the spins with the driving alone maybe wtitten as
38 = v9,S+ AS % 3,8 (3.1)

The first term may be eliminated by a Galilean transformation & — = + vt, ¢ — ¢, leaving
only the second term to reflect the drive. Therefore in the presence of all the three effects

dissipation, inertia and driving — the time evolution is given by

08 = —T O — Opjiner + AS % 8,8 + £(z, 1), (3.2)
where E_' 1s a conservative Gaussian noise with the correlator,

(Calz, t)ea(d’, 1)) = —2kpTT 8,5 6(z — )0 (t — 1'). (3.3)

The drive breaks the conservation of total spin, since it cannot be written as the diver-

gence of a current. Therefore under renormalisation, the drive should give rise to other spin

xternal drive, its variance is not related to the dissipation via the Fluctuation-Dissipation
Theorem (FDT) (see Sect. 1.1). These contributions clearly dominate over the conserved
dissipation and noise at large length scales. The breakdown of FDT as a consequence of

the external driving implies that the stationary probability distribution of the steady state

ifspins P({S},1) corresponding to the Langevin equation Eq.(3.2),

%:fﬁ{-reﬁ) 5 (dF 5

5
e , 4
7S, 6SF+JSH)P / T (}‘E"*"'S"S“P ) (3:4)
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We now generalise the above arguments to arbitrary d = d; + 1 dimensions, where the
anisotropic driving is along one direction (||) only. The resulting Langevin equation possesses
spatial O(d — 1) symmetry. Keeping all the relevant terms in the hydrodynamic limit, we
obtain,

%?‘ = (?"”aﬁ + eri)S —yS ~ EES -5)8 — AS x 3“5 + g8 x 5ﬁ5 + 18 X ‘E’iS +

(3.3)

e have displayed the usual spin precession term here in its anisotropic form explicitly. The

‘nonconservative noise 7 has mean zero and variance,
(Mo (. t)ma(x' 1)) = 2B 8, 8(x —x')o(t — t'). (3.6)

Note that we have arrived at the final form of the continuum equations of motion using
only symmetry arguments and conservation laws. The drive S x 8,8 is a pseudo-vector; in the
guments just outlined there is no microscopic justification for including such a term. We

therefore provide a microscopic model where the pseudo-vector drive arises from precession.

AL 4 4o

|

Figure 3.1: Hopping rules for the ASEP model with Heisenberg spins. Black spheres denote
cles with an attached Heisenberg spin and white spheres denote vacancies.

We find that a slight extension of the discrete model introduced in Sect.1.2 gives rise
10 the above spin dynamies in the continuum limit. The extension consists of attaching a
feisenberg spin to each particle (Fig. 3.1), which interact with each other by the usual
ard-core repulsion and nearest-neighbour exchange. The particle hopping probabilities p

:::!_1.. can in general depend on the spins of the particles, but for the time being let us restrict



CHAPTER 3. Dissipative Dynamics of Driven Heisenberg magnets 91

our analysis to the simplest case when p and ¢ are spin independent. In this limit, the zero
temperature particle dynamics without dissipation is described by

an';f[t] = (1= n)ng—n(l - n;+n]P] = [m(l — i )g — m (1 —m)p

|

= Ji+tj2 = Ji-1j2, (3.7)

\where ny(t) = 0 (vacant) or 1 (filled) denotes the occupancy of site | at time ¢. The corre-
sponding spin dynamics in variables &(t) (spin of particle at site | and time ) has contri-

'''''

:: utions coming from hopping and spin precession (g is the Larmour frequency),

aa, . . -
a—; = gmd %y + [I[l = )N Treag — my(l — n:HJG'iF]
- [m{l = Moy )q — g (1 — ﬂ:}ﬁ-m] ; ' (3.8)
sihere by = —J (1801 + 11711 ) is the local molecular field. Now let us introduce coarse-

grained variables p; = (ng)y and S; = ()5, where (- - ), denotes average over histories till

time ¢, We simplify the coarse-grained equations further by making a mean-field approxi-
k-

dp  p+qdp dp 0
5 a0 5) (39)

his equation is known as the noiseless Burgers equation [2, 3] in one dimension. The
external drive p — g breaks the z < —z (reflection) symmetry in Eq.(3.9). Within the same
ean-field approximation, the spin dynamics Eq.(3.8) simplifies considerably. Let us focus
on the first term describing spin precession about the local magnetic field hi. Using the
mean-field decoupling this may be written as

sk dJs
y('ﬂg{?’; b4 h;}h —¥ —gJ[p; {,EJ{.,,.; T pi_1]] Sx a_.ﬂ i [:31{]}

1 s term has the form of the drive in Eq. (3.5) with a ‘coupling’ —gJpi(ps1 — pi—1). We
aluate this ‘coupling’ in the steady state of Eq. (3.7). Within the mean field approximation
cady state densities obey the recursion relation (2], gpi — por + (P — @)ooy = Jo

81 Ji1/2 = Ji—1/2 = Jo = const. This implies

prlprr — pr1) = plp = pioa) — glpe — o) - (3.11)
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The RHS of Eq. (3.11) can be written (to lowest order in ;) as dp/dz in the continuum
limit. Since the external drive breaks the 2 & —x (reflection) symmetry in Eq.(3.9), dp/dz
would in general be non-zero. This implies that a term analogous to the drive in Eq. (3.5)
would exist, if we can show that there exist steady state solutions for which dp/0z is a
constant or at best slowly varying in space. To see that this is indeed so, let us evaluate
p/dz for particular steady state solutions, which are steady state solutions for respectable
parameter ranges. Static solitons p, () are generic steady state solutions of Eq. (3.9), having
the form [4]

os(x) = pptanh(k,(z — ) , (3.12)

where p{x) — +pp as * — +oc. This static soliton is centered at zp and has a width
L;‘l = (p+q)/(polp — q)). For a soliton with a large width (when p — ¢ or gy < 1), the
:_:pe of the profile is almost a constant (and equal to ppk,) in the bulk. This implies that in

and 7| in the equations of motion Eq. (3.5) are functions of this temperature. Introduction
of the drive brings in two other temperature scales : (i) the drive-induced dissipation v
ortional to Tyripe — T, and (ii) the variance of the nonconserved noise B o Tjpise- Since
the FDT is violated by the external drive, these two temperature scales are not related to
gach other. Throughout this study we shall be in the paramagnetic phase of the equilibrium
berg model T > T,, or in other words r; ,r) > 0. Our phase diagram will therefore
¢ parametrised by the two parameters v and B. Thus the ‘high drive-temperature’ phase
orresponds to Tyrse > T, or v > 0, the critical phase corresponds to Tyrve = T5.;,, OT

= : and the ‘low drive-temperature’ phase to Ty < T35 e O U < (0.

T
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3.2 Dynamics at High Drive-Temperatures, v > 0

At high drive-temperatures the steady state, obtained by setting 8,S = 0 is paramagnetic,
_ﬂ:laracterised by (S{x.t)) =0 ({ - -) denotes an average over the noise 7j) and correlators .
The effect of the drive is to change the correlation lengths £, = m +O(N ) — O(A%)
and § = \/W+ O(X*//v) — O(A?). We find that this paramagnetic state is stable under
dynamical perturbations. This can be seen by writing S(x,t) = (S(x.t)) + u(x,t), where u
_-:_111 arbitrary small perturbation. The time evolution of u(x,t) to linear order is given by

u

3 (n?i+r”5ﬁ—u)u+ﬁ, (3.13)

which on Fourier transformation reads

(1) = 1y (0) exp(—mit) + fﬂ " dt iR (t) exp(—melt — ) . (3.14)

Y= -1k} — ikl — v, (3.15)

This arbitrary perturbation uy always decays to zero when v > 0. The ‘paramagnetic phase’

is therefore linearly stable.
Dynamics in the Critical Phase, v =0

n the critical region v = 0 (Tyrie = T5.,.), the linear theory is massless, resulting in
ivergent long wavelength fluctuations. This can be seen by calculating the correlation
function C'(x, 1) = (S(x +x,t+1)-S(x,t)) from Eq. (3.3) by setting u = A = 0. The

grrelation function has the scaling form

Cle. =2 *xFu(""'—'ff—* ﬂ)T (3.16)
R

iere the roughening exponent y = 1 — d/2, the growth exponent z = 2, the anisotropy
ent { = 1, and Fj is an analvtic function of its arguments.
What is the nature of these divergent fluctuations in the presence of the nonlinear terms?

his can be addressed by a perturbative caleulation about the linear theory, treating the
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couplings A and u as small parameters (the other couplings gy and g, will turn out to
be irrelevant for d > 2). The perturbative corrections to the correlation function may
be equivalently viewed as arising from modifications (renormalisations) of the parameters
Mj; 7o and B. The modified (renormalised) parameters (denoted by superscript R) may be
calculated perturbatively in A and u and have the generic form

i (1 s a,-j(uzﬁ}f(,x:cﬁ}i) f (3.17)

ij=1

where zf and zj denote the length dimension of the couplings u and A respectively. Likewise
j;;he parameters r and B® may be written in the form Eq. (3.17) with differenl expansion
coefficients. If the theory is renormalisable then the series in Eq. (3.17) can be summed to

be written in the form

Tﬁl{ =T (l + ay (uzf) —|—,ﬂ|{hmﬁ])£, (3.18)
Similar expressions may be obtained for r? and BT with different sets of (e, 3.8). This
essentially implies that the theory, even in the presence of nonlinear couplings can be de-
seribed by a finite number of parameters. Since renormalisability guarantees that the series

. (3.17) can be summed to a closed form (Eq. (3.18)), the correlation function C(z.t)

Cle,t) =22 (*” E) (3.19)

This lmp]lEﬁ that the critical region (defined by v® = 0) still has divergent long wavelength

In our model we assume renormalisability, which we justify a posteriori to lowest order in

perturbation. We carry out a dynamical renormalisation group (RG) calculation to compute

bles denote dimensionless quantities. We may reinterpret the effect of such a rescaling as
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a change in the parameters; thus the form of Eq. (3.53) will remain unchanged if we change
the parameters to their primed values rj = b*"%ry, 7| = b"%p , B = p=HCl-t-1g
W =b", A= el g = BR2g) and g) = bF52g, . In the absence of nonlinearities
(when u = A = gy = g. = 0), the linear equation can be made scale invariant by choosing
x=1-d/2 z=2 (=1 With this choice of the exponents u and A become dimensionless
when di; = d} = 4 (upper critical dimension), which implies that they will modify the scaling
behaviour of the linear theory when d < 4 (u and ) are relevant for d < 4). The other two

couplings g and g, have an upper critical dimension d? = 2, therefore they are irrelevant

ford > 2.

'ii]Perturbatiue Caleulation : We calenlate the corrections to the correlation functions from

‘the nonlinearities, perturbatively in the couplings v and A. On Fourier transforming Eq.

(3.5) we obtain

! LA

Salk,w) = Go(k, w)n, - %Gu(k.-w) fgqu[q[l — (k| — ay)]€assSala, v)Ss(k — q,w — v)

~UFp,6Go(k. w) fJQIJqQEUIEFQSﬁ(m, 1)S,(qa, 1) Sk — @i — Qo w — vy — 1),
(3.20)

‘where the Fourier transform is defined as
S(x.1) = f d kd wS(k, w)est=—kx (3.21)

with the measure d (g, k) = d¥(g, k)/(2m)%, d (v,w) = d(v,w) /27 and the range of integration

5 gl |k] < 00, —¢ < v,w < oc. The coefficient of the cubic term is given by Fops =
ifﬁ]{ﬁugéq,.s + 0as05y + ay0a5). The bare (unrenormalised) response function Gy(k,w) and

the correlator Cy(k,w) are defined from the linear theory as

5 1
Gﬂ{k? 'l""":] = {S(kw} i ﬁ[_k'l —WD = Tukﬁ + TJ_ki -y e !{d L]
Colk.w) = (S(k,w) - S(-k.—w)) = £3 (3.22)

[:?"ukﬁ -+ T‘_j_.’ﬁ‘}_ = 'LI)E +w?
e that we have explicitly retained v in the above expressions; at the end of the calcu-

lition, we shall however set v® = (0 which characterises the critical phase. To carry out
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the perturbative calculation effectively it is convenient to rewrite the recursion relation Eq,
I'E;'EE]] in terms of the graphical representation (Feynman graphs) displayed in Fig, 3.2,
‘We now calculate the corrections to Gy(k.w) or the renormalised response function
GP(k,w) defined by

Salk,w) = G*(k,w) 7a (3.23)
order-by-order in perturbation theory. For this we need tuluse Eq. (3.20) together with the

noise spectrum characterised by
(M (k1. wi)na(ke, wn)) = 2B6%(ky + ko) (wh + wa)Bas - (3.24)
To O(A?) and O(u) (this corresponds to the lowest, 1-loop order) we obtain

GP(k,w) = Golk.w)—Gplk,w) { f"f'i"i'”[ g = (k) — @) (b — (= ))Golk — q.w = v]
xCola, v} + ((ky — qq) — ay) (ky + (k) = g;))Golq, »)Co(k — q.w — F}}

+%fﬁqéycﬂ{q, u}}
= Gy(k,w) + Gk, w)* Bk, w) . (3.23)

'Hu self energy ¥(k,w) contains all the corrections coming from the nonlinear terms. Since
the critical dimensions of both « and X is 4, the caleulation of E(k,w) at the critical point
{t —+ 0) would involve integrals which are singular in the & — 0 limit (infrared (IR) sin-

gularities) for d < 4. The integrals turn out to be logarithmically divergent (both in the

pgularisation [8], to separate out the divergences as poles at 4 — d = € = 0. Details of the
alculation are presented in Appendix IITA.
The inverse of the renormalised response function [GE{kJ]_], can be used to define the

alised parameters v®, rff and rf :

[Gﬂ{k,_m]]“I = itk +rk] — v —iw

G5 (k,w) — Bk, w). (3.26)
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TIE,(Q-V]

Gol k., w) ﬂﬁ{k—q¥q2,m—v1—v2]

[q” = (k”- q")]
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&)
Q
=
=2
>

- x] denotes S{k w) and a thin arrowed line denc-te& Golk, w). The cross x denotes the
0ise 1. (a) and (b) denote the vertices coming from the A— and u— eouplings respectively.

L
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T T Eﬁ)
9= ?r.'trJ_(E+ﬁ y (3.29)

where 7 and x are defined as
MB

T = 3.30
2 (ryra )7 e
and
ul3
K= W 3 {3,31]
oL

Note that we have used an upper momentum cutoff A to evaluate the renormalised v®. The

IR-divergences appear as poles at ¢ = (.
We now calculate the renormalised correlation function C®(k, w) = (S(k, w)-S(—k. —w))

which to 1-loop satisfies the recursion relation

AZ
Chk,w) = Cok.w) — ?fd’qﬂru{(ku =) —a) (e — (ky = 1)) Colk — q.w — ) Colq. v)
x Gk, w)Go(—k, —w)
= 2Gy (k. w)Go(—k, —w)B + Gy(k.w)Go(—k. —w)E5. (3.32)
The function ¥p contains all the corrections coming from the nonlinear couplings and is

calculated in Appendix [ITA. The renormalisation of the noise may now be easily determined
via the definition C®(k, w) = 2BGR(k,w)G#(~k, —w),

Bf = 5(1 + (3.33)

Ty 2)
32 /7
We have also computed the lowest order corrections to the nonlinear couplings (vertex
corrections) defined as —iA® = —iA+ 20, and —u® = —u+I',, where the vertex functions

[y and [’y have been computed in Appendix II1IA. To 1-loop we find

3 —uf2
M= }t(l = _TrI'T QU-EE ) (3.34)
R o2 3 (Umte? 2'}'?1--!7.2) )
u u {rﬂ LAl }( 12Be ARe ; 1:33-‘}]
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.' ursion Relations : By treating the scale parameter b as being infinitesimally small,
je may recast the relation between the bare and the renormalised couplings as differential
irsion relations. This makes the scale dependence of the couplings apparent. Let us define
g scale of observation bay ~ v™'/2, where we have written ay as a microscopic lengthscale
and b as a pure number. We first define a dimensionless coupling 7(b) = r{t(bag)*~* which

from Eq. (3.27) satisfies,

7R(b) = r(bag)*2 (1 + @) . | (3.36)

Since b is infinitesimal, we may apply the rescaling operator b@/db on Eq. (3.36) to obtain,

a7t .

al ?rr{bau]l‘) ‘

: (3.37)

e again define a dimensionless parameter for 7 by 7%(b) = 7%(bag)*. Recalling that 7 is

arft R
Loip(s-2+ ), (3.38)

e A= 5wl
W—-TL(M—E{:'F 12 ), {339}
gB% - i
—na—f—-=HR(z—2x—{,'(d—l}—l+%), (3.40)
xR 3R
S =M+ 21+ 5), (3.41)
ik o 117 .5 ET?L.4c(FII|-I}1.f2{?':f)3I2 o .
=4 <z+2 ——?4—5)4— SBn (7557, (3.42)
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g 3577 R B

ot ({4 ~ - "5 ) ’ S
R%  _pr.  11mCER xR\ 2Tn( (FR)? _
" ( T T T3 ) T (3:44)

(iv) Fized Points and RG flows : In the critical phase the system is scale invariant at length

scales much larger than the cutoff. This implies that the critical phase is given by the fired
ints of the recursion equations derived above,

g7 _or* _ 8" _arit 9\ aB

T )

The above equations yield four fixed points :

(A) 7* = k* = 0. This ‘Gaussian fixed point’ is stable for d > 4 and unstable for d < 4.
The exponents take their ‘mean field’ values 2 = 2, { = 1, and x = 1 — d/2 at this
fixed point.

(B) 7* =0, &* = 24¢/(n + 8)7. This fixed point is unstable for both d > 4 and d < 4.

(C) 7* = 64¢/35m, k* = 24¢[3+ \/3 + 1112(n + 8)]/{35(n + 8)7}. This fixed point is again
unstable for both d > 4 and d < 4.

(D) 7* = 64¢/(357), &i* = 246[3—\/3 +1112(n + 8)]/{35{n+8)x}. This ‘driven fixed point’
is unstable for d > 4 but stable for d < 4. Exponents take nontrivial values to O(e),
z =12 —16¢/35, { = 1 — 2¢/15 (anisotropic), and x = 1 — d/2. Note that x does not
change from its mean field value to this order.

We exhibit the fixed points and the RG flow diagram to O(e) in Fig. 3.3 .
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Figure 3.3: Plot show fixed points and RG flows. For d > 4, A (Gaussian fixed point) is the
only stable fixed point, while for d < 4 there is a nontrivial stable driven fixed point D.

We would like to stress that these nontrivial critical Auctuations as a result of the ex-
ternal drive exist even when the equilibrium Heisenberg magnet is in its high temperature

peramagnetic phase.
Dynamics at Low Drive-Temperatures, v < 0

We now investigate the effects of driving when v < 0 (low-drive-temperature). Our results

ke

jold when the equilibrium phase of the Heisenberg spins (without driving) is either param-

gnetic (T > T..) or ferromagnetic (T < T,). In the presence of driving we ask for the stable
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;s_t'ead}r states that the spin system gets into. It is convenient to work with dimensionless

Ty = T ﬂ1$l—">xl_'1.'r_L1t_}fU:S'_}s &Tﬁ._}ﬁﬂ“ﬁ%‘h_}i ?'
\ Vou |
Etr up/*
a =gy s §1 .fhﬂ B — Bﬁ 1;2 .1,*24 J

which simplify the equations of motion to

as
B

;.-":'H.l'iﬂbIEﬁ

= (8 +V1)S+5—(SS)S—ASx S + S x 38 + 9.5 x VS +77
(3.46)

with nonconservative noise variance satisfying Eq. (3.6). For our subsequent analysis we
shall fix T > Tz or r > (0 where the equilibrium phase with no driving is paramagnetic.

We set These = 0 (e B = 0), the noiseless Eq. (3.46) can now be analysed for steady
states. We first investigate the hiomogeneous steady states :

(i) ‘Paramagnetic steady state’ represented by (S,) = 0 (average is taken over the steady
state configurations) is a solution of the stationary equations. It is easy to see from Eq.
5.13] that this steady state is linearly unstable.

(ii) ‘Ferromagnetic steady state’ with broken O(3) symmetry represented by (S;) =

——

=0 and (Si) = 1 is also a solution of the stationary equations. This turns out to be
:_'Early unstable too, as can be seen by perturbing about this state by a small fluctuation
."[x, t) (to avoid a clutter of terms we set g; = g = 0 with no loss of generality),

Orui(x,t) = Viu(x,t) + Adjualx,t),

Duug(x,t) = Viua(x,t) — Ayus(x, 1),

Buus(x,t) = Viug(x,t) — 2us(x,1). (3.47)
Using the combination u® = uy + itte, u~ = u; — i1, and uy the above equations simplify in
Fourier space,

du(t) = —k*ul(t)+ My (1)

Buui(t) = —krug () — Mkyjug(t)

Druge(t) = —k ug(t) — 2ug(t) , (3.48]
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clearly showing that ui () = uj(0) exp(—k® = Mkyt) are unstable at large wavelengths when
B < A

ﬂext, we study the inhomogeneous steady states :

(iii) ‘Helical steady state’ with broken chiral symmetry is represented more conveniently
in the variables p, ¢ and S3, which are related to Sy, S, and Sy by the transformation S, =

peos ¢, Sz = psing and S; = S5, The noiseless equations of motion (setting gy = g, = 0)

d . : :
S = V- p(V0) +p— (6 + S3)p— ApSsDyo + 1.
Oc s, 2 WA
£ = V*o+ =(Vp) - (V) + =(S:dp — pd)Ss) + 14 »
2 Iz
a5. ;
D = V48— (04 S+ AP+ (3.49)

‘The components of the noise are related to the cartesian components by n, = n cos¢ +
hsing, ns = p~' (n2cos@ — mysing). A helical configuration is represented by p = a, ¢ =
)+ ¢ and 53 = b, where a,b and p are arbitrary constants. Such a helix is a solution of
‘the stationary equations if the projection of the local spins along the || axis b and the pitch

1/p satisfy the following relations

b=+ [%{1 — (142 + @2+ 1) —1)2— 4a4}]mf (3.50)
p= %{ - \o /30— 4(RE - 1)), (3.51)

where R = /a2 + 7 is the magnitude of each spin. The only free parameter ¢ is however
‘bounded by @ < (3 + A%)~"/2, coming from the requirement that b be real.

Unfortunately even this steady state is linearly unstable as we show explicitly. Consider
small fluctuations about the helical steady state, p = a+dp, ¢ = pz)+c+d¢ and Sy = b+u.

Io linear order the Fourier components of the fluctuations evolve as (for simplicity we exhibit
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the modes with k;, =)

e —f\:ﬁ — 2a* —ikjlru[ﬂp + Ab) —a(2b + Ap) 4
a : ; .
P dge | = iky(2p+ Ab)/a ~kif —iky A dh
m —2a(b — Ap) iAkja® —kf + (1 — a* — 30%) Uy
- "
(3.52)

The signature of instability is that the real part of any one of the eigenvalues of the matrix
D be positive. Fig. (3.4) shows 2-dimensional plots of the real part of the eigenvalues versus
a and ky for a particular value of A. This shows that at least one eigenvalue has a positive
real part for a continuous band of k. We have checked that this result holds for other
values of A. This implies that there is an infinity of unstable spatially periodic steady states
parametrised by a (and for each value of a there are two values of b and p), a fact that will

be of some significance later.

igure 3.4: Plot of the real part of the eigenvalues e, e; and ey versus a and k) for A = 2.
The eigenvalue e, is positive for all values of a and ky indicating linear instability.
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The inhomogeneous helical steady state was suggested by the chiral nature of the driving.
It would be impossible to do an exhaustive check of all inhomogeneous configurations for
possible steady states. Our strategy is therefore to solve the noiseless equations of motion
numerically starting from arbitrary initial configurations. The dynamics could either take
the system to some other non-trivial inhomogeneous stationary state or lead to temporally
periodic or chaotic configurations [9].

To determine the asymptotic configurations starting from generic initial conditions we
solve the noiseless Eq. (3.46) numerically in d = 1. This equation should be handled
carefully as the linear derivative in the drive would give rise to numerical instabilities if
the standard Euler scheme of discretisation were implemented [10]. We adopt an operator
splitting method [10] which allows us to treat the dissipative terms and the drive separately
under different discretisation schemes. The dissipative part is solved using the standard
Euler method (Sect. 2.1.1) and for the drive we use the following algorithm. The time
evolution of the spins with the drive alone is a precession about the local magnetic field
h(x,t) = & S(x.t). If h(x,t) were a constant in space and time, the local spin S(x,t) would
have precessed about this field, keeping its magnitude |S| fixed but changing its azimuthal
angle ¢ (taking the direction of h as the z—axis) by |h(x,¢)|At in a time interval of Af. This
would have been exact if the field h were a constant; in our case however h(x,t) depends
on space and time and we introduce errors of O(At). We choose At small enough so as to
reduce this error. The advantage of this method is that it does not give rise to numerical
instabilities and automatically preserves the magnitude of the local spin |S| in time. In the
simulation space and time are discretised with Az = 1 and At = 0.0001 on a system of size
N =200 (large enough to avoid finite size effects) with periodic boundary conditions. The
1ncal field is calculated by the rule h; = (S;,.; — 8;_,)/Az. This field is used to update the
}_pcal spin by the precession algorithm.

Using this numerical scheme we can compute the time series of observables like the
magnetisation and energy density E = ([dz(VS)?) ({---) denotes an average over initial

onfigurations). We first note that these quantities never seem to settle to a stationary
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value, strongly suggesting that no stable steady state exists. The motion could therefore be
either temporally periodic or chaotic. This should be revealed in a power spectrum analysis
periodic motion would appear as delta function peaks. In Fig. (3.5) we display the power
spectrum P(w) = [Ms(w)|? of the third component of the total magnetisation My = (8y) for
data collected over more than 3 decades. The data shows some small features which are in
fact spurious since they can be erased by more averaging and more sophisticated binning,
We also find that the power spectrum follows a power law (1/w?) behaviour aver roughly
3 decades. The power spectrum of the total energy density also shows a similar behaviour.
This strongly suggests that the dynamics is temporally chaotic [11]. We have also checked
that this chaotic behaviour persists when Eq. (3.46) is solved numerically starting from a

variety of initial configurations.

=1k

L L L
-2 -1.5 =1

b
b
5

Figure 3.5: Plot of y = (/w?P(w) showing a 1/w* dependence of the power spectrum over
‘approximately 3 decades.

Since the components of spin obey partial differential equations (PDEs), we also check
for spatial chaos. This is best visualised by constructing space-time plots of local quantities,

For instance, Fig. (3.6) is a space-time plot of the signed local pitch, sgn(p) =sgn(d.0).
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strongly suggesting spatio-temporal chaos[11].

Figure 3.6: Space-time plot of the signed local pitch, sgn(p) =sgn(d.¢) (black and white
patches denote sgn(p) = £1 respectively), suggesting spatio-temporal chaos.

We hope we have provided convincing evidence that the asymptotic configurations in
the low drive-temperature regime exhibit spatio-temporal chaos. The numerical evidence
we presented was for d = 1, and though we cannot be sure whether this spatio-temporal
chaos will persist at higher spatial dimensions, we feel that this is quite likely. This is
because in our stability analysis of steady states done for arbitrary spatial dimension, we
failed to find any reasonable stable steady state configuration at low drive-temuperatures,
Moreover, a Lyapunov stability analysis of the simpler equation 3,8 = AS x @S in arbitrary
dreveals that a tiny disturbance in the initial conditions grows exponentially in time. Several
questions arise, to which we do not have answers at present, such as whether there exists a
low-dimensional chaotic attractor and if so what is its nature and dimensionality.

The spatio-temporal chaotic phase that we just discovered has embedded in it an infinity
of unstable (spatially) periodic steady states. This, together with the fact that the dvnamics
is ergodic, are two of the characteristic properties of chaotic systems [12, 13]. These propertics
would imply that starting from generic initial conditions the configuration of spins would
eventually visit these periodic steady states. However starting from generic initial conditions

the time taken to visit any one of these periodic steady states is unpredictable. Since
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these periodic steady states are unstable, once visited, the dynamics will veer the spin
configurations away from it.

We now ask whether we can arrange that the spin configuration stays put in a prescribed
periodic steady state having visited it ? This is the subject of control of spatio-temporal
chaotic systems, one of the most important problems in modern chaos research [12, 13].
There are two aspects to the control of chaos, stabilisation and targeting. Holding the
periodic steady state having visited it, is termed stabilisation. However since the time taken
for this visit from an arbitrary initial condition can be extremely large, it is desirable to
target a prescribed unstable periodic steady state. There have been many proposals for
controlling chaos in finite dimensional dynamical systems [12, 13]. However there has been
very little work in the more important area of control of spatio-temporal chaos in PDEs
{which correspond to an infinite dimensional dynamical system, see Ref. [13] for a review).
We will show that for our dynamical model spatio-temporal chaos can be both stabilised
and targeted, and hence controlled.

We have seen that the spatially periodic unstable steady states (helical steady states) are
parametrised by a, the projection of the spin along the | axis, p, the inverse pitch, and b,
the projection of the spin along the || axis. Our stability analysis (Sect. 3.4) indicated that
the dominant instabilities occurred along the direction of the drive. We therefore focus on
controlling the spin component S.

We attempt to control the spatio-temporal chaos in order to obtain a prescribed helical
configuration with fixed values of a, b and p. Since the dynamics is ergodic it will eventually
visit this configuration. We subsequently apply small perturbations to prevent Sy from

deviating from this value of b. This prescription stabilizes the prescribed helical configuration.
Fig. (3.7).
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Figure 3.7: Picture of the stabilised Lelical configuration from numerical simulations.

In order to target this prescribed helix we add a uniaxial spin anisotropic potential Vi =
ra(S5 — %) (or even V3 = —r3Si) to the free-energy functional with a large positive value
of r3. We have found that for sufficiently large ry. this uniaxial potential forces Sy to take
the value b exponentially fast starting from arbitrary initial configurations. The subsequent

dynamics maintains Sy = b = constant; the noiseless Eq. (3.46) reduces (in d-dimensions)

to
o
Ff = V- p(Vo) +p— {p?-i-h?]lp—ﬁbpﬁ||¢~
8 : ;.
- = Vo + ;(?p} Yf:’l}—i— &)”p (3.53)

We now note that these dynamical equations can be recast as a conventional purely dissipa-
i I k

tive Langevin equation at zero temperature,

d _ GF
at dp
o 1 4F .
5 - pés’ (3.54)
where the ‘free-energy functional’ F has the form of a chirel XY model [14].
1 2t g 2 2 gy o Yoa e 2 4

It is easy to see that F is a Lyapunov functional [1],

§F 89S, G6F 88, 2 5FN\2
. d, ! 2 d.. il -
_fd' 2 (551 at | 88, o ) f“’ | ( ) (552) ] Sl SR
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which decreases monotonically in time. Hence starting from any initial configuration the
svstem heads towards the minimum of this F, which is a unique helix with parameters b,
a and p (p is related to a and b via Eq. (3.51)). That there is a unique minimum can be
seen by determining the ‘free-energy’ Fj of the helical configurations from Eq. (3.535) and

plotting F[p, a] against p and a (Fig. 3.8).

F (p,a)

(a) (b)

Figure 3.8: (a) Contour plot of the ‘free-energy’ Fj, as a funetion of @ and p. (b) Projection
of plot (a) on the pa-plane. It is clear from the plots that there is a unique helical minimum,

The stability of this ‘free-energy’ minimising helix can also be tested directly from
Eq.(3.53). As before, we perturb about this helix : p = a+ p(x, 1), and ¢ = pzy+ e+ o(x. 1),

and deduce the growth of these perturbations to linear arder,

9p 25 o ;

5 = V45— 2a% — a(2p + Ab)éh e

B R |

99 a‘;" = V2 +—(2p+ Mb)3y5. 357)

By going to Fourier space we may evaluate the eigenvalues wy (k) and wy(k) of the dvnamical

matrix, given by

. y ; ; 1/2
wia(k) = — (K2 + &2 +a?) £ {u" + k2 + m}ﬁ} _ (3.58)
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The helix configuration would be stable if these two eigenvalues have positive real parts for all
k. This can be seen numerically by substituting the values a and p take at the ‘free-energy’
minimurn in the above expression.

This completes our discussion of the control of spatio-temporal chaos, However no dis-
cussion would be complete without considering the effects of noise which might result in
occasional escapes from the otherwise well controlled systém. Do these escapes lead to an
mstability of the targeted configuration ? We therefore ask what happens to this controlled
helical configuration when we turn on the nonconserved noise 7, &.e when T, #£ 0. We
answer this by again considering small fluctuations j(x,t) and @(x, t) about the controlled
helical state.

The linearised equations of motion Eq. (3.37) in j and ¢ now contain the nonconser-
vative noises 7, and 74 with mean zero and correlators (nu(t) e (t')) = Béy wb(t — 1),
Mok (E)Mare (1)) = By e d(t — t') and (nuc(t)nae(t')) = 0, to linear order. The linearised
equations are stochastic differential equations with Gaussian white noise and so we need to
modify our definition of dynamical stability. We shall sav that the controlled helical state
is stable if the means ()} and {é) vanish and the variances are finite in the thermodynamic
limit.

The equations for () and (¢} are identical to Eq. (3.57) and therefore the means decay
to zero exponentially fast, To obtain the variance we calculate the equal-time correlation
functions Cjlk.t) = (f(t)p-x(t)) and Cy(k,t) = (e (t)d_ie(t)) and integrate over all k
between 27 /L and A, where L is the size of the system and A is the ultraviolet cutoff.
Since we are interested in the L dependence of the variance, we will replace the correlation
functions in the entire & range by their behaviour at small k. The calculation in Appendix
[T11B shows that for small &

B

K rad
B

# (1 (2))

C(k, )

Cy(k. 1) (3:59)

The variances A; and A; obtained on integrating the correlators over all k and then taking

the thermodynamic limit L — oc depend sensitively on the spatial dimension d. The variance
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of g is finite in all dimensions,

wla d=1,
As=1 In(14+(Afa)?) d=2, (3.60)
finite d=3,

“while the variance of ¢ diverges in 1 and 2 dimensions and is finite in higher dimensions,

L gd=1,
Aj=4 InL d=2, (3.61)
finite d=3.

Thus in higher dimensions d > 2, the occasional excursions from the controlled state as a
result of the noise do not lead to the instability of the targeted state. In lower dimensions
however the noise fluctuations are large enough to destabilise the targeted state.

The reader may notice a close analogy between the modes j and ¢ and the massive and
ffuIdstine fluctuations in the equilibrium ordered phase of the chiral-XY model. Fluctuations
f' ¢ are massless (Goldstone) arising the spontaneously broken O(2) symmetry corresponding

:#u rotations in the plane perpendicular to the helical axis in the order parameter manifold.

3.5 Conclusions and Future Work

I_':'_ving on the dynamics of a Heisenberg magnet in d-dimensions. As in the single-particle
ple in Chapter 1, the asymptotic configurations exhibit a rich variety of non-equilibrium
phases as a function of the drive-temperature Ty, [15. 16]. The system exhibits a ‘paramag-
etic steady state’ at high T, and a ‘critical steady state’ at Tyrqe = T4, with power-law
torrelations induced by the driving even when the equilibrium Heisenberg magnet (without
_*;_5- driving) is paramagnetic. The drive takes the system away from the Wilson-Fisher fixed
oint leading to a new drive induced universality class. At low drive-temperatures both the
omogeneous and inhomogeneous steady states are unstable. In particular, the system has
an infinity of spatially periodic unstable steady states which are helical. We have provided
mumerical ‘proof’ (at least in d = 1) that the dynamics at low T, is spatio-temporally
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chaotic. We would like to do a similar analysis for higher dimensions in the future. Several
questions regarding this spatio-temporal chaos remain unanswered, such as the existence
and nature of a low dimensional attractor. We have found that the spatio-temporal chaos
may be ‘controlled’ to target any desired helical steady state. This control works even in the
presence of noise in dimensions d > 2. We have yet to explore the entire set of parameters,
e.g. the different values of r, and 7, and so we exhibit the non-equilibrium phase diagram
in the restricted space of parameters that we have studied, Fig. (3.9). Our work has ex-
plored the asymptotic states of spins subject to an external driving that breaks reflection
symmetry. In future we would like to study the effect of an external drive which may break

other space-time symrmetries.

v>0

paramagnetic phase

n> 0 critical

phase

spatio temporal chaos

ve0 chaos control

f

ordered (chiral) states

Figure 3.9: Non-equilibrium phase diagram as a function of the drive temperature Tyipe.

3.6 Appendix ITTIA

In this Appendix we present the details of perturbative caleulation mentioned in Sect. 1.3.
The diagrams corresponding to the lowest order terms in the perturbation expansion are

constructed following the rules shown in Fig. 3.10.
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Figure 3,1_EI: Graphs for correlation functions and vertices at the tree level. Fogng =

Corrections to Gylk,w)

(I} Corrections from the A vertex :

q,v k-q, om-v
P e
o o o
— ki, _*'k,ﬂ.'r_'k-lm —k,0
N o N
k-q, w—v qsv
(1) (II)

Figure 3.11: O(\?) corrections to Gp(k,w).
Graphs (I) and (II) in Fig. 3.11 show the one-loop corrections to Gy(k.w) due to the A
vertex,

)‘2
Ialk,w) = —'Ifffqﬁ’ﬂ[[mf = (k= @)Uy = (—g))Golk — q,w — v)Cy(q, v)
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+((ky —ay) — gy + (k) — ) Golq, v)Colk — q.w — ¥)

_22*B ﬁ.q[{ﬂw — K ky +ay) | (kg — 2ay)(2g) — qu]] 1
4 7*(q) vk — q) ¥a) + 7k - q)

(in the limit w — ()

(3.62)

In the above integrals v"(k) is defined as
1 T
7 (k) = ( : ) :

T‘"ﬁ'ﬁ <+ Tj_ki —

We expand Y, (k,0) in powers of k) and £,. Terms which are higher order than O{k-’f] Or
O(k%) are ultraviolet convergent. Coefficients of the terms of order kY, i and k% denote
changes to v, rj and r respectively,

(i) Term proportional to &°

This part of £,(k.0) does not have any infrared divergences but has divergences in the
ultraviolet. We introduce an upper momentum cutoff A to get an estimate of the correction

to v. We will denote the self energy contribution coming from the )\ vertex to order &Y as
[Eﬂ}r\r

A B qi
> - [ ¢
(Zo)a 5 IT‘{q]
TAMEB
= _47'3‘{21"["{2 ‘ (3.63)
'L

(ii) Term proportional to kf

(= —

)l.zﬂkﬁf [ 1 N lﬁrﬁlqﬂ’ B -4'r”qﬁ
1 1297q) " Fla) ~ 7¥(a)
AEB'L'E"FZT‘HEE

= Jna=es Sl 3.64
Brle(ryry)®? (3.64)
where the integrals,

1 ?‘"’U_Eﬂ 1 =

d = -, 3.8
f @) T Br(nr) e e

2 —e/2
1 U 1

= - 3,66
-/Jq':r'“f{l] 32w (ryr ) e’ B
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fﬁq qﬁ' B ’.I"||U_"="r2 1
7a)  ean2 (e} €

(3.67)

have been evaluated using the standard integrals for the general form [ ﬂ.‘f[‘fﬁ‘i’i )/+¢(a)
given in Ref. [8]. We have also had to make use of the asymptotic expansion for the Gamma

function ['(—n +¢), when n is zero or any positive integer and € — 0,

I(-n+¢) = '[*nll}" EJF (1 - % + .ot % —7) + D(f}] : (3.68)

where - is the Buler-Mascheroni constant [17].

(iii) Term proportional to k%

A2 Bk? 16r.q.  dry
b3 = J-f"I -E_I: L —
_ BX*Br k2ve?1

= = 3.60
9627 (ryrL)¥? e (8:69)

where we have evaluated the integral

J da O u, M (3.70)
Ya)  48mPry(rro) e’ '

(II} Corrections from the u— vertex :
There is also a correction to the response function G(k,w) coming from the u— vertex: to

Ofe) this is shown in the figure below,
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k4
b g

—*k,m k,(ﬂ“""

Figure 3.12: O(u?*) corrections to the k = 0 part of Gy(k.w).
To 1-loop, the correction to G(k,w) from this interaction comes only from the k = 0

piece given by,

(So)e =3 [datvG(a.v)

Sull 1
= - dq—

3 -[ g

E?TJI‘.I-HB

=, (3.71)
B

The net 1-loop correction to the response function G adds up to
Dlk.w) = [(Zg)s + (Zo)u] + (Zy)aki + (ZL)ak3 . (3.72)

Corrections to Cy(k, w)

Figure 3.13: O(A?) corrections to Cy(k, w).
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2
Yy = —%fﬂq&‘ﬂiikn =) — ay)ay — (ky — @))Colk — q,w — v)Cy(q, v)

P
; i)
=AB? [ dg——
f )
NBIy—? ]

£ “EEWE{T'HTJ_J a2 E + [3?3}

The renormalised couplings are oblained from the vertex corrections to A and u.

Corrections to the A\— verter

The corrections to A come from the three-point correlators,

E k,, w,

Ly ky-q, w-v ky+ky o+,

(I}

Figure 3.14: O(A%) correction to the A— vertex.
‘The contribution from (I) to the vertex function Iy is given by,

i3
(Tm) f‘rqﬁy[[{h” = qp) + ko ) ((kay + ap) + @) (g + k) + (kyy = q)) | x

Gola, ¥)Go(ke + q,wy — v)Cy(ky — q,wy — v)
_NB £ @k + k)
16 7 (a)

(3.74)
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Likewise the contribution from (II) to Ty is
_?A 3
(T) f‘TE‘E” [f-*‘flll — gy ) ((kay +qq) + ay) (R + kay) + (kyy — q))| %
GH(RT —q,uy — H]Gﬂ{kﬁ -+ q; s — V}CU{QJ !J']
iA'B (2kyy + ko )af n
— i : . .75
2 /5 ) B

while (III) gives,

—idy? |
(T) f-iffiff”[f"'(kzﬂ +qy) — (R =+ k) ) (Chay + ay) +ad (kg — ay) + k)| %
Golq, v)Go(ks — q,wy +v)Cy(ka +q,wy +v)

i\*B (2ky — Sk )gf
B A
The three contributions combine to give,

(3.76)

3N B qqﬁ (2ky) + kay)
16 7%(q)

_ 3'5,};35{2-‘6]" -|—.|ii:2||;|'i.?_f"ll2 1

n 512m2(ry Ty )32 €’

Cal2ky + k) =

(3.77)

Corrections to the u— verter

There are two contributions to the vertex function I, to O(u?) and O(\").

o L ih 5

B ki+k,-q,0+a,~-Vv

Figure 3.15: O(u®) correction to the u— vertex.
The O(u®) graph gives

11u?
Fn.ﬂ';fd'T f dgd vCy(q, v)Gylk) + ks — q, wy +wy — v)
11428 1

R TP e )

11u*B 1
- Faﬂ

- (3.78)
4S?r3ri'r2r|;“m €
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Figure 3.16: O(A") correction to the u— vertex.

The O(A') graph gives the following contribution :

_}1 4
—1152F 55 (E) fﬁrqﬂ'v{fhu = an) = ) Chay — Chay — Ry — g)) (kg — (kg + ) (kg + @) %
Golk: — q.w — »)Gp(ky — ks — q,wy — wy — v)Gylks + q, wo + v)Co(q. v)

‘B gi
—1152 i g——
2 Fn&"rﬁ( 43 ) q‘_fa(q)
271 i
— T A ndyd Bgﬂnggrljfzf i [SIE}J

The net correction to the u— vertex is,

Iy = Fﬂﬁﬂ%i - aﬁvﬁ_zﬁ—m‘
B 322 T e
=Pty g~ | (a0
where % and T are defined by
- ﬁi—fﬁ (3.81)
A (3.82)

rT=—
Eﬁ{rﬁ"mriﬂ}




CHAPTER 3. Dissipative Dynamics of Driven Heisenberg magnets 121

3.7 Appendix ITIB

In this Appendix we derive the results for the correlators given in Eq. (3.59). Consider
small fluctuations 5(x,t) and @(x.t) over the helical steady state p(x.t) = a and ¢(x, 1) =
pr| + ¢ respectively. To O(5) and O(¢) the time evolution of the fluctuations is given by the

linearised version of Eq. (3.53) about the helical state,

8p , .

a—‘: = V%5 - 2d% — (2ap + \ab)3d + 1, .

b0 5= 1 i '

5 = Ve 4 E{Ep + M)y | {3.83)
|

where 7,(x.£) = ni(x,t) cos(pz)) + ma(x, £) sin(pz)) and ny(x,t) = a mp(x.t) cos(pz)) —
m(x.t) sin(pz))]. The noises n,(k,t) and 5y(k.t) satisfy

(ma(k. ), (K, t")) = 2B _é(t —t),

(nolle, s (K, £)) = 2265 et~ 1),
(malk. t)ns (K, 1)) = 0. (3.84)

We use the following definition of the Fourier transforms
Aulw) = [ dxdwp(x, tje*xe
| dulw) = [ dkdwdlx, t)e-xes (3.85)
to solve Eq. (3.83) for py and ¢y,

fulw) = ﬁi_—m]{nﬂm ) (iw + k) — i (k. w)kya(2p + AB))

(@) = eyl )liw + K+ 26 — In by (2p 4 M), (356)

where

Dk, w) = —w* + 2iw(k* + a®) + k*(k* + 2a%) — K3 (2p + Ab)*. (3.87)
We now compute the equal time correlation functions Cj and C 5 averaged over the noise:
Coll) = (Ael)i-x(t)) = [ dw(pu(w)pw(~w))

K+ k2a?(2p + Ab)? B
e+ 1) 2t )

(3.88)
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where f, and f_ are the roots of the equation D(k,w) =0,
) 1/2
fe=k+a*+ [a* +kif(2p+ Ab}ﬁ] . (3.89)
and

C3ll) = (But)ow(t)) = [ dw(Bu(w)dr(~w))
Ek“+242+kﬁ{2p+,\b]2 B 1

Y 0 My Ly ey (.80)

We use the & — 0 behaviour to evaluate the variances A; and A;. In this infrared limit

B
Cs ~ 2 g2 (3.91)

and

B
-
i (1- ()

Cy(k) ~ (3.92)
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Chapter 4

Dynamics of Heisenberg magnets
driven by a Temperature gradient

In this last chapter we study the dynamics of Heisenberg spins where the effects of inertia.
driving and boundary dissipation compete with each other to give rise to new steady states.
We apply two heat sources at the boundary which are simultaneously sources of noise and
dissipation. Furthermore, the boundaries either allow for a spin current to flow across (non-
conserved model) or disallow a spin current (conserved model). For the most part, we restrict
our study to the conserved model in d = 1 (Sect. 4.2). In last section we touch upon the non-
conserved model leaving a detailed investigation for the future. Details of our calculations

are presented in Appendix IVA

4.1 Model of Heat Conduction

Consider a system of Heisenberg spins placed between two heat baths ( 1 and 2 ) kept at
temperatures Ty and T3 (let T} > T3) respectively, separated by a distance L (Fig. 4.1). The
spins are arranged on a d-dimensional regular hypercubic lattice with fixed sites labelled by

{r}. The microscopic Hamiltonian is short-ranged and is given by
Ez_ZJZSl"ST-l-a:- {‘11}
r,a

where J > 0 (ferromagnetic) and {a} are the primitive vectors.
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Figure 4.1 Schematic picture of a system of Heisenberg spins in d = 1 placed in between
heat baths with temperatures T} and T, where T} > To.

We will work with the microscopic dynamics for the bulk spins, since one of the con-
tentious issues in this field is the existence of local thermodynamic equilibrium (LTE) [1].
The existence of LTE implies that the system can by divided into small d-dimensional cells
{Z(x)} (where {x} labels the centres of the boxes), each one large enough to be treated as
a macroscopic thermodynamic subsystem but much smaller than the system size, so that
intensive thermodynamic variables such as pressure P(x), temperature T(x) and magneti-
sation m(x) do not change within the cell and have the same relation to each other as in
equilibrium [2]. It appears that in most one dimensional microscopic models of heat condue-
tion investigated so far. LTE does not exist [1, 3, 4] . This in particular would imply that
we cannot write down continuum hydrodynamic equations for the heat flow [3].

As in the earlier chapters, the microscopic equation of motion in the bulk is given by the

energy conserving (inertial) dynamics,

dS,

5 =S x e, (4.2)

where h, = —J 3 (S;1a + Sc_a) is the local magnetic field experienced by the bulk spins.
The boundary spins in addition interact with the heat bath and so the full dynamics of
the boundary spins is reversible precession and boundary dissipation. At the boundaries
(denoted as 1 and 2) the spins are in local thermal equilibrium with their adjoining heat
baths. We are therefore justified in using a coarse-grained continuum deseription for the

dynamics of the boundary spins. The time evolution of the boundary spins may be written
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as,

aF
— iy s 7, 4.3
T 2 5501a z 55&1,2 + e+ iz (4.3)

where F'[Sy] is the continuum Landau-Ginzburg free-energy functional (Eq. (1.3)). The
first term is the boundary dissipation with T'; » being the kinetic coefficients. The boundary

noises 1y 2 have zero mean and correlator,

(Mag12y (X, 1)na01.2) (X, 1)) = 201 kT 2)0aad (x — X )6(t — t') (4.4)

and obeys the boundary FDT. The second term in Eq. (4.3) is the inertial precession dynam-
ics. Clearly if T > Ty, an ‘energy current’ or ‘heat flux’ will flow in the system proportional
to the gradient of the temperature. The boundary chemical potentials 7, and [, are con-
jugate to the boundary spins. If 7, > [, a ‘spin current’ or ‘spin flux’ will be set up
proportional to the gradient in the chemical potential. The heat flow dynamies in the ab-
sence of a spin current (i, = fiy) will be called the conserved model, while the dynamics in
the presence of spin current (f; # ;) will be called the nonconserved model. Since we work
in a fixed particle ensemble, there will be no particle current.

The forms of the energy and spin current in the bulk can be determined from the time

evolution described in Eq. (4.2). In the bulk the local energy density is given by
e(x,t) = &d(x—r1), (4.5)
where

fr =

%; [ESPH‘ Y Sr}z -+ {:Sr-& - Srjg] {4{3}

The energy density e(x,t) obeys a continuity equation,

BEE;* Y V. J4x, 1) = 0. (4.7)

The heat current is defined as J*(x,t) = ¥, jo6“(x — r), where j¢ takes the form (derived in
Appendix IVA)

j¢ =2Ja(S: X S;_a) * Srun. (4.8)
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One can define a macroscopic current density (J¢(x,¢)) within each cell £(x), where (- - -}
indicates an average over the distribution of states, which in the presence of LTE corresponds
to an average over the equilibrium ensemble in that cell. When LTE exists one may define a
local temperature T'(x, t) which bears the same relation to the local energy density (e(x, t)) as
the canonical temperature to the average energy density at .equilibrium. This latter relation.

known exactly for the Heisenberg model in d = 1 [6], is given by
(e(x)) = 2(J — (coth(J/kgT) — kgT/J)). (4.9)

In higher dimensions where such a relation is not known exactly. one may obtain the relation
between the local energy density and the local temperature through a numerical simulation.
The thermal conductivity x(T(x.t)) is defined through a constitutive relation (Fourier’s
Jaw) 7],

(J5(x.t)) = —w(T)VT(x. t). (4.10)

The constitutive relation (Eq. 4.10) with the help of Eq. (4.7) gives Fourier’s equation
(Eq.(1.14)) of heat conduction. In real physical systems x(T) is a finite quantity with a well
defined thermodynamic limit. This implies that J¢ scales as 1/L (using Eq. (4.10)), where
L is the size of the system.

The local spin density in the bulk. m,(x,t) = ¥, S.-0(x — r), also obeys a continuity
equation

.y,

ot
with a spin current defined as J3(x,t) = ¥, j5,.6%x — r). The form of j5 may be shown to

be (see Appendix IVA)

+ VI8 =0, (4.11)

jﬁ, = 2aJeapy(Sorsa — Spr—a)Sor - (4.12)
As before we may define a spin conductivity ks through a constitutive relation
(Talx.t)) = ks Vita, (4.13)

under the assumption of LTE. If LTE exists, the local vector chemical potential y, in a cell

E(x) can be calculated by exploiting the relation between p, and the magnetisation {m.,)
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at equilibrium (the latter may be either determined analytically or numerically). As in the
thermal conductivity case, finiteness of ks in the thermodynamic limit implies that J= scales
as 1/L.

Now we proceed to study the dynamiecs of heat conduction in the conserved model (no

spin current in the bulk at steady state) of Heisenberg spins in d = 1.

4.2 Conserved Dynamics, i) = ji;

The heat baths 1 and 2 are constructed from Heisenberg spins which are in equilibrium
at temperatures 77 and 73 respectively. At ¢+ = 0 the spins (both in the bulk and in the
heat baths) are taken from a uniform distribution with zero mean and uncorrelated in space,
Inside the heat baths the time evolution of the spins is obtained by solving the dissipative Eq.
(4.3) (written. for convenience, in dimensionless form by scaling x, t, n, and S, appropriately.

see Sect. 2,1},

95,12 y =
5:' = vjsbl.z — sgn(r) Sy12 - (St12-Se12)Se1z2 + 9 (Sbl,‘.! X vzsbm) TSt
(4.14)
with the noise correlator
(Tar2(x, t) na1,2(xX', 1)) = 6ag 6(x — XY 8(t = 1), (4.15)

using an Euler scheme (Sect. 2.1.1) on a regular 1D lattice. The noise strength a; 2 (Eq.
4.14) is chosen appropriate to the bath temperatures T, ». The size of the bath is taken to be
much smaller (of the order of a few bulk correlation lengths £(T')) than the size of the bulk
system, so as to ensure that the spins in the heat bath equilibrate within the simulation time.
In the bulk the spins evolve according to Eq. (4.2) which we solve numerically using the
scheme deseribed in Sect. 3.4. After the spins reach a steady state we calculate the following
quantities — (i) energy density (e;), (ii) energy current (j¢) . and (iii) equal-time correlation
function C;(r) = (S, - 8;), where {- - ) indicates a time average in the steady state and an
average over initial configurations. Note that since spatial translation invariance is explicitly
broken when 77 # T5, the equal time correlation funetion between points i and i+ r depencds

ont both the relative separation r and the ‘centre-of-mass’ coordinate.
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4.2.1 Dynamics in one dimension

Our numerical simulations are done on a d = 1 regular lattice with the bulk size ranging
from N = 20 to N = 80 (the lattice spacing a has been chosen to be 1). The size of the
heat bath is taken to be 10. For our Euler discretisation we take Az = 1 and At = 0.0005.
These parameter values do not give rise to any instability in the numerical simulation and
our results are unchanged on slight variations of Az and At. All quantities are measured in

units of Ax and At. The energy scale J is taken to be equal to 0.2 in all our simulations.

(A) Case T) =T;

The heat baths (1 and 2) are kept at equal temperatures, Ty = T, = T. One might expect
this boundary condition to eventually lead to thermal equilibrium at a temperature T. We
study this dynamics at two different values of the heat bath temperature (T = T; (low tem-
perature) corresponding to a heat bath noise strength a; = 0.1 (~ 0.5J when J = 0.2) and
T = Ty (high temperature) which corresponds to ay = 5 ~ 25J). By monitoring the total
energy density E/N = N~'%, ¢, we have ensured that the system reaches a steady state

after time t, ~ 107 (Fig. (4.2)).

E/N ssf :

L= ; = s ¥ =3 - T
t x 10

Figure 4.2: Plot of E/N vs time ¢ when N = 40 for temperatures Tj( x) and T, (+). A steady
state is obtained at times ¢ > 6 % 10°,
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To study the nature of the steady state we first check for local thermal equilibrium. At

equilibrium the form of the correlation function C(r) = (S;;.(¢) - S;(t)) is known exactly [6],
C{r) =all)" =C{1) =)} (4.16)

where u(T') = coth(J/kgT) — kpT/J is the form of the equilibrium energy density. If LTE
were to exist such a relation should hold locally when coarse-grained over a cell £(x). We
compute the correlation function Cj(r) within a cell of size r < 3 centered at i +3/2. All
quantities are averaged over a time interval of 10° in the steady state region and further
averaged over 20 uncorrelated initial configurations.

Figure (4.3a) shows plots of C;(1), Cj(2) and C;(3) versus i in the steady state when the
bath temperatures are set at T = T, (low temperature). This clearly shows a violation of
Eq. (4.16), and we conclude that at these low bath temperatures local thermal equilibrium
does not hold {indeed global thermal equilibrium also does not hold) ! However when the
bath temperatures are raised to T = T}, > Tj, we find that the correlators obey Eq. (4.16)
locally (Fig. (4.3a)), suggesting that LTE exists at higher bath temperatures,

arm &—’\/\/W_\El‘/{-\z—j/_/v‘\

= C:i {3} o o ..u:- o ﬁ “d_.-'

oy s %1 C:1

| L b ‘"(C (1}}
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Figure 4.3: Plot of Cy(2)(+), Ci(3)(x) vs i for N = 40. (a) A comparison of Ci(2), Ci(3)
with (C;(1))%(+) and (C;(1))*(0) shows that Eq. (4.16) does not hold in the bulk, implying
the absence of LTE at low temperatures T;. (b) A similar comparison at high temperatures
T}, shows that Eq. (4.16) is obeyed locally, suggesting the existence of LTE.
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We offer a tentative understanding of our numerical findings. The dynamics Eq. (4.2) in
d =1 (in the absence of any heat baths) admits soliton solutions [8] and possesses an infinite
number of conserved quantities [9] apart from the total energy. This extensive number of
conserved quantities breaks up the constant energy surface into distinct sectors each labelled
by the values that these conserved quantities take. The conservation laws prevent the system
from moving from one sector to another — the motion is therefore not ergodic. Introducing
the boundary heat hath as a source of dissipation and noise breaks these conservation laws.
One might imagine that this would allow the system to ‘tunnel’ from one sector to another.
thereby restoring ergodicity and equilibrium. The time required to reach equilibrium would
in general depend on (a) the boundary temperature T and (b) the system size N. At high
temperatures T}, the boundary dissipation is large, the breakdown of conservation laws is
strong, and the system approaches equilibrium in a reasonable time. At low temperatures T}
the breakdown of the conservation laws is weaker, and the system does not reach equilibrium
in any reasonable time. An intriguing possibility is that this finite temperature ergodicity
breaking is a true transition in the thermodynamic limit, but a lot more work is needed to
establish this claim. This scenario is very similar to the behaviour of the Fermi-Pasta-Ulam
(FPU) system [10] which exhibits ergodicity and approach to equilibrium if the energy den-
sity is above a threshold e.(N) ~ 1/N? while it shows trapping (apparent breakdown of

ergodicity) below this threshold [11].

(B) Case T} > T5
In this case the difference in temperatures of the boundary heat baths drives a thermal
current across the bulk. We study the system for two sets of (T}, T3), related to the strength
of the noise correlators at the baths — Set (i) : low temperatures (@ = 1, a5 = 0.1) and Set
(ii) : high temperatures (@ = 3,4y = 2). We check for both the existence of LTE and the
validity of Fourier's law.

We will see that LTE is violated at low temperatures (Set (i)), making it meaningless to

define a local temperature. LTE is however restored at high temperatures (Set (ii)). This is
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what one might have expected based on our analysis of the (earlier) Case (A). This implies
that at high temperatures we may define a local temperature field and hence a thermal
conductivity. We have not done a systematic study of the scale dependence of the thermal
conductivity to check the validity of Fourier’s law, but we hope to do this in the future. A
similar scenario was shown to occur in a lattice model of rigid rotors in d = 1, where normal
heat transport was restored above a threshold temperature [12].

We again monitor the time dependence of the total energy density E/N to ensure that
the svstem approaches a steady state, We find an approach to the steady state for times
t > 5 x 105 (Fig. (4.4)) when the temperatures are low (Set(i)). In the steady state all
physical quantities are averaged over a time interval of 10° in addition to being averaged
over 20 uncorrelated initial configurations.

As before we test for LTE by computing 2-point correlators C;(r) coarse-grained over a
cell of size r centered at i+ 3/2. For our computations we have chosen r = 3; plots of C;{1).
Ci(2) and Cy(3) versus i (Fig. (4.5)) for low temperatures (Set (i)) elearly show that they

do not obey Eq. (4.16) suggesting that LTE does not exist.
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Figure 4.4: Time dependence of total energy for L = 20(+), 40(x), 60(+) and 80(0) for low
temperatures. This shows that the system enters a steady state after times ¢t > 5 x 105,
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Figure 4.5: (a) Plot of C;(2)(+), Ci(3)(x) vs i for N = 20 at low temperatures. A comparison
of Ci(2), Ci(3) with (Ci(1))*(%) and (C;(1))*(Q) shows that Eq. (4.16) does not hold in the
bulk, implying the absence of LTE. (b) Same as (a) for N = 60.

Since local equilibrium is absent at low temperatures, one cannot define a local temper-
ature field; we therefore study the local energy density profile {;(f)) in the bulk at steady
state. The energy density (Fig. (4.6)), changes exponentially fast from its value at the
boundaries (equal to the corresponding bath temperature) to a constant, uniform profile in
the bulk. The length scale over which the energy density changes is around 4 bulk lattice
spacings in our simulations and depends on the size of the system (larger the system size,
steeper is the change) and the temperature of the adjacent heat bath. The energy density
profile in the bulk does not seem to have an appreciable Eyste;n size dependence.

The scaling of the corresponding energy current J¢ with system size N is shown in Fig.
(4.7) ; the scale independence of the energy current implies (as discussed in Seet. 1.3 ) that
the thermal conductivity diverges as V.

Divergent heat conductivity (scaling as N°) and a flat energy density profile with a
discontinuous jump near the boundaries characterise the anomalous heat transport of a few
1D model systems such as a system of hard spheres and a linear chain of simple harmonic

oscillators [4. 1]. In both these examples, the uniform profile of the energy density in the
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bulk is due to the presence of localised non-interacting modes in the system. These non-
interacting modes do not allow for a transfer of energy in the bulk, resulting in a uniform

energy density profile and hence a divergent heat conductivity.

Figure 4.6: Plot energy density for N = 20(A), 40(0), 60(c) and 80(o) with respect to i/N
for low temperatures. The bulk profile does not scale with i/N and after a rapid exponential
change near the boundaries (becoming steeper with V) attains a uniform value.
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Figure 4.7: Scale independence of the energy current. A plot for N = 20, 40, 60 and 80
shows that it is almost constant (~ (.0285), implying a divergent heat conductivity & ~ V.



CHAPTER 4.Dynamics of Heisenberg magnets driven by a Temperature gradient 136

At higher temperatures (Set (ii)), LTE is restored as can be seen from Fig. (4.8), where
the steady state values of C;(1), C;(2) and C;(3) are related by Eq. (4.16). This implies that

LTE exists at higher temperatures, allowing us to define a local temperature field.

\ / :
\ \,
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Figure 4.8: (a) Plot of Ci(2)(+), Cy(3)(x) vsifor N =20, A comparison of C(2), Ci(3) with
(Ci(1))*(*) and (C;(1))*(0) shows that Eq. (4.16) holds in the bulk, implying the existence
of LTE. The statistics may be improved by averaging over more configurations.

We have not been able to compute the scale dependence of the thermal conductivity, since

this requires a lot more averaging. We hope to do this in future.

4.3 Conclusions and Future Work

We end this short chapter with our conclusions and suggestions for future work. We have
studied the microscopic dynamics of the Heisenberg spins driven by a boundary temperature
gradient. Our numerical calculations have been restricted to d = 1. We have defined two
distinct models — a conserved model, which does not allow for a bulk spin current and
nonconserved medel which allows for a bulk spin current. In each of these models we ask for

(i) the existence of LTE. and (i) the validity of Fourier's law.
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In the conserved model we find that LTE does not hold at low temperatures. The thermal
conductivity measured by the ratio of the current to the energy density scales linearly with
system size showing that Fourier's law is invalid. At high temperatures LTE is restored. We
speculate on a finite temperature ergodicity breaking transition: but more extensive work is
needed to establish this.

To study the nonconserved model, we may impose a chemical potential gradient across the
boundaries. This results in the presence of both an energy current and a spin current which
interact with each other. It is likely that the associated condutivities are related, analogons
to the Weidmann-Franz law [13], which relates the thermal conductivity to the electrical
conductivity. Another intriguing possibility is the emergence of Self Organised Criticality
(SOC) in the steady state. The houndary effects may provide a source of a nonconserved
noise to the spin conserving dynamics in the bulk (Eq. (4.2)), resulting in power-law spin

correlations [14]. These effects will be analysed in the near future.
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4.4 Appendix IVA

Here we derive the forms for the energy and spin currents given in Eq.(4.8) and Eq. (4.12)

respectively. The Fourier transforms of e(x, t) and m(x, ) are defined as
ex(t) = f dize(x, t)e~ (4.17)

and
my(t) = fd“;rm[x. e ie® (4.18)
Taking the Fourier transforms of Eq. (4.7) we get

Bex (1)

e ik T =0
asr hr r i
> ¥ (G b+ 8,0 0 )R ik =0
0Scia  OSe
= Sr-( = a)f:*k"-l—ékJ‘ =0
E at ot K

dS, ; .
= . (Sr+aetk-(r+a] + Sr_selk-{r—&:l) ok Lk_]‘i =0

= —JY
T
= —JZ (ST b 5!‘—5) & Sr-e-aﬁfk-r(ﬂikla = E—ﬂ{-ﬂ) + ikj:‘ - “‘
(4.19)
| In the long wave-length limit (k — 0), to the lowest order in k, we obtain Eq. (4.8), viz.,
j: = EJH.(S:- = Sr—a) *Sria {4.2{]}

Likewise, Fourier transforming the Eq. (4.11)
dmy(t)
at
= —JY 8% (sm o Sr_a).e'k" (c’k's - e‘ﬂ"“) k-8 =10, (4.21)
ra

+ik-J5 =0

As before in the hydrodynamic limit we get Eq. (4.12).
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